utils.py 4.1 KB
Newer Older
C
cc 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle.fluid import dygraph
17
import numpy as np
18
from . import quant_nn
C
cc 已提交
19

20
layer_name_map = {
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    'Conv2D': paddle.nn.Conv2D,
    'Linear': paddle.nn.Linear,
    'AdaptiveAvgPool2D': paddle.nn.AdaptiveAvgPool2D,
    'AdaptiveMaxPool2D': paddle.nn.AdaptiveMaxPool2D,
    'AvgPool2D': paddle.nn.AvgPool2D,
    'MaxPool2D': paddle.nn.MaxPool2D,
    'Hardswish': paddle.nn.Hardswish,
    'LeakyReLU': paddle.nn.LeakyReLU,
    'PReLU': paddle.nn.PReLU,
    'ReLU': paddle.nn.ReLU,
    'ReLU6': paddle.nn.ReLU6,
    'Sigmoid': paddle.nn.Sigmoid,
    'Softmax': paddle.nn.Softmax,
    'Swish': paddle.nn.Swish,
    'Tanh': paddle.nn.Tanh,
    'Hardswish': paddle.nn.Hardswish,
    'BatchNorm': paddle.nn.BatchNorm,
    'GroupNorm': paddle.nn.GroupNorm,
    'LayerNorm': paddle.nn.LayerNorm,
C
cc 已提交
40
}
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
# Apply fake quant for the inputs of these layers
# TODO (jc): support paddle.nn.Conv2DTranspose
fake_quant_input_layers = [paddle.nn.Conv2D, paddle.nn.Linear]

# Apply fake quant for the output of these layers
# TODO(jc): fix the problem of adding duplicate fake_quant ops
# paddle.nn.AdaptiveAvgPool2D, paddle.nn.AvgPool2D, paddle.nn.ReLU,paddle.nn.LeakyReLU
fake_quant_output_layers = [
    paddle.nn.quant.add, paddle.nn.quant.subtract, paddle.nn.quant.multiply,
    paddle.nn.quant.divide
]

fake_quant_leaf_layers = [
    quant_nn.FakeQuantAbsMax,
    quant_nn.FakeQuantChannelWiseAbsMax,
    quant_nn.FakeQuantMovingAverageAbsMax,
    quant_nn.MovingAverageAbsMaxScale,
G
guofei 已提交
59 60
]

61
fake_quant_wrap_layers = [quant_nn.QuantizedConv2D, quant_nn.QuantizedLinear]
62 63 64 65 66

weight_op_types = [
    "conv2d", "depthwise_conv2d", "matmul", "conv2d_transpose",
    "depthwise_conv2d_transpose"
]
67

68 69 70 71 72 73
fake_quantize_dequantize_op_types = [
    "fake_quantize_dequantize_abs_max",
    "fake_channel_wise_quantize_dequantize_abs_max",
    "fake_quantize_dequantize_moving_average_abs_max"
]

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

def load_variable_data(scope, var_name):
    '''
    Load variable value from scope
    '''
    var_node = scope.find_var(var_name)
    assert var_node is not None, \
        "Can not find " + var_name + " in the scope."
    return np.array(var_node.get_tensor())


def find_previous_op(block, var_name):
    """
    Find the previous op for the input variable.
    """
    for op in block.ops:
        if var_name in op.output_arg_names:
            return op


def find_next_ops(block, var_name):
    """
    Find all followed ops for the input variable.
    """
    res_ops = []
    for op in block.ops:
        if var_name in op.input_arg_names:
            res_ops.append(op)
    return res_ops
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135


def find_parent_layer_and_sub_name(model, name):
    """
    Given the model and the name of a layer, find the parent layer and
    the sub_name of the layer.
    For example, if name is 'block_1/convbn_1/conv_1', the parent layer is
    'block_1/convbn_1' and the sub_name is `conv_1`.
    """
    assert isinstance(model, dygraph.Layer), \
            "The model must be the instance of paddle.nn.Layer."
    assert len(name) > 0, "The input (name) should not be empty."

    last_idx = 0
    idx = 0
    parent_layer = model
    while idx < len(name):
        if name[idx] == '.':
            sub_name = name[last_idx:idx]
            if hasattr(parent_layer, sub_name):
                parent_layer = getattr(parent_layer, sub_name)
                last_idx = idx + 1
        idx += 1
    sub_name = name[last_idx:idx]
    return parent_layer, sub_name


def is_leaf_layer(layer):
    """
    Whether the layer is leaf layer.
    """
    return isinstance(layer, dygraph.Layer) \
        and len(layer.sublayers()) == 0