activation_grad_kernel.cu 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/kernels/activation_grad_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/impl/activation_grad_impl.h"

#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"

namespace phi {

template <typename T, typename Context, typename Functor>
void ActivationGradGPUImpl(const Context& dev_ctx,
                           const DenseTensor* x,
                           const DenseTensor* out,
                           const DenseTensor* d_out,
                           DenseTensor* d_x,
                           const Functor& functor) {
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepOut)) {
    PADDLE_ENFORCE_NOT_NULL(
        out, errors::NotFound("The input DenseTensor Out can not be nullptr"));
  }
  PADDLE_ENFORCE_NOT_NULL(
      d_out, errors::NotFound("The input DenseTensor dOut can not be nullptr"));
  PADDLE_ENFORCE_NOT_NULL(
      d_x, errors::NotFound("The output DenseTensor dX can not be nullptr"));
  if (!out) {
    out = d_out;  // fake out
  }
  if (static_cast<int>(Functor::FwdDeps()) &
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepX)) {
    PADDLE_ENFORCE_NOT_NULL(
        x, errors::NotFound("The input DenseTensor X can not be nullptr"));
  } else {
    VLOG(10) << "Inplace activation of Op Functor: " << typeid(Functor).name();
    x = d_x;
  }

  dev_ctx.template Alloc<T>(d_x);

  std::vector<const DenseTensor*> ins = {d_out};
  std::vector<DenseTensor*> outs = {d_x};

  if (static_cast<int>(Functor::FwdDeps()) ==
      static_cast<int>(funcs::ActBwdOpFwdDeps::kDepOut)) {
    // Only need forward output Out
    ins.push_back(out);
    funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
  } else if (static_cast<int>(Functor::FwdDeps()) ==
             static_cast<int>(funcs::ActBwdOpFwdDeps::kDepX)) {
    // Only need forward input X
    ins.push_back(x);
    funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
  } else {
    funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
  }
}

Y
YuanRisheng 已提交
76
#define DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(name, functor_class) \
77 78 79 80 81
  template <typename T, typename Context>                           \
  void name##GradKernel(const Context& dev_ctx,                     \
                        const DenseTensor& x,                       \
                        const DenseTensor& dout,                    \
                        DenseTensor* dx) {                          \
82 83
    funcs::functor_class<T> functor;                                \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>(     \
84 85 86
        dev_ctx, &x, nullptr, &dout, dx, functor);                  \
  }

Y
YuanRisheng 已提交
87
#define DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(         \
88 89 90 91 92 93 94 95 96 97 98 99 100 101
    name, functor_class, attr)                                  \
  template <typename T, typename Context>                       \
  void name##GradKernel(const Context& dev_ctx,                 \
                        const DenseTensor& x,                   \
                        const DenseTensor& dout,                \
                        float attr,                             \
                        DenseTensor* dx) {                      \
    funcs::functor_class<T> functor;                            \
    auto attrs = functor.GetAttrs();                            \
    *(attrs[0].second) = attr;                                  \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, &x, nullptr, &dout, dx, functor);              \
  }

Y
YuanRisheng 已提交
102
#define DEFINE_GPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(         \
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    name, functor_class, attr1, attr2)                          \
  template <typename T, typename Context>                       \
  void name##GradKernel(const Context& dev_ctx,                 \
                        const DenseTensor& x,                   \
                        const DenseTensor& dout,                \
                        float attr1,                            \
                        float attr2,                            \
                        DenseTensor* dx) {                      \
    funcs::functor_class<T> functor;                            \
    auto attrs = functor.GetAttrs();                            \
    *(attrs[0].second) = attr1;                                 \
    *(attrs[1].second) = attr2;                                 \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, &x, nullptr, &dout, dx, functor);              \
  }

Y
YuanRisheng 已提交
119
#define DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(name, functor_class) \
120 121 122 123 124
  template <typename T, typename Context>                             \
  void name##GradKernel(const Context& dev_ctx,                       \
                        const DenseTensor& out,                       \
                        const DenseTensor& dout,                      \
                        DenseTensor* dx) {                            \
125 126
    funcs::functor_class<T> functor;                                  \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>(       \
127 128 129
        dev_ctx, nullptr, &out, &dout, dx, functor);                  \
  }

Y
YuanRisheng 已提交
130
#define DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPOUT(       \
131 132 133 134 135 136 137 138 139 140 141 142 143 144
    name, functor_class, attr)                                  \
  template <typename T, typename Context>                       \
  void name##GradKernel(const Context& dev_ctx,                 \
                        const DenseTensor& out,                 \
                        const DenseTensor& dout,                \
                        float attr,                             \
                        DenseTensor* dx) {                      \
    funcs::functor_class<T> functor;                            \
    auto attrs = functor.GetAttrs();                            \
    *(attrs[0].second) = attr;                                  \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, nullptr, &out, &dout, dx, functor);            \
  }

Y
YuanRisheng 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
#define DEFINE_GPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT(       \
    name, functor_class, attr1, attr2)                          \
  template <typename T, typename Context>                       \
  void name##GradKernel(const Context& dev_ctx,                 \
                        const DenseTensor& out,                 \
                        const DenseTensor& dout,                \
                        float attr1,                            \
                        float attr2,                            \
                        DenseTensor* dx) {                      \
    funcs::functor_class<T> functor;                            \
    auto attrs = functor.GetAttrs();                            \
    *(attrs[0].second) = attr1;                                 \
    *(attrs[1].second) = attr2;                                 \
    ActivationGradGPUImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, nullptr, &out, &dout, dx, functor);            \
  }

