sequence_pooling.cc 12.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

A
Abhinav Arora 已提交
15
#include <string>
M
minqiyang 已提交
16

T
tensor-tang 已提交
17
#include "paddle/fluid/operators/jit/kernels.h"
M
minqiyang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
20
#include "paddle/fluid/operators/math/sequence_pooling.h"
21 22 23 24 25

namespace paddle {
namespace operators {
namespace math {

D
dzhwinter 已提交
26 27 28 29 30 31 32 33 34
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

J
Jacek Czaja 已提交
35
template <typename T, bool is_test>
D
dzhwinter 已提交
36
class MaxSeqPoolFunctor {
37
 public:
Q
QI JUN 已提交
38
  void operator()(const platform::CPUDeviceContext& context,
39 40 41 42 43
                  const framework::LoDTensor& input, framework::Tensor* output,
                  framework::Tensor* index) {
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto idx_dims = index->dims();
D
dangqingqing 已提交
44 45 46
    PADDLE_ENFORCE_GT(in_dims.size(), 1);
    PADDLE_ENFORCE_GT(out_dims.size(), 1);
    for (int64_t i = 1; i < in_dims.size(); ++i) {
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
      PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i]);
    }
    PADDLE_ENFORCE_EQ(idx_dims, out_dims);

    auto starts = input.lod()[0];
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
    int* max_index = index->data<int>();

    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t k = 0; k < dim; ++k) {
        out_data[i * dim + k] = in_data[starts[i] * dim + k];
        max_index[i * dim + k] = starts[i];
      }
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
            max_index[i * dim + k] = j;
          }
        }
      }
    }
  }
};
J
Jacek Czaja 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
// Instantisation of Max Sequence Pooling for test phase eg. no need to fill
// index buffer
template <typename T>
class MaxSeqPoolFunctor<T, true> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::LoDTensor& input, framework::Tensor* output,
                  framework::Tensor* index) {
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    PADDLE_ENFORCE_GT(in_dims.size(), 1);
    PADDLE_ENFORCE_GT(out_dims.size(), 1);
    for (int64_t i = 1; i < in_dims.size(); ++i) {
      PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i]);
    }

    auto starts = input.lod()[0];
    const T* in_data = input.data<T>();
    T* out_data = output->data<T>();
93

J
Jacek Czaja 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    int64_t num_seq = out_dims[0];
    int64_t dim = output->numel() / num_seq;
    for (int64_t i = 0; i < num_seq; ++i) {
      std::memcpy(&out_data[i * dim], &in_data[starts[i] * dim],
                  dim * sizeof(T));
      for (size_t j = starts[i] + 1; j < starts[i + 1]; ++j) {
        for (int64_t k = 0; k < dim; ++k) {
          if (in_data[j * dim + k] > out_data[i * dim + k]) {
            out_data[i * dim + k] = in_data[j * dim + k];
          }
        }
      }
    }
  }
};
109
template <typename T>
D
dzhwinter 已提交
110
class MaxSeqPoolGradFunctor {
111
 public:
Q
QI JUN 已提交
112
  void operator()(const platform::CPUDeviceContext& context,
113 114 115 116 117 118
                  const framework::Tensor& out_grad,
                  const framework::Tensor& index,
                  framework::LoDTensor* in_grad) {
    auto og_dims = out_grad.dims();
    auto ig_dims = in_grad->dims();
    auto idx_dims = index.dims();
D
dangqingqing 已提交
119 120 121
    PADDLE_ENFORCE_GT(og_dims.size(), 1);
    PADDLE_ENFORCE_GT(ig_dims.size(), 1);
    for (int64_t i = 1; i < og_dims.size(); ++i) {
122 123 124 125 126 127 128 129
      PADDLE_ENFORCE_EQ(og_dims[i], ig_dims[i]);
    }
    PADDLE_ENFORCE_EQ(idx_dims, og_dims);

    const T* og_data = out_grad.data<T>();
    const int* max_index = index.data<int>();
    T* ig_data = in_grad->data<T>();

