test_prelu_op.py 11.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
zchen0211 已提交
17 18
import unittest
import numpy as np
19
import paddle.fluid as fluid
M
minqiyang 已提交
20
import six
21
import paddle.fluid.core as core
22
from paddle.fluid import Program, program_guard
23
from op_test import OpTest, skip_check_grad_ci
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
import paddle
import paddle.nn.functional as F


def ref_prelu(x, weight):
    x_t = x.copy()
    weight = weight.reshape(1, -1, 1, 1)
    neg_indices = x <= 0
    assert x.shape == neg_indices.shape
    x_t[neg_indices] = (x_t * weight)[neg_indices]
    return (x_t, )


def ref_prelu_nn(x, num_parameters, init):
    weight_np = np.full((num_parameters), init)
    return ref_prelu(x, weight_np)


class TestFunctionalPReluAPI(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.random.uniform(-1., 1., [1, 2, 3, 4]).astype('float32')
        self.weight_np_0 = np.random.randn(1).astype('float32')
        self.weight_np_1 = np.random.randn(self.x_np.shape[1]).astype('float32')

    def static_check(self, weight_np):
        with paddle.static.program_guard(paddle.static.Program()):
52 53
            x = paddle.fluid.data('X', self.x_np.shape, 'float32')
            weight = paddle.fluid.data('Alpha', weight_np.shape, 'float32')
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
            out = F.prelu(x, weight)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np,
                                'Alpha': weight_np},
                          fetch_list=[out])
        out_ref = ref_prelu(self.x_np, weight_np)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def dygraph_check(self, weight_np):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        weight = paddle.to_tensor(weight_np)
        out = F.prelu(x, weight)
        out_ref = ref_prelu(self.x_np, weight_np)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)
        paddle.enable_static()

    def test_static_api(self):
        self.static_check(self.weight_np_0)
        self.static_check(self.weight_np_1)
Z
zchen0211 已提交
74

75 76 77
    def test_dygraph_api(self):
        self.dygraph_check(self.weight_np_0)
        self.dygraph_check(self.weight_np_1)
Z
zchen0211 已提交
78

79 80
    def test_error(self):
        with paddle.static.program_guard(paddle.static.Program()):
81
            weight_fp32 = paddle.fluid.data(
82
                name='weight_fp32', shape=[1], dtype='float32')
83
            # The input type must be Variable.
84
            self.assertRaises(TypeError, F.prelu, x=1, weight=weight_fp32)
85
            # The input dtype must be float16, float32, float64.
86 87
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[2, 3], dtype='int32')
88 89
            self.assertRaises(TypeError, F.prelu, x=x_int32, weight=weight_fp32)
            # support the input dtype is float16
90 91
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[2, 3], dtype='float16')
92 93 94 95 96 97 98 99 100 101 102 103 104
            F.prelu(x=x_fp16, weight=weight_fp32)


class TestNNPReluAPI(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.ones([1, 2, 3, 4]).astype('float32')

    def test_static_api(self):
        startup_program = paddle.static.Program()
        train_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
105 106
            x = paddle.fluid.data(
                name='X', shape=self.x_np.shape, dtype='float32')
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
            m = paddle.nn.PReLU()
            out = m(x)
            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            res = exe.run(train_program,
                          feed={'X': self.x_np},
                          fetch_list=[out])
        out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU()
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(num_parameters=self.x_np.shape[1])
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, self.x_np.shape[1], 0.25)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(init=0.5)
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.5)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(weight_attr=fluid.ParamAttr(name="weight"))
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.25)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        x = paddle.to_tensor(self.x_np)
        m = paddle.nn.PReLU(weight_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(0.5)))
        out = m(x)
        out_ref = ref_prelu_nn(self.x_np, 1, 0.5)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)

        paddle.enable_static()
152 153


Z
zchen0211 已提交
154
class PReluTest(OpTest):
Z
zchen0211 已提交
155
    def setUp(self):
C
cc 已提交
156
        self.init_dtype()
157 158
        self.init_input_shape()
        self.init_attr()
Z
zchen0211 已提交
159
        self.op_type = "prelu"
J
jerrywgz 已提交
160

C
cc 已提交
161
        x_np = np.random.uniform(-1, 1, self.x_shape).astype(self.dtype)
J
jerrywgz 已提交
162 163 164 165 166
        # Since zero point in prelu is not differentiable, avoid randomize
        # zero.
        x_np[np.abs(x_np) < 0.005] = 0.02

        if self.attrs == {'mode': "all"}:
167
            alpha_np = np.random.uniform(-1, -0.5, (1))
J
jerrywgz 已提交
168
        elif self.attrs == {'mode': "channel"}:
169
            alpha_np = np.random.uniform(-1, -0.5, [1, self.x_shape[1], 1, 1])
J
jerrywgz 已提交
170
        else:
171
            alpha_np = np.random.uniform(-1, -0.5, [1] + self.x_shape[1:])
C
cc 已提交
172
        alpha_np = alpha_np.astype(self.dtype)
173

