roi_align_op.cu 15.6 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

F
FDInSky 已提交
15
#include <vector>
16
#include "paddle/fluid/memory/memory.h"
J
jerrywgz 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <class T>
J
jerrywgz 已提交
35 36
__device__ T BilinearInterpolate(const T* input_data, const int height,
                                 const int width, T y, T x) {
J
jerrywgz 已提交
37 38 39
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return 0;
  }
J
jerrywgz 已提交
40 41
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  int y_low = static_cast<int>(y);
  int x_low = static_cast<int>(x);
  int y_high;
  int x_high;
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }
  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }
  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  T v1 = input_data[y_low * width + x_low];
  T v2 = input_data[y_low * width + x_high];
  T v3 = input_data[y_high * width + x_low];
  T v4 = input_data[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <class T>
J
jerrywgz 已提交
72 73 74 75
__device__ void BilinearInterpolateGradient(const int height, const int width,
                                            T y, T x, T* w1, T* w2, T* w3,
                                            T* w4, int* x_low, int* x_high,
                                            int* y_low, int* y_high) {
J
jerrywgz 已提交
76 77 78 79
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return;
  }

J
jerrywgz 已提交
80 81
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
82 83 84 85 86
  *y_low = static_cast<int>(y);
  *x_low = static_cast<int>(x);
  if (*y_low >= height - 1) {
    *y_high = *y_low = height - 1;
    y = static_cast<T>(*y_low);
J
jerrywgz 已提交
87
  } else {
88
    *y_high = *y_low + 1;
J
jerrywgz 已提交
89
  }
90 91 92
  if (*x_low >= width - 1) {
    *x_high = *x_low = width - 1;
    x = static_cast<T>(*x_low);
J
jerrywgz 已提交
93
  } else {
94
    *x_high = *x_low + 1;
J
jerrywgz 已提交
95
  }
96
  T ly = y - *y_low, lx = x - *x_low;
J
jerrywgz 已提交
97
  T hy = 1. - ly, hx = 1. - lx;
98
  *w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx;
J
jerrywgz 已提交
99 100 101 102 103 104 105 106 107

  return;
}

template <class T>
__global__ void GPUROIAlignForward(
    const int nthreads, const T* input_data, const T* input_rois,
    const float spatial_scale, const int channels, const int height,
    const int width, const int pooled_height, const int pooled_width,
108
    const int sampling_ratio, int* roi_batch_id_data, T* output_data) {
109
  CUDA_KERNEL_LOOP(i, nthreads) {
J
jerrywgz 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;

    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

    T roi_xmin = offset_input_rois[0] * spatial_scale;
    T roi_ymin = offset_input_rois[1] * spatial_scale;
    T roi_xmax = offset_input_rois[2] * spatial_scale;
    T roi_ymax = offset_input_rois[3] * spatial_scale;

123 124
    T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
    T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
J
jerrywgz 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input_data =
        input_data + (roi_batch_ind * channels + c) * height * width;

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
    const T count = roi_bin_grid_h * roi_bin_grid_w;
    T output_val = 0;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = roi_ymin + ph * bin_size_h +
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_xmin + pw * bin_size_w +
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
J
jerrywgz 已提交
146
        T val = BilinearInterpolate(offset_input_data, height, width, y, x);
J
jerrywgz 已提交
147 148 149 150 151 152 153 154 155 156
        output_val += val;
      }
    }
    output_val /= count;
    output_data[i] = output_val;
  }
}

template <typename T>
__global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
157
                                    const T* out_grad, const int num_rois,
J
jerrywgz 已提交
158 159 160 161 162 163
                                    const float spatial_scale,
                                    const int channels, const int height,
                                    const int width, const int pooled_height,
                                    const int pooled_width,
                                    const int sampling_ratio,
                                    int* roi_batch_id_data, T* input_grad) {
164
  CUDA_KERNEL_LOOP(i, nthreads) {
J
jerrywgz 已提交
165 166
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
167
    int c = (i / pooled_width / pooled_height) % channels;
J
jerrywgz 已提交
168 169 170 171 172 173 174 175 176
    int n = i / pooled_width / pooled_height / channels;
    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

    T roi_xmin = offset_input_rois[0] * spatial_scale;
    T roi_ymin = offset_input_rois[1] * spatial_scale;
    T roi_xmax = offset_input_rois[2] * spatial_scale;
    T roi_ymax = offset_input_rois[3] * spatial_scale;

177 178
    T roi_width = max(roi_xmax - roi_xmin, static_cast<T>(1.));
    T roi_height = max(roi_ymax - roi_ymin, static_cast<T>(1.));
J
jerrywgz 已提交
179 180 181
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

182
    T* offset_input_grad =
J
jerrywgz 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
        input_grad + (roi_batch_ind * channels + c) * height * width;

    const T* offset_out_grad =
        out_grad + (n * channels + c) * pooled_height * pooled_width;
    const T out_grad_this_bin = offset_out_grad[ph * pooled_width + pw];

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    const T count = roi_bin_grid_h * roi_bin_grid_w;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
197
      const T y = roi_ymin + ph * bin_size_h +
J
jerrywgz 已提交
198 199 200
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
201
        const T x = roi_xmin + pw * bin_size_w +
J
jerrywgz 已提交
202 203
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
204 205
        T w1 = 0, w2 = 0, w3 = 0, w4 = 0;
        int x_low = -1, x_high = -1, y_low = -1, y_high = -1;
J
jerrywgz 已提交
206 207
        BilinearInterpolateGradient(height, width, y, x, &w1, &w2, &w3, &w4,
                                    &x_low, &x_high, &y_low, &y_high);
J
jerrywgz 已提交
208 209 210 211 212 213 214 215 216 217 218 219
        T diff1 = out_grad_this_bin * w1 / count;
        T diff2 = out_grad_this_bin * w2 / count;
        T diff3 = out_grad_this_bin * w3 / count;
        T diff4 = