adam_op.h 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yang Yu 已提交
16
#include <math.h>  // for sqrt in CPU and CUDA
17
#include "paddle/framework/op_registry.h"
Y
Yang Yu 已提交
18
#include "paddle/operators/detail/safe_ref.h"
Y
Yang Yu 已提交
19
#include "paddle/platform/for_range.h"
20 21 22 23

namespace paddle {
namespace operators {

Y
Yang Yu 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
template <typename T>
struct AdamFunctor {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
Y
Yang Yu 已提交
39
  T* param_out_;
Y
Yang Yu 已提交
40 41 42

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
Y
Yang Yu 已提交
43 44
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
Y
Yang Yu 已提交
45 46 47 48 49 50 51 52 53 54 55
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
Y
Yang Yu 已提交
56 57
        param_(param),
        param_out_(param_out) {}
Y
Yang Yu 已提交
58

Y
Yang Yu 已提交
59
  inline HOSTDEVICE void operator()(size_t i) const {
Y
Yang Yu 已提交
60 61 62 63 64 65 66
    // Merge all memory access together.
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yang Yu 已提交
67
    T p = param_[i];
Y
Yang Yu 已提交
68 69

    // Calculation
Y
Yang Yu 已提交
70
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
Y
Yang Yu 已提交
71 72
    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
Y
Yang Yu 已提交
73
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
Y
Yang Yu 已提交
74 75 76 77

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yang Yu 已提交
78
    param_out_[i] = p;
Y
Yang Yu 已提交
79 80 81
  }
};

Q
QI JUN 已提交
82
template <typename DeviceContext, typename T>
83 84 85
class AdamOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yang Yu 已提交
86 87
    using paddle::framework::LoDTensor;
    using paddle::operators::detail::Ref;
88

89 90 91
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
Y
Yang Yu 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param");
    auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1");
    auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2");
    auto& lr =
        Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate");

    auto& beta1_pow =
        Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow");
    auto& beta2_pow =
        Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow");

    auto& param_out =
        Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut");
    auto& mom1_out =
        Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out");
    auto& mom2_out =
        Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out");

    AdamFunctor<T> functor(beta1, beta2, epsilon, beta1_pow.template data<T>(),
                           beta2_pow.template data<T>(),
                           mom1.template data<T>(),
                           mom1_out.template mutable_data<T>(ctx.GetPlace()),
                           mom2.template data<T>(),
                           mom2_out.template mutable_data<T>(ctx.GetPlace()),
                           lr.template data<T>(), grad.template data<T>(),
Y
Yang Yu 已提交
118 119 120 121 122
                           param.template data<T>(),
                           param_out.template mutable_data<T>(ctx.GetPlace()));
    platform::ForRange<DeviceContext> for_range(
        static_cast<const DeviceContext&>(ctx.device_context()), param.numel());
    for_range(functor);
123 124 125 126 127
  }
};

}  // namespace operators
}  // namespace paddle