Q
QI JUN 已提交
130
    SetConstant<platform::CPUDeviceContext, T> set_zero;
131 132 133
    set_zero(context, in_grad, static_cast<T>(0.0));
    int64_t num_seq = og_dims[0];
    int64_t dim = out_grad.numel() / num_seq;
D
dangqingqing 已提交
134 135
    for (int64_t i = 0; i < num_seq; ++i) {
      for (int64_t j = 0; j < dim; ++j) {
136 137 138 139 140 141 142
        int step_id = max_index[i * dim + j];
        ig_data[step_id * dim + j] = og_data[i * dim + j];
      }
    }
  }
};

143
template <typename T>
B
bingyanghuang 已提交
144
class LastSeqPoolFunctor {
145 146
 public:
  void operator()(const platform::CPUDeviceContext& context,
B
bingyanghuang 已提交
147 148
                  const framework::LoDTensor& input,
                  framework::Tensor* output) {
B
bingyanghuang 已提交
149 150 151
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();
B
bingyanghuang 已提交
152

B
bingyanghuang 已提交
153 154 155 156
    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
    auto lod = input.lod()[0];
    int seq_num = static_cast<int>(lod.size()) - 1;
B
bingyanghuang 已提交
157 158 159 160 161 162 163 164
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
      // Point to the begin of next sequence
      in_data += seq_len * item_size;
      // Copy the last item of sequence to output
      std::memcpy(out_data, (in_data - item_size), item_size * sizeof(T));
      out_data += item_size;
B
bingyanghuang 已提交
165
    }
B
bingyanghuang 已提交
166 167 168 169 170 171 172
  }
};

template <typename T>
class FirstSeqPoolFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
B
bingyanghuang 已提交
173 174
                  const framework::LoDTensor& input,
                  framework::Tensor* output) {
B
bingyanghuang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    // Create pointers to input and output data
    auto* in_data = input.data<T>();
    auto* out_data = output->data<T>();

    // Calculate the size of each item in sequence
    int64_t item_size = input.numel() / input.dims()[0];
    auto lod = input.lod()[0];
    int seq_num = static_cast<int>(lod.size()) - 1;
    for (int i = 0; i < seq_num; ++i) {
      // Calculate the length of each sequence
      int64_t seq_len = static_cast<int64_t>(lod[i + 1] - lod[i]);
      // Copy the first item of sequence to output
      std::memcpy(out_data, in_data, item_size * sizeof(T));
      // Point to the next sequence
      in_data += seq_len * item_size;
      out_data += item_size;
B
bingyanghuang 已提交
191
    }
B
bingyanghuang 已提交
192
  }
193 194
};

M
minqiyang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
template <typename T>
class SumSeqPoolGradFunctor {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& out_grad,
                  framework::LoDTensor* in_grad) {
    auto lod = in_grad->lod()[0];
    int64_t out_w = out_grad.numel() / out_grad.dims()[0];
    int64_t in_w = in_grad->numel() / in_grad->dims()[0];
    PADDLE_ENFORCE(in_w == out_w);
    const T* out_g_data = out_grad.data<T>();
    T* in_g_data = in_grad->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t in_offset = lod[i] * in_w;
      const T* out_pos = out_g_data + i * out_w;
      T* in_pos = in_g_data + in_offset;
      for (int r = 0; r != h; ++r) {
        blas.VCOPY(in_w, out_pos, in_pos + r * in_w);
      }
    }
  }
};

D
dzhwinter 已提交
220 221 222 223 224 225
template <typename T>
class SequencePoolFunctor<platform::CPUDeviceContext, T> {
 public:
  /* max pool has index output */
  void operator()(const platform::CPUDeviceContext& context,
                  const std::string pooltype, const framework::LoDTensor& input,
J
Jacek Czaja 已提交
226
                  framework::Tensor* output, bool is_test,
D
dzhwinter 已提交
227 228
                  framework::Tensor* index = nullptr) {
    if (pooltype == "MAX") {
J
Jacek Czaja 已提交
229 230 231 232 233 234 235
      if (is_test) {
        math::MaxSeqPoolFunctor<T, true> max_pool;
        max_pool(context, input, output, index);
      } else {
        math::MaxSeqPoolFunctor<T, false> max_pool;
        max_pool(context, input, output, index);
      }
D
dzhwinter 已提交
236 237
      return;
    }
B
bingyanghuang 已提交
238 239 240
    if (pooltype == "LAST") {
      math::LastSeqPoolFunctor<T> last_pool;
      last_pool(context, input, output);
241 242
      return;
    }
B
bingyanghuang 已提交
243 244 245 246 247
    if (pooltype == "FIRST") {
      math::FirstSeqPoolFunctor<T> first_pool;
      first_pool(context, input, output);
      return;
    }
T
tensor-tang 已提交
248