Y
YuanRisheng 已提交
162 163
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Relu, CudaReluGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Tanh, CudaTanhGradFunctor);
Y
YuanRisheng 已提交
164 165
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Sigmoid, CudaSigmoidGradFunctor);

Y
YuanRisheng 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Cos, CudaCosGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Tan, CudaTanGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Acos, CudaAcosGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Sin, CudaSinGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Asin, CudaAsinGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Atan, CudaAtanGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Sinh, CudaSinhGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Cosh, CudaCoshGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Asinh, CudaAsinhGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Acosh, CudaAcoshGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Atanh, CudaAtanhGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(TanhShrink, CudaTanhShrinkGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Silu, CudaSiluGradFunctor);
Y
YuanRisheng 已提交
179
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(LogSigmoid, CudaLogSigmoidGradFunctor);
180 181 182 183
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Log, CudaLogGradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Log2, CudaLog2GradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Log10, CudaLog10GradFunctor);
DEFINE_GPU_ACTIVATION_GRAD_KERNEL_DEPX(Log1p, CudaLog1pGradFunctor);
Y
YuanRisheng 已提交
184 185

DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(LeakyRelu,
186 187
                                               CudaLeakyReluGradFunctor,
                                               alpha);
Y
YuanRisheng 已提交
188
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(ThresholdedRelu,
189 190
                                               CudaThresholdedReluGradFunctor,
                                               threshold);
Y
YuanRisheng 已提交
191 192 193 194 195 196
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(SoftShrink,
                                               CudaSoftShrinkGradFunctor,
                                               lambda);
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(HardShrink,
                                               CudaHardShrinkGradFunctor,
                                               threshold);
197

Y
YuanRisheng 已提交
198
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(BRelu,
199 200 201
                                               CudaBReluGradFunctor,
                                               t_min,
                                               t_max);
202

Y
YuanRisheng 已提交
203 204 205 206 207
DEFINE_GPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT(HardSigmoid,
                                                 CudaHardSigmoidGradFunctor,
                                                 slope,
                                                 offset);

Y
YuanRisheng 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
template <typename T, typename Context>
void EluGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& out,
                   const DenseTensor& dout,
                   float alpha,
                   DenseTensor* dx) {
  dev_ctx.template Alloc<T>(dx);
  std::vector<const DenseTensor*> ins = {&dout, &out};
  std::vector<DenseTensor*> outs = {dx};
  if (alpha > 0) {
    funcs::CudaELUGradFunctor<T> functor;
    functor.alpha = alpha;
    funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
  } else {
    funcs::CudaELUGradNegativeAlphaFunctor<T> functor;
    functor.alpha = alpha;
    ins.push_back(&x);
    funcs::ElementwiseKernel<T>(dev_ctx, ins, &outs, functor);
  }
}

230
}  // namespace phi
231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(relu_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
PD_REGISTER_KERNEL(relu_double_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluDoubleGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
#else
PD_REGISTER_KERNEL(relu_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
PD_REGISTER_KERNEL(relu_double_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::ReluDoubleGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#endif
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

#define PD_REGISTER_ACTIVATION_GRAD_KERNEL(name, func) \
  PD_REGISTER_KERNEL(name,                             \
                     GPU,                              \
                     ALL_LAYOUT,                       \
                     phi::func,                        \
                     float,                            \
                     double,                           \
                     phi::dtype::float16,              \
                     phi::dtype::bfloat16) {}

PD_REGISTER_ACTIVATION_GRAD_KERNEL(sin_grad, SinGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(cos_grad, CosGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tan_grad, TanGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(acos_grad, AcosGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(asin_grad, AsinGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(atan_grad, AtanGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sinh_grad, SinhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(cosh_grad, CoshGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(asinh_grad, AsinhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(acosh_grad, AcoshGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(atanh_grad, AtanhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_grad, TanhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_double_grad, TanhDoubleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_triple_grad, TanhTripleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(brelu_grad, BReluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(leaky_relu_grad, LeakyReluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(leaky_relu_double_grad,
                                   LeakyReluDoubleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(thresholded_relu_grad,
                                   ThresholdedReluGradKernel)
Y
YuanRisheng 已提交
296 297 298 299 300 301
PD_REGISTER_ACTIVATION_GRAD_KERNEL(soft_shrink_grad, SoftShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(hard_shrink_grad, HardShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_shrink_grad, TanhShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(silu_grad, SiluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(elu_grad, EluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(elu_double_grad, EluDoubleGradKernel)
Y
YuanRisheng 已提交
302 303 304 305 306
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_grad, SigmoidGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_double_grad, SigmoidDoubleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sigmoid_triple_grad, SigmoidTripleGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(hard_sigmoid_grad, HardSigmoidGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(logsigmoid_grad, LogSigmoidGradKernel)
307 308 309 310 311 312 313 314 315 316 317
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log_grad, LogGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log2_grad, Log2GradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log10_grad, Log10GradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(log1p_grad, Log1pGradKernel)
PD_REGISTER_KERNEL(log_double_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::LogDoubleGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}