fc_op.cc 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

W
wanghuancoder 已提交
17 18 19 20 21 22 23 24 25
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

26 27 28 29 30 31 32 33 34 35
namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * FC converter convert a MUL op in Fluid to a FC layer in TRT.
 */
class FcOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
36
                  const framework::Scope& scope, bool test_mode) override {
37
    VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias";
Y
Yan Chunwei 已提交
38
    framework::OpDesc op_desc(op, nullptr);
39 40 41 42 43 44 45 46 47

    auto input_names = op_desc.InputNames();
    bool with_bias = input_names.size() >= 3;
    std::string w_name = "Y";
    std::string i_name = "X";
    if (with_bias) {
      w_name = "W";
      i_name = "Input";
    }
48
    // Declare inputs
49
    auto* X = engine_->GetITensor(op_desc.Input(i_name).front());
50
    // Declare weights
51
    auto* Y_v = scope.FindVar(op_desc.Input(w_name).front());
52 53 54
    PADDLE_ENFORCE_NOT_NULL(
        Y_v, platform::errors::NotFound(
                 "Can not find %s presistale var of fc in scope.", w_name));
55
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
P
Pei Yang 已提交
56 57
    const int x_num_col_dims =
        op_desc.HasAttr("x_num_col_dims")
58
            ? BOOST_GET_CONST(int, op_desc.GetAttr("x_num_col_dims"))
P
Pei Yang 已提交
59
            : (op_desc.HasAttr("in_num_col_dims")
60
                   ? BOOST_GET_CONST(int, op_desc.GetAttr("in_num_col_dims"))
P
Pei Yang 已提交
61 62 63
                   : 1);
    const std::string activation_type =
        op_desc.HasAttr("activation_type")
64
            ? BOOST_GET_CONST(std::string, op_desc.GetAttr("activation_type"))
P
Pei Yang 已提交
65
            : "";
66
    // This may trigger a GPU->CPU copy, because TRT's weight can only be
67
    // assigned from CPU memory, which can't be avoided.
68
    float* weight_data = nullptr;
69
    bool enable_int8 = op_desc.HasAttr("enable_int8");
70 71
    if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
72
      CHECK(op_desc.HasAttr(i_name + "_scale"));
73
      float in_scale =
74
          BOOST_GET_CONST(float, op_desc.GetAttr(i_name + "_scale")) * 127;
75
      auto weight_scale =
76
          BOOST_GET_CONST(std::vector<float>, op_desc.GetAttr("weight_scale"));
77 78 79 80 81 82 83 84
      weight_data = engine_->GetWeightCPUData(op_desc.Input(w_name).front(),
                                              Y_t, true, weight_scale);
      engine_->SetTensorDynamicRange(X, in_scale);
#endif
    } else {
      weight_data =
          engine_->GetWeightCPUData(op_desc.Input(w_name).front(), Y_t, false);
    }
N
nhzlx 已提交
85

86 87 88 89 90
    PADDLE_ENFORCE_EQ(Y_t->dims().size(), 2UL,
                      platform::errors::InvalidArgument(
                          "The fc's weight should be a matrix with 2 dims, but "
                          "it's %d-dimensional.",
                          Y_t->dims().size()));  // a matrix
91
    size_t n_output = Y_t->dims()[1];
N
nhzlx 已提交
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    int m = Y_t->dims()[0];
    int n = Y_t->dims()[1];

    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };

    auto regist_fc = [&](nvinfer1::ITensor* inputs, int n_output,
                         TensorRTEngine::Weight& weight,
                         TensorRTEngine::Weight& bias) {
      auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *inputs,
                                            n_output, weight.get(), bias.get());

      auto output_name = op_desc.Output("Out").front();
      if (activation_type == "relu") {
        nvinfer1::IActivationLayer* relu_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Activation, *(fc_layer->getOutput(0)),
                                 nvinfer1::ActivationType::kRELU);
        RreplenishLayerAndOutput(relu_layer, "fc", {output_name}, test_mode);
      } else {
        RreplenishLayerAndOutput(fc_layer, "fc", {output_name}, test_mode);
      }
    };

    std::vector<float> weight_data_tmp;
    weight_data_tmp.reserve(Y_t->numel());
    memcpy(weight_data_tmp.data(), weight_data, Y_t->numel() * sizeof(float));
    tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
N
nhzlx 已提交
125

