benchmark_utils.cc 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/tests/performance_tests/benchmark_utils.h"

#include <iostream>
#include <memory>
#include <set>
#include <string>
#include <vector>

// Eager
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#include "paddle/fluid/eager/utils.h"

// Eager Generated
31
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
32 33 34 35 36 37 38 39
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"

// Fluid
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/basic_engine.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/memory/memcpy.h"

40
static size_t max_num_benchmark_runs = 4000;
41 42 43 44 45 46

namespace egr {

/* --------------------- */
/* ---- Eager Scale ---- */
/* --------------------- */
47 48 49
void benchmark_eager_scale(const paddle::experimental::Tensor& tensor,
                           bool accuracy_check) {
  paddle::experimental::Tensor input_tensor = tensor;
50 51 52 53 54
  float scale = 2.0;
  float bias = 3.0;

  size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
55 56 57 58 59
    input_tensor = egr::scale(input_tensor,
                              scale,
                              bias,
                              true /*bias_after_scale*/,
                              true /*trace_backward*/);
60 61
  }

62
  std::vector<paddle::experimental::Tensor> target_tensors = {input_tensor};
63
  Backward(target_tensors, {});
64 65 66

  if (accuracy_check) {
    // Examine Forward Grad (w.r.t max_num_runs = 10)
67
    eager_test::CompareTensorWithValue<float>(input_tensor, 8189.0);
68
    // Examine Backward Grad (w.r.t max_num_runs = 10)
69
    eager_test::CompareGradTensorWithValue<float>(tensor, 1024.0);
70 71 72
  }
}

73 74 75 76 77 78 79
void benchmark_eager_matmul(const paddle::experimental::Tensor& X,
                            const paddle::experimental::Tensor& Y,
                            bool accuracy_check) {
  paddle::experimental::Tensor input_tensor0 = X;

  size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
80
    input_tensor0 = matmul_dygraph_function(input_tensor0, Y, false, false);
81 82 83
  }

  std::vector<paddle::experimental::Tensor> target_tensors = {input_tensor0};
84
  Backward(target_tensors, {});
85 86 87 88 89 90 91 92 93 94

  if (accuracy_check) {
    // Examine Forward Grad (w.r.t max_num_runs = 2)
    eager_test::CompareTensorWithValue<float>(input_tensor0, 16);
    // Examine Backward Grad (w.r.t max_num_runs = 2)
    eager_test::CompareGradTensorWithValue<float>(X, 16);
    eager_test::CompareGradTensorWithValue<float>(Y, 16);
  }
}

95 96 97
/* ----------------------------------- */
/* ---- Eager Intermediate Matmul ---- */
/* ----------------------------------- */
98 99
void benchmark_eager_intermediate_matmul(const paddle::experimental::Tensor& X,
                                         const paddle::experimental::Tensor& Y,
100
                                         bool accuracy_check) {
101
  paddle::experimental::Tensor input_tensor0 = X;
102 103 104 105 106 107 108

  size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    input_tensor0 = matmul_v2_dygraph_function(
        input_tensor0, Y, {{"trans_x", false}, {"trans_y", false}});
  }

109
  std::vector<paddle::experimental::Tensor> target_tensors = {input_tensor0};
110
  Backward(target_tensors, {});
111 112 113

  if (accuracy_check) {
    // Examine Forward Grad (w.r.t max_num_runs = 2)
114
    eager_test::CompareTensorWithValue<float>(input_tensor0, 16);
115
    // Examine Backward Grad (w.r.t max_num_runs = 2)
116 117
    eager_test::CompareGradTensorWithValue<float>(X, 16);
    eager_test::CompareGradTensorWithValue<float>(Y, 16);
118 119 120 121 122 123
  }
}

/* -------------------------------- */
/* ---- Eager Intermediate MLP ---- */
/* -------------------------------- */
124 125 126
void benchmark_eager_intermediate_mlp(
    const paddle::experimental::Tensor& X,
    const std::vector<paddle::experimental::Tensor>& Ws,
127 128
    const std::vector<paddle::experimental::Tensor>& Bs,
    bool accuracy_check) {
129
  paddle::experimental::Tensor input0 = X;
130 131

  for (size_t i = 0; i < MLP_NUM_LINEAR; i++) {
132
    paddle::experimental::Tensor Out = matmul_v2_dygraph_function(
133 134 135 136 137
        input0, Ws[i], {{"trans_x", false}, {"trans_y", false}});

    input0 = elementwise_add_dygraph_function(Out, Bs[i], {});
  }

138 139
  paddle::experimental::Tensor Out =
      reduce_sum_dygraph_function(input0, {{"reduce_all", true}});
140