D
dzhwinter 已提交
249
    auto lod = input.lod()[0];
T
tensor-tang 已提交
250 251 252 253 254
    if (pooltype == "SUM") {
      auto place = context.GetPlace();
      PADDLE_ENFORCE(platform::is_cpu_place(place));
      const T* src = input.data<T>();
      T* dst = output->mutable_data<T>(place);
T
tensor-tang 已提交
255 256 257
      jit::seq_pool_attr_t attr(
          static_cast<int>(input.numel() / input.dims()[0]),
          jit::SeqPoolType::kSum);
258 259 260
      auto seqpool =
          jit::KernelFuncs<jit::SeqPoolTuple<T>, platform::CPUPlace>::Cache()
              .At(attr);
T
tensor-tang 已提交
261 262 263 264 265 266 267 268
      for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
        attr.h = static_cast<int>(lod[i + 1] - lod[i]);
        seqpool(src, dst, &attr);
        dst += attr.w;
        src += attr.h * attr.w;
      }
      return;
    }
D
dzhwinter 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      Tensor in_t =
          input.Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
      Tensor out_t = output->Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = input.numel() / input.dims()[0];
      auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
      auto out_e = EigenVector<T>::Flatten(out_t);
      if (pooltype == "AVERAGE") {
        out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
      } else if (pooltype == "SQRT") {
        out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
                              std::sqrt(static_cast<T>(h));
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template <typename T>
class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const std::string pooltype, const framework::Tensor& out_grad,
                  framework::LoDTensor* in_grad,
                  /* max pool has index */
                  const framework::Tensor* index = nullptr) {
    if (pooltype == "MAX") {
      math::MaxSeqPoolGradFunctor<T> max_pool_grad;
      max_pool_grad(context, out_grad, *index, in_grad);
      return;
    }

    if (pooltype == "LAST" || pooltype == "FIRST") {
      // set X@Grad be zero at first when pooltype is LAST/FIRST
      math::SetConstant<platform::CPUDeviceContext, T> functor;
      functor(context, in_grad, 0);
    }
M
minqiyang 已提交
309 310

    if (pooltype == "SUM") {
M
minqiyang 已提交
311 312
      math::SumSeqPoolGradFunctor<T> sum_pool_grad;
      sum_pool_grad(context, out_grad, in_grad);
M
minqiyang 已提交
313 314 315
      return;
    }

D
dzhwinter 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    auto lod = in_grad->lod()[0];
    auto& place = *context.eigen_device();
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      auto in_g_t = in_grad->Slice(static_cast<int>(lod[i]),
                                   static_cast<int>(lod[i + 1]));
      auto out_g_t = out_grad.Slice(i, i + 1);
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
      int64_t w = in_grad->numel() / in_grad->dims()[0];
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
      auto out_g_e_v = EigenVector<T>::Flatten(out_g_t);
      Eigen::DSizes<int, 2> bcast(h, 1);

      if (pooltype == "AVERAGE") {
        in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
      } else if (pooltype == "SQRT") {
        in_g_e.device(place) =
            (out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
      } else if (pooltype == "LAST") {
        in_g_e.chip(h - 1, 0).device(place) = out_g_e_v;
      } else if (pooltype == "FIRST") {
        in_g_e.chip(0, 0).device(place) = out_g_e_v;
      } else {
        PADDLE_THROW("unsupported pooling pooltype");
      }
    }
  }
};

template class SequencePoolFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolFunctor<platform::CPUDeviceContext, double>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, float>;
template class SequencePoolGradFunctor<platform::CPUDeviceContext, double>;
349 350 351 352

}  // namespace math
}  // namespace operators
}  // namespace paddle