operator.h 13.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
22
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
23
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
24 25 26 27
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/platform/variant.h"
Q
qijun 已提交
29
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34
/// If a variable is a empty variable, that name will be used.
35
constexpr char kEmptyVarName[] = "@EMPTY@";
36 37 38

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
39
constexpr char kTempVarName[] = "@TEMP@";
40 41 42 43

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
44
constexpr char kGradVarSuffix[] = "@GRAD";
45 46

/// Variables with this suffix are supposed to be filled up with zeros.
47
constexpr char kZeroVarSuffix[] = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
53
class OperatorBase;
54 55
class InferShapeContext;
class ExecutionContext;
56

Q
Qiao Longfei 已提交
57 58 59 60 61 62 63 64
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
65 66 67
  using VarNameMap = std::map<std::string, std::vector<std::string>>;

  OperatorBase(const std::string& type, const VarNameMap& inputs,
Y
Yu Yang 已提交
68
               const VarNameMap& outputs, const AttributeMap& attrs);
69

Q
Qiao Longfei 已提交
70 71 72 73 74 75 76 77 78
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

79
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
80 81 82

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
83
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
84 85

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
86
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
87 88
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
89 90
  virtual bool IsNetOp() const { return false; }

91 92
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
93 94 95
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Q
qiaolongfei 已提交
96 97
  const VarNameMap& Inputs() const { return inputs_; }
  const VarNameMap& Outputs() const { return outputs_; }
Y
Yu Yang 已提交
98
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
99
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
100
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
101
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
102

Y
Yu Yang 已提交
103
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
104
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
105 106
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
107
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
108

Y
Yu Yang 已提交
109
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
110

Q
qiaolongfei 已提交
111
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
112
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
113 114
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
115
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
116 117
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
118

Q
qiaolongfei 已提交
119
 protected:
Q
Qiao Longfei 已提交
120
  std::string type_;
D
dongzhihong 已提交
121
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
122
  // I (Inputs)opear
D
dongzhihong 已提交
123 124
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
125
  VarNameMap inputs_;
Y
Yu Yang 已提交
126

D
dongzhihong 已提交
127 128
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
129
  VarNameMap outputs_;
Q
Qiao Longfei 已提交
130
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
131 132
};

Y
Yu Yang 已提交
133 134
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
135
// register it. i.e. `Clone` method is not needed to define by yourself.
Y
Yu Yang 已提交
136 137 138 139
#define DEFINE_OP_CLONE_METHOD(CLS)                       \
  std::unique_ptr<OperatorBase> Clone() const final {     \
    return std::unique_ptr<OperatorBase>(new CLS(*this)); \
  }
Y
Yu Yang 已提交
140

Y
Yu Yang 已提交
141 142 143 144
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
145
#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS)                                 \
Y
Yu Yang 已提交
146 147 148 149
  CLS(const std::string& type, const VarNameMap& inputs,                       \
      const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \
      : PARENT_CLS(type, inputs, outputs, attrs) {}

150 151
class NOP : public OperatorBase {
 public:
152
  using OperatorBase::OperatorBase;
153 154 155
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
156 157 158
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
159 160
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate();

 protected:
  struct VariableBuilder {
    OpProto::Var* var_;

    VariableBuilder& AsDuplicable() {
      var_->set_duplicable(true);
      return *this;
    }

    VariableBuilder& AsIntermediate() {
      var_->set_intermediate(true);
      return *this;
    }

    // TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it
    // means that input/output is not needed when calculate gradient. It does
    // not mean no gradient when backward. It should be changed soon.
    VariableBuilder& AsNoGradient() {
      var_->set_no_gradient(true);
      return *this;
    }
  };

  VariableBuilder AddInput(const std::string& name, const std::string& comment);

  VariableBuilder AddOutput(const std::string& name,
                            const std::string& comment);

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
                               const std::string& comment,
                               bool generated = false) {
    auto* attr = proto_->add_attrs();
    attr->set_name(name);
    attr->set_comment(comment);
    attr->set_generated(generated);
    attr->set_type(AttrTypeID<T>());
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) { proto_->set_comment(comment); }

 private:
  void CheckNoDuplicatedInOutAttrs();

  OpProto* proto_;
  OpAttrChecker* op_checker_;
  bool validated_{false};
};

class NOPMaker : public OpProtoAndCheckerMaker {
 public:
  NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {}
};

229
class InferShapeContext {
Y
Yan Chunwei 已提交
230
 public:
231 232
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
233

Y
Yu Yang 已提交
234
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
235
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
236 237
  }

Y
Yu Yang 已提交
238
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
239
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
240 241
  }

242
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
243
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
244 245
  }

246
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
247
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
248 249
  }

250 251
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
252 253
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
254
    res.reserve(names.size());
Y
Yan Chunwei 已提交
255
    std::transform(
256
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
257
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
258 259 260
    return res;
  }

261
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
262 263
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
264
    res.reserve(names.size());
Y
Yan Chunwei 已提交
265
    std::transform(
266
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
267
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
268 269 270
    return res;
  }

271 272
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
273
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
274
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
275
    return &var->Get<T>();
276 277 278 279
  }

  template <typename T>
  T* Output(const std::string& name) const {
280
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
281
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
282
    return var->GetMutable<T>();
283 284 285 286 287 288 289 290
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
291
                   [&](const std::string& sub_name) {
292
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
293 294 295
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
296
                     return &var->Get<T>();
297 298 299 300 301 302 303 304 305 306
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
307
                   [&](const std::string& sub_name) {
308
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
309
                     PADDLE_ENFORCE_NOT_NULL(
F
fengjiayi 已提交
310
                         var, "MultiOutput(%s:%s) should not be nullptr.", name,
Y
Yan Chunwei 已提交
311
                         sub_name);
312
                     return var->GetMutable<T>();
313 314 315 316 317
                   });
    return res;
  }

  const OperatorBase& op_;
318
  const Scope& scope_;
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

336
class ExecutionContext : public InferShapeContext {
337
 public:
338
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
339
                   const platform::DeviceContext* device_context)
340
      : InferShapeContext(op, scope), device_context_(device_context) {}
341

Q
qijun 已提交
342 343 344
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
345
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
346

D
dongzhihong 已提交
347
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
348

Q
qijun 已提交
349
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
350
    return device_context_;
Q
qijun 已提交
351
  }
Q
qijun 已提交
352

D
dongzhihong 已提交
353
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
354 355
};

Q
qijun 已提交
356 357
class OpKernel {
 public:
Q
qijun 已提交
358
  /**
359
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
360 361
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
362
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
363 364
   */

365
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
366 367 368 369

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
370 371
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
372 373
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
374

Y
Yu Yang 已提交
375
    OpKernelKey() = default;
L
liaogang 已提交
376
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
377 378 379
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
380 381 382
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
383 384 385 386 387 388 389 390 391 392 393
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
394

Y
Yu Yang 已提交
395 396 397 398
  OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
                     const VarNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

399
  void InferShape(const Scope& scope) const override {
400
    InferShape(InferShapeContext(*this, scope));
401 402
  }

Y
Yu Yang 已提交
403
  void Run(const Scope& scope,
Y
Yu Yang 已提交
404
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
405
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
406
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
407 408
  }

Y
Yu Yang 已提交
409 410 411 412
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
413
  }
Y
Yan Chunwei 已提交
414

415 416 417 418 419 420
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
421
 protected:
422
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
423 424 425 426
};

}  // namespace framework
}  // namespace paddle