174
        self.inputs = {'X': x_np, 'Alpha': alpha_np}
J
jerrywgz 已提交
175

176 177 178
        # NOTE(zhiqu): reshape inputs['Alpha'] from [1, 100, 1, 1] to [1, 100] + [1]*len(x.shape[2:])
        # since np operands could not be broadcast together with shapes (1,100,2,2,2,3) (1,100,1,1) 	
        reshaped_alpha = self.inputs['Alpha']
179
        if self.attrs == {'mode': "channel"}:
180
            reshaped_alpha = np.reshape(
181 182 183
                self.inputs['Alpha'],
                [1, self.x_shape[1]] + [1] * len(self.x_shape[2:]))

Z
zchen0211 已提交
184
        out_np = np.maximum(self.inputs['X'], 0.)
185
        out_np = out_np + np.minimum(self.inputs['X'], 0.) * reshaped_alpha
Z
zchen0211 已提交
186 187
        assert out_np is not self.inputs['X']
        self.outputs = {'Out': out_np}
Z
zchen0211 已提交
188

C
cc 已提交
189 190 191
    def init_dtype(self):
        self.dtype = np.float64

192
    def init_input_shape(self):
193
        self.x_shape = [2, 100, 3, 4]
194 195

    def init_attr(self):
J
jerrywgz 已提交
196 197
        self.attrs = {'mode': "channel"}

198
    def test_check_output(self):
Z
zchen0211 已提交
199 200
        self.check_output()

201
    def test_check_grad(self):
202
        self.check_grad(['X', 'Alpha'], 'Out')
J
jerrywgz 已提交
203 204


205 206 207 208 209
@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAll(PReluTest):
    def init_input_shape(self):
210
        self.x_shape = [2, 3, 4, 5]
M
minqiyang 已提交
211

212 213
    def init_attr(self):
        self.attrs = {'mode': "all"}
M
minqiyang 已提交
214

Z
zchen0211 已提交
215

216 217
class TestModeElt(PReluTest):
    def init_input_shape(self):
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        self.x_shape = [3, 2, 5, 10]

    def init_attr(self):
        self.attrs = {'mode': "element"}


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 200, 3]

    def init_attr(self):
        self.attrs = {'mode': "all"}


@skip_check_grad_ci(
    reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class TestModeAllRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 2, 3, 4, 5, 6]

    def init_attr(self):
        self.attrs = {'mode': "all"}


class TestModeChannelRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 200, 3]

    def init_attr(self):
        self.attrs = {'mode': "channel"}


class TestModeChannelRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [1, 100, 2, 2, 2, 2]

    def init_attr(self):
        self.attrs = {'mode': "channel"}


class TestModeElementRank3(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 10, 10]

    def init_attr(self):
        self.attrs = {'mode': "element"}


class TestModeElementRank6(PReluTest):
    def init_input_shape(self):
        self.x_shape = [3, 2, 2, 4, 5, 2]
Z
zchen0211 已提交
273

274 275 276 277
    def init_attr(self):
        self.attrs = {'mode': "element"}


C
cc 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
def create_test_fp16_class(parent,
                           check_grad=True,
                           atol=1e-3,
                           max_relative_error=0.05):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPReluFp16Case(parent):
        def init_dtype(self):
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=atol)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and check_grad:
                self.check_grad_with_place(
                    place, ['X', 'Alpha'],
                    'Out',
                    max_relative_error=max_relative_error)

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16Op")
    TestPReluFp16Case.__name__ = cls_name
    globals()[cls_name] = TestPReluFp16Case


create_test_fp16_class(TestModeElt)
create_test_fp16_class(TestModeAllRank3)
create_test_fp16_class(TestModeAllRank6)
create_test_fp16_class(TestModeChannelRank3)
create_test_fp16_class(TestModeChannelRank6)
create_test_fp16_class(TestModeElementRank3)
create_test_fp16_class(TestModeElementRank6)


316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
def prelu_t(x, mode, param_attr=None, name=None):
    helper = fluid.layer_helper.LayerHelper('prelu', **locals())
    alpha_shape = [1, x.shape[1], 1, 1]
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=helper.param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=fluid.initializer.ConstantInitializer(0.25))
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


# error message test if mode is not one of 'all', 'channel', 'element'
class TestModeError(unittest.TestCase):
    def test_mode_error(self):
        main_program = Program()
        with fluid.program_guard(main_program, Program()):
            x = fluid.data(name='x', shape=[2, 3, 4, 5])
            try:
                y = prelu_t(x, 'any')
            except Exception as e:
345
                assert (e.args[0].find('InvalidArgument') != -1)
346 347


Z
zchen0211 已提交
348 349
if __name__ == "__main__":
    unittest.main()