pull_dense_worker.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <time.h>
#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
17 18 19 20 21

namespace paddle {
namespace framework {

std::shared_ptr<PullDenseWorker> PullDenseWorker::s_instance_ = NULL;
D
dongdaxiang 已提交
22 23 24 25 26 27
std::mutex PullDenseWorker::mutex_for_version_;
std::map<uint64_t, uint64_t> PullDenseWorker::last_versions_;
std::map<uint64_t, uint64_t> PullDenseWorker::current_version_;
std::map<uint64_t, std::vector<uint64_t>> PullDenseWorker::training_versions_;
std::map<uint64_t, std::vector<std::string>>
    PullDenseWorker::dense_value_names_;
28 29 30 31

void PullDenseWorker::Initialize(const TrainerDesc& param) {
  running_ = false;
  param_ = param.pull_dense_param();
H
heqiaozhi 已提交
32
  dwp_param_ = param.downpour_param();
33 34 35
  threshold_ = param_.threshold();
  thread_num_ = param_.device_num();
  sleep_time_ms_ = param_.sleep_time_ms();
36 37
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
H
heqiaozhi 已提交
38 39 40 41 42 43 44 45 46
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    TableParameter table;
    for (auto i : param_.dense_table()) {
      if (i.table_id() == tid) {
        table = i;
        break;
      }
    }
47
    // setup dense variables for each table
H
heqiaozhi 已提交
48
    int var_num = table.dense_value_name_size();
49 50
    dense_value_names_[tid].resize(var_num);
    for (int j = 0; j < var_num; ++j) {
51
      dense_value_names_[tid][j] = table.dense_value_name(j);
52 53 54 55 56 57
    }
    // setup training version for each table
    training_versions_[tid].resize(thread_num_, 0);
    last_versions_[tid] = 0;
    current_version_[tid] = 0;
  }
58
  fleet_ptr_ = FleetWrapper::GetInstance();
T
Thunderbrook 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#ifdef PADDLE_WITH_CUDA
  copy_streams_.clear();
  places_.clear();
  thread_scopes_.clear();
#endif
}

void PullDenseWorker::CreatePinVar() {
#ifdef PADDLE_WITH_CUDA
  // for (auto& v : dense_value_names_) {
  //  for (auto& name : v.second) {
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
      auto& name = dense_value_names_[tid][j];
      Variable* var = root_scope_->FindVar(name);

      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      auto* ptr = root_scope_->Var(name + "pin");
      InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
      LoDTensor* pin_tensor = ptr->GetMutable<LoDTensor>();
      pin_tensor->mutable_data<float>(tensor->dims(),
                                      platform::CUDAPinnedPlace());
    }
  }
#endif
87 88 89 90 91 92 93 94 95 96 97 98
}

void PullDenseWorker::Wait(std::vector<::std::future<int32_t>>* status_vec) {
  for (auto& t : *status_vec) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(WARNING) << "Current Pull Dense Thread Failed Times"
                   << ++pull_dense_fail_times_;
    }
  }

99
  size_t MAX_FAIL_NUM = 20;
100
  if (pull_dense_fail_times_ > MAX_FAIL_NUM) {
101 102
    PADDLE_THROW(platform::errors::Fatal(
        "Pull dense failed more than %d times.", MAX_FAIL_NUM));
103 104
    exit(-1);
  }
105
  status_vec->resize(0);
T
Thunderbrook 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#ifdef PADDLE_WITH_CUDA

  for (size_t i = 0; i < places_.size(); ++i) {
    // for (auto& v : dense_value_names_) {
    //  for (auto& name : v.second) {
    for (int x = 0; x < dwp_param_.program_config(0).pull_dense_table_id_size();
         ++x) {
      uint64_t tid = static_cast<uint64_t>(
          dwp_param_.program_config(0).pull_dense_table_id(x));
      for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
        auto& name = dense_value_names_[tid][j];

        Variable* pin_var = root_scope_->FindVar(name + "pin");
        LoDTensor* pin_tensor = pin_var->GetMutable<LoDTensor>();
        float* pin_w = pin_tensor->data<float>();
        Variable* var = thread_scopes_[i]->FindVar(name);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        float* w = tensor->data<float>();
        memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, places_[i]), w,
                     platform::CUDAPinnedPlace(), pin_w,
                     sizeof(float) * tensor->numel(), copy_streams_[i]);
      }
    }
  }
#endif
131 132 133 134 135 136 137 138 139
}

void PullDenseWorker::Stop() {
  if (running_) {
    running_ = false;
    t_.join();
  }
}

140 141
void PullDenseWorker::PullDense(bool force_update) {
  pull_dense_status_.resize(0);
142 143
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
144 145 146
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    if (force_update || CheckUpdateParam(tid)) {
T
Thunderbrook 已提交
147 148
#ifdef PADDLE_WITH_CUDA
      VLOG(3) << "pull dense " << force_update << " " << tid;
149
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
T
Thunderbrook 已提交
150 151 152 153 154
                                     &pull_dense_status_, false);
#else
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
                                     &pull_dense_status_, true);
#endif
155 156 157 158 159 160 161 162
      ResetThreadVersion(tid);
    }
  }
  if (pull_dense_status_.size() != 0) {
    Wait(&pull_dense_status_);
  }
}

163 164
int PullDenseWorker::Start() {
  running_ = true;
165 166
  // before training, we can pull dense from pserver first.
  PullDense(true);
167 168 169 170 171 172
  t_ = std::thread(&PullDenseWorker::Run, this);
  return 0;
}

void PullDenseWorker::Run() {
  while (running_) {
173
    PullDense(false);
D
dongdaxiang 已提交
174
#ifndef _WIN32
175
    usleep(sleep_time_ms_ * 1000);
D
dongdaxiang 已提交
176
#endif
177 178 179 180 181 182 183 184 185 186 187 188 189
  }
}

void PullDenseWorker::IncreaseThreadVersion(int thread_id, uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  training_versions_[table_id][thread_id]++;
}

bool PullDenseWorker::CheckUpdateParam(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  auto& version = training_versions_[table_id];
  current_version_[table_id] =
      *(std::min_element(version.begin(), version.end()));
190 191
  if (current_version_[table_id] - last_versions_[table_id] <
      static_cast<size_t>(threshold_)) {
192 193 194 195 196 197 198 199 200 201
    return false;
  }
  return true;
}

void PullDenseWorker::ResetThreadVersion(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  last_versions_[table_id] = current_version_[table_id];
}

202 203 204 205 206 207 208 209 210 211 212
int PullDenseWorker::GetThreadIdByScope(const Scope* scope) {
  if (scope_to_thread_id_.find(scope) != scope_to_thread_id_.end()) {
    return scope_to_thread_id_[scope];
  }
  return -1;
}

void PullDenseWorker::SetThreadIdByScope(const Scope* scope, int tid) {
  scope_to_thread_id_[scope] = tid;
}

213 214
}  // namespace framework
}  // namespace paddle