best_fit_allocator.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
#include <bits/stdc++.h>
#include <list>
#include <map>
#include <string>

namespace paddle {
namespace memory {
namespace allocation {

static int HighestBitPos(size_t N) {
  if (UNLIKELY(N == 0)) {
    return 0;
  } else {
S
sneaxiy 已提交
29 30 31
#ifdef __GNUC__
    return sizeof(unsigned int) * 8 - __builtin_clz(N);
#else
32
    return static_cast<int>(std::log2(N) + 1);
S
sneaxiy 已提交
33
#endif
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  }
}

BestFitAllocator::BestFitAllocator(Allocation* allocation)
    : allocation_(allocation) {
  details::Chunk chunk;
  chunk.size_ = allocation_->size();
  chunk.offset_ = 0;
  chunk.is_free = true;
  chunks_.emplace_back(chunk);
  free_chunks_[HighestBitPos(chunk.size_)].insert(
      {chunk.size_, chunks_.begin()});
}

std::unique_ptr<Allocation> BestFitAllocator::Allocate(size_t size, Attr attr) {
  auto highest_set_bit = static_cast<size_t>(HighestBitPos(size));
  MapIt map_it;
  for (; highest_set_bit < free_chunks_.size(); ++highest_set_bit) {
    map_it = free_chunks_[highest_set_bit].lower_bound(size);
    if (map_it != free_chunks_[highest_set_bit].end()) {
      break;
    }
  }
  if (UNLIKELY(highest_set_bit == free_chunks_.size())) {
    throw BadAlloc(string::Sprintf(
        "Cannot allocate %d, All fragments size is %d", size, FreeSize()));
  }
  auto chunk_it = SplitChunk(size, highest_set_bit, map_it);
  return std::unique_ptr<Allocation>(new BestFitAllocation(this, chunk_it));
}

size_t BestFitAllocator::FreeSize() const {
  size_t acc = 0;
  for (auto& array_item : free_chunks_) {
    for (auto& pair : array_item) {
      acc += pair.second->size_;
    }
  }
  return acc;
}

BestFitAllocator::ListIt BestFitAllocator::SplitChunk(size_t request_size,
                                                      size_t free_chunk_offset,
                                                      MapIt bin_iterator) {
  auto to_split_it = bin_iterator->second;
  free_chunks_[free_chunk_offset].erase(bin_iterator);

  PADDLE_ENFORCE(to_split_it->is_free);
  PADDLE_ENFORCE_GE(to_split_it->size_, request_size);

  auto remaining_size = to_split_it->size_ - request_size;
  details::Chunk to_use;
  details::Chunk remaining;
  to_use.size_ = request_size;
  to_use.is_free = false;
  remaining.size_ = remaining_size;
  remaining.is_free = true;

  // calc offsets
  to_use.offset_ = to_split_it->offset_;
  remaining.offset_ = to_use.offset_ + to_use.size_;

  // insert to chunk list
  auto to_use_it = chunks_.insert(to_split_it, to_use);
  if (remaining.size_ != 0) {
    auto bit_size = static_cast<size_t>(HighestBitPos(remaining.size_));
    free_chunks_[bit_size].insert(
        {remaining.size_, chunks_.insert(to_split_it, remaining)});
  }
  chunks_.erase(to_split_it);
  return to_use_it;
}

void BestFitAllocator::Free(Allocation* allocation) {
  auto* bf_allocation = dynamic_cast<BestFitAllocation*>(allocation);
  auto chunk_it = bf_allocation->ChunkIterator();
  PADDLE_ENFORCE(!chunk_it->is_free);
  chunk_it->is_free = true;
  if (chunk_it != chunks_.begin()) {
    auto prev_it = chunk_it;
    --prev_it;

    if (prev_it->is_free) {
      // Merge Left.
      EraseFreeNode(prev_it);
      prev_it->size_ += chunk_it->size_;
      chunks_.erase(chunk_it);
      chunk_it = prev_it;
    }
  }

  auto next_it = chunk_it;
  ++next_it;
  if (next_it != chunks_.end() && next_it->is_free) {
    EraseFreeNode(next_it);
    chunk_it->size_ += next_it->size_;
    chunks_.erase(next_it);
  }

  InsertFreeNode(chunk_it);
}

void BestFitAllocator::InsertFreeNode(const ListIt& it) {
  auto pos = static_cast<size_t>(HighestBitPos(it->size_));
  auto& free_map = free_chunks_[pos];
  free_map.insert({it->size_, it});
}
void BestFitAllocator::EraseFreeNode(const ListIt& it) {
  size_t pos = static_cast<size_t>(HighestBitPos(it->size_));
  auto& free_map = free_chunks_[pos];
  auto map_it = free_map.find(it->size_);
  while (map_it->second != it && map_it != free_map.end()) {
    ++map_it;
  }
  PADDLE_ENFORCE(map_it != free_map.end());
  free_map.erase(map_it);
}
size_t BestFitAllocator::NumFreeChunks() const {
  size_t num = 0;
  for (auto& array_item : free_chunks_) {
    num += array_item.size();
  }
  return num;
}

BestFitAllocation::BestFitAllocation(
    paddle::memory::allocation::BestFitAllocator* allocator,
    typename details::ChunkList::iterator chunk_it)
    : Allocation(reinterpret_cast<void*>(
                     reinterpret_cast<uintptr_t>(allocator->BasePtr()) +
                     chunk_it->offset_),
                 chunk_it->size_, allocator->Place()),
      allocator_(allocator),
      chunk_it_(chunk_it) {}
}  // namespace allocation
}  // namespace memory
}  // namespace paddle