126 127
    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
N
nhzlx 已提交
128
                                  static_cast<size_t>(Y_t->numel())};
129 130
    weight.dims.assign({n, m});

131 132 133 134 135 136 137 138 139 140 141 142
    float* bias_data = nullptr;
    int bias_num = 0;
    if (with_bias) {
      auto* b_v = scope.FindVar(op_desc.Input("Bias").front());
      auto* b_t = b_v->GetMutable<framework::LoDTensor>();
      bias_data =
          engine_->GetWeightCPUData(op_desc.Input("Bias").front(), b_t, false);
      bias_num = b_t->numel();
    }
    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(bias_data),
                                static_cast<size_t>(bias_num)};
143

144 145 146 147
    if (engine_->with_dynamic_shape()) {
      regist_fc(X, n_output, weight, bias);
      return;
    }
P
Pei Yang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    // in order to handle situations in NLP models(input dims < 3,
    // x_num_col_dims != 1, etc.), reshape input to perform FC correctly.
    auto* reshape_itensor = X;
    int input_dims = X->getDimensions().nbDims;
    auto input_d = X->getDimensions().d;
    int reshape_dim3[3] = {0};
    int reshape_dim4[4] = {0};
    PADDLE_ENFORCE_EQ(
        x_num_col_dims == 1 || x_num_col_dims == 2, true,
        platform::errors::InvalidArgument(
            "Wrong x_num_col_dims param of op mul. Paddle-TRT FC converter "
            "expects x_num_col_dims is either 1 or 2, but got %d",
            x_num_col_dims));
    PADDLE_ENFORCE_LE(x_num_col_dims, input_dims,
                      platform::errors::InvalidArgument(
                          "Params and input dims mismatch. Paddle-TRT FC "
                          "converter expects x_num_col_dims <= input dims"));
    if (x_num_col_dims == 1) {
      if (input_dims == 4) {
        PADDLE_ENFORCE_EQ(
            input_d[3], 1,
            platform::errors::InvalidArgument(
                "Invalid dimensions. When x_num_col_dims equals to 1 and input "
                "dims equals to 4, the last dim of input must be 1, but got %d",
                input_d[3]));
      }
      for (int i = 0; i < 3; i++) {
        if (i < input_dims) {
          reshape_dim3[i] = input_d[i];
        } else {
          reshape_dim3[i] = 1;
        }
      }
      nvinfer1::Dims3 reshape_dim(reshape_dim3[0], reshape_dim3[1],
                                  reshape_dim3[2]);
      auto* reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
      reshape_layer->setReshapeDimensions(reshape_dim);
      reshape_itensor = reshape_layer->getOutput(0);
    } else {
      PADDLE_ENFORCE_NE(input_dims, 1,
                        platform::errors::InvalidArgument(
                            "Invalid dimensions. When x_num_col_dims equals to "
                            "2, input_dims should not be 1"));
      for (int i = 0; i < 4; i++) {
        if (i < input_dims) {
          reshape_dim4[i] = input_d[i];
        } else {
          reshape_dim4[i] = 1;
        }
      }
      nvinfer1::Dims4 reshape_dim(reshape_dim4[0], reshape_dim4[1],
                                  reshape_dim4[2], reshape_dim4[3]);
      auto* reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
      reshape_layer->setReshapeDimensions(reshape_dim);
      reshape_itensor = reshape_layer->getOutput(0);
    }
204
    regist_fc(reshape_itensor, n_output, weight, bias);
205 206 207 208 209 210 211
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

N
nhzlx 已提交
212
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);