141
  std::vector<paddle::experimental::Tensor> target_tensors = {Out};
142
  Backward(target_tensors, {});
143 144 145 146 147 148

  if (accuracy_check) {
    std::unordered_map<std::string, float> result =
        compute_mlp_expected_results();

    // Examine Forward Grad (w.r.t max_num_runs = 2)
149
    eager_test::CompareTensorWithValue<float>(Out, result["Out"]);
150 151

    // Examine Backward Grad (w.r.t max_num_runs = 2)
152 153
    eager_test::CompareGradTensorWithValue<float>(X, result["GradX"]);
    eager_test::CompareGradTensorWithValue<float>(Ws[0], result["GradW"]);
154 155 156 157 158 159 160 161 162 163 164 165 166 167
  }
}

}  // namespace egr

namespace paddle {
namespace imperative {

static void FluidCheckTensorValue(const std::shared_ptr<imperative::VarBase>& X,
                                  const paddle::platform::Place& place,
                                  float value) {
  auto* tensor = X->MutableVar()->GetMutable<framework::LoDTensor>();
  float* t_ptr = tensor->mutable_data<float>(place);
  std::vector<float> host_data(tensor->numel());
168 169

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
170 171 172
  if (place == paddle::platform::CUDAPlace()) {
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
173
    auto* dev_ctx = dynamic_cast<phi::GPUContext*>(pool.Get(place));
174 175
    auto stream = dev_ctx->stream();

176 177 178 179 180 181
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         host_data.data(),
                         paddle::platform::CUDAPlace(),
                         t_ptr,
                         sizeof(float) * tensor->numel(),
                         stream);
182 183
    t_ptr = host_data.data();
  }
184 185
#endif

186 187 188 189 190 191 192 193 194
  VLOG(6) << "Tensor Value: " << t_ptr[0] << ", Expected Value: " << value;
  PADDLE_ENFORCE(
      t_ptr[0] == value,
      paddle::platform::errors::Fatal(
          "Detected numerical Error, Expected %f but got %f", value, t_ptr[0]));
}

static void FluidCheckGradTensorValue(
    const std::shared_ptr<imperative::VarBase>& X,
195 196
    const paddle::platform::Place& place,
    float value) {
197 198 199
  auto* grad_tensor = X->MutableGradVar()->GetMutable<framework::LoDTensor>();
  float* g_ptr = grad_tensor->mutable_data<float>(place);
  std::vector<float> g_host_data(grad_tensor->numel());
200 201

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
202 203 204
  if (place == paddle::platform::CUDAPlace()) {
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
205
    auto* dev_ctx = dynamic_cast<phi::GPUContext*>(pool.Get(place));
206 207
    auto stream = dev_ctx->stream();

208 209 210 211 212 213
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         g_host_data.data(),
                         paddle::platform::CUDAPlace(),
                         g_ptr,
                         sizeof(float) * grad_tensor->numel(),
                         stream);
214 215
    g_ptr = g_host_data.data();
  }
216 217
#endif

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  VLOG(6) << "Tensor Value: " << g_ptr[0] << ", Expected Value: " << value;
  PADDLE_ENFORCE(
      g_ptr[0] == value,
      paddle::platform::errors::Fatal(
          "Detected numerical Error, Expected %f but got %f", value, g_ptr[0]));
}

/* --------------------- */
/* ---- Fluid Scale ---- */
/* --------------------- */
// TODO(jiabin): Change this and remove nolint
void benchmark_fluid_scale(const std::shared_ptr<imperative::VarBase>& X,
                           const paddle::platform::Place& place,
                           bool accuracy_check) {
  imperative::Tracer tracer;
  framework::AttributeMap attrs;

  attrs["use_mkldnn"] = false;
  attrs["scale"] = 2;
  attrs["bias"] = 3;
  attrs["bias_after_scale"] = true;

  std::shared_ptr<imperative::VarBase> tmp_out = X;

  size_t max_num_runs = accuracy_check ? 10 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    imperative::NameVarBaseMap ins = {{"X", {tmp_out}}};
    imperative::NameVarBaseMap outs = {
        {"Out",
         {std::shared_ptr<imperative::VarBase>(
             new imperative::VarBase(true, "Out"))}}};

J
Jiabin Yang 已提交
250
    tracer.TraceOp<VarBase>("scale", ins, outs, attrs, place, true);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

    tmp_out = outs["Out"][0];
  }

  auto* engine = tracer.GetEngine();
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/);
  engine->Execute();

  if (accuracy_check) {
    FluidCheckTensorValue(tmp_out, place, 8189.0);
    FluidCheckGradTensorValue(X, place, 1024.0);
  }
}

/* ---------------------- */
/* ---- Fluid Matmul ---- */
/* ---------------------- */
void benchmark_fluid_matmul(const std::shared_ptr<imperative::VarBase>& X,
                            const std::shared_ptr<imperative::VarBase>& Y,
                            const paddle::platform::Place& place,
                            bool accuracy_check) {
  imperative::Tracer tracer;

  std::shared_ptr<imperative::VarBase> tmp_out = X;

  size_t max_num_runs = accuracy_check ? 2 : max_num_benchmark_runs;
  for (size_t i = 0; i < max_num_runs; i++) {
    framework::AttributeMap attrs;
    imperative::NameVarBaseMap ins = {{"X", {tmp_out}}, {"Y", {Y}}};
    imperative::NameVarBaseMap outs = {
        {"Out",
         {std::shared_ptr<imperative::VarBase>(
             new imperative::VarBase(true, "Out"))}}};

J
Jiabin Yang 已提交
286
    tracer.TraceOp<VarBase>("matmul_v2", ins, outs, attrs, place, true);
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

    tmp_out = outs["Out"][0];
  }

  auto* engine = tracer.GetEngine();
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine->Init({tmp_out}, grad_tensors, false /*retain_graph*/);
  engine->Execute();

  if (accuracy_check) {
    FluidCheckTensorValue(tmp_out, place, 16);
    FluidCheckGradTensorValue(X, place, 16);
    FluidCheckGradTensorValue(Y, place, 16);
  }
}

/* ------------------- */
/* ---- Fluid MLP ---- */
/* ------------------- */
void benchmark_fluid_mlp(
    const std::shared_ptr<imperative::VarBase>& X,
    const std::vector<std::shared_ptr<imperative::VarBase>>& Ws,
    const std::vector<std::shared_ptr<imperative::VarBase>>& Bs,
310 311
    const paddle::platform::Place& place,
    bool accuracy_check) {
312 313 314 315 316 317 318 319 320 321 322 323 324
  imperative::Tracer tracer;

  imperative::NameVarBaseMap ins;
  imperative::NameVarBaseMap outs;
  framework::AttributeMap attrs;
  std::shared_ptr<imperative::VarBase> input0 = X;
  for (size_t i = 0; i < MLP_NUM_LINEAR; i++) {
    // Matmul0
    ins = {{"X", {input0}}, {"Y", {Ws[0]}}};
    outs = {{"Out",
             {std::shared_ptr<imperative::VarBase>(
                 new imperative::VarBase(true, "Out"))}}};

J
Jiabin Yang 已提交
325
    tracer.TraceOp<VarBase>("matmul_v2", ins, outs, attrs, place, true);
326 327 328 329 330 331 332

    // EW-Add0
    ins = {{"X", outs["Out"]}, {"Y", {Bs[i]}}};
    outs = {{"Out",
             {std::shared_ptr<imperative::VarBase>(
                 new imperative::VarBase(true, "Out"))}}};

J
Jiabin Yang 已提交
333
    tracer.TraceOp<VarBase>("elementwise_add", ins, outs, attrs, place, true);
334 335 336 337 338 339 340 341 342 343
    input0 = outs["Out"][0];
  }

  // ReduceSum
  ins = {{"X", {input0}}};
  outs = {{"Out",
           {std::shared_ptr<imperative::VarBase>(
               new imperative::VarBase(true, "Out"))}}};
  attrs = {{"reduce_all", true}};

J
Jiabin Yang 已提交
344
  tracer.TraceOp<VarBase>("reduce_sum", ins, outs, attrs, place, true);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

  auto* engine = tracer.GetEngine();
  std::vector<std::shared_ptr<imperative::VarBase>> grad_tensors{nullptr};
  engine->Init(outs["Out"], grad_tensors, false /*retain_graph*/);
  engine->Execute();

  if (accuracy_check) {
    std::unordered_map<std::string, float> result =
        egr::compute_mlp_expected_results();

    FluidCheckTensorValue(outs["Out"][0], place, result["Out"]);
    FluidCheckGradTensorValue(X, place, result["GradX"]);
    FluidCheckGradTensorValue(Ws[0], place, result["GradW"]);
  }
}

}  // namespace imperative
}  // namespace paddle