helper.h 4.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
N
nhzlx 已提交
20 21 22
#include <string>
#include <utility>
#include <vector>
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29
#include "paddle/fluid/platform/dynload/tensorrt.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

30 31 32 33
#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

34 35 36 37
#define IS_TRT_VERSION_LT(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) < version)

38 39 40 41
#define TRT_VERSION                                    \
  NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
      NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD

Y
Yan Chunwei 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
namespace dy = paddle::platform::dynload;

// TensorRT data type to size
const int kDataTypeSize[] = {
    4,  // kFLOAT
    2,  // kHALF
    1,  // kINT8
    4   // kINT32
};

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
55
static nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
56
  return static_cast<nvinfer1::IBuilder*>(
57
      dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
58
}
59
static nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
60
  return static_cast<nvinfer1::IRuntime*>(
61
      dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
62
}
63 64
#if IS_TRT_VERSION_GE(6000)
static nvinfer1::IPluginRegistry* GetPluginRegistry() {
P
Pei Yang 已提交
65 66
  return static_cast<nvinfer1::IPluginRegistry*>(dy::getPluginRegistry());
}
67 68 69
static int GetInferLibVersion() {
  return static_cast<int>(dy::getInferLibVersion());
}
70
#endif
Y
Yan Chunwei 已提交
71 72 73 74 75 76

// A logger for create TensorRT infer builder.
class NaiveLogger : public nvinfer1::ILogger {
 public:
  void log(nvinfer1::ILogger::Severity severity, const char* msg) override {
    switch (severity) {
P
Pei Yang 已提交
77
      case Severity::kVERBOSE:
78
        VLOG(3) << msg;
Y
Yan Chunwei 已提交
79
        break;
P
Pei Yang 已提交
80 81 82
      case Severity::kINFO:
        VLOG(2) << msg;
        break;
Y
Yan Chunwei 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }

  static nvinfer1::ILogger& Global() {
    static nvinfer1::ILogger* x = new NaiveLogger;
    return *x;
  }

100
  ~NaiveLogger() override {}
Y
Yan Chunwei 已提交
101 102
};

N
nhzlx 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
class NaiveProfiler : public nvinfer1::IProfiler {
 public:
  typedef std::pair<std::string, float> Record;
  std::vector<Record> mProfile;

  virtual void reportLayerTime(const char* layerName, float ms) {
    auto record =
        std::find_if(mProfile.begin(), mProfile.end(),
                     [&](const Record& r) { return r.first == layerName; });
    if (record == mProfile.end())
      mProfile.push_back(std::make_pair(layerName, ms));
    else
      record->second += ms;
  }

  void printLayerTimes() {
    float totalTime = 0;
    for (size_t i = 0; i < mProfile.size(); i++) {
      printf("%-40.40s %4.3fms\n", mProfile[i].first.c_str(),
             mProfile[i].second);
      totalTime += mProfile[i].second;
    }
    printf("Time over all layers: %4.3f\n", totalTime);
  }
};

129 130 131 132 133 134 135 136
inline size_t ProductDim(const nvinfer1::Dims& dims) {
  size_t v = 1;
  for (int i = 0; i < dims.nbDims; i++) {
    v *= dims.d[i];
  }
  return v;
}

Y
Yan Chunwei 已提交
137 138 139
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle