npu_op_runner.h 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef PADDLE_WITH_ASCEND_CL
16 17
#pragma once
#include <paddle/fluid/framework/operator.h>
18
#include <paddle/fluid/framework/type_defs.h>
19 20 21 22 23 24 25 26 27 28 29 30

#include <string>
#include <vector>

#include "acl/acl.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;
31 32
using NPUAttribute = framework::NPUAttribute;
using NPUAttributeMap = framework::NPUAttributeMap;
33 34 35 36 37 38 39

class NpuOpRunner {
 public:
  explicit NpuOpRunner(std::string op_type);
  explicit NpuOpRunner(std::string op_type,
                       const std::vector<Tensor> &inputs = {},
                       const std::vector<Tensor> &outputs = {},
40
                       const NPUAttributeMap &attrs = {});
41 42 43 44 45

  ~NpuOpRunner();

  const std::string &Type();

46
  NpuOpRunner &AddAttr(const std::string &name, const NPUAttribute &attr);
47

48
  NpuOpRunner &AddAttrs(const NPUAttributeMap &attrs);
49 50 51 52 53 54 55

  NpuOpRunner &AddInput(const Tensor &tensor);

  NpuOpRunner &AddOutput(const Tensor &tensor);

  NpuOpRunner &AddInputs(const std::vector<Tensor> &tensors);

56 57
  NpuOpRunner &AddInputNames(const std::vector<std::string> &names);

58 59 60 61 62 63 64 65 66 67 68 69 70 71
  NpuOpRunner &AddOutputs(const std::vector<Tensor> &tensors);

  aclTensorDesc *GetInputDesc(size_t index);

  aclTensorDesc *GetOutputDesc(size_t index);

  std::vector<aclTensorDesc *> &GetInputDescs();

  std::vector<aclTensorDesc *> &GetOutputDescs();

  std::vector<aclDataBuffer *> &GetInputBuffers();

  std::vector<aclDataBuffer *> &GetOutputBuffers();

72
  void Run(aclrtStream stream = nullptr);
73 74 75 76 77 78 79 80 81 82 83 84 85 86

 private:
  aclTensorDesc *CreateTensorDesc(Tensor tensor);
  aclDataBuffer *CreateDataBuffer(Tensor tensor);

 private:
  std::string op_type_;
  std::vector<aclDataBuffer *> input_buffers_;
  std::vector<aclDataBuffer *> output_buffers_;
  std::vector<aclTensorDesc *> input_descs_;
  std::vector<aclTensorDesc *> output_descs_;
  aclopAttr *attr_{nullptr};
};

87 88
aclDataType ConvertToNpuDtype(framework::proto::VarType::Type dtype);

89 90 91 92
aclrtStream GetCurrentNPUStream(int device_id = -1);

template <typename T>
void FillNpuTensorWithConstant(Tensor *tensor, T val) {
93 94 95
  // NOTE(zhiqiu): we found that power sometimes returns 0 when val is small
  // like 1e-8.
  constexpr float MIN_PRECISION_FOR_POWER = 1e-3;
96 97 98 99 100 101 102
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("The tensor should be initialized."));
  PADDLE_ENFORCE_EQ(
      platform::is_npu_place(tensor->place()), true,
      platform::errors::InvalidArgument("The tensor should be on NPUPlace."));
  // do async for better performance
103 104
  if ((typeid(float) == typeid(T) || typeid(platform::float16) == typeid(T)) &&
      static_cast<float>(val) > MIN_PRECISION_FOR_POWER) {
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    Tensor tmp(tensor->type());
    tmp.Resize(tensor->dims());
    tmp.mutable_data<T>(tensor->place());
    auto stream = GetCurrentNPUStream(
        BOOST_GET_CONST(platform::NPUPlace, tensor->place()).device);
    platform::NPUMemsetAsync(tmp.data<void>(), 0, tmp.numel() * sizeof(T),
                             stream);
    auto runner = NpuOpRunner("Power", {tmp}, {*tensor},
                              {{"power", static_cast<float>(1)},
                               {"scale", static_cast<float>(0)},
                               {"shift", static_cast<float>(val)}});
    runner.Run(stream);
  } else {
    T *array = new T[tensor->numel()];
    for (unsigned int i = 0; i < tensor->numel(); ++i) {
      array[i] = static_cast<T>(val);
    }
    std::vector<T> vec(tensor->numel(), static_cast<T>(val));
    // do sync copy
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, tensor->place()),
                 tensor->data<void>(), platform::CPUPlace(), array,
                 tensor->numel() * sizeof(T), nullptr);
    delete[] array;
  }
}

131 132
}  // namespace operators
}  // namespace paddle
133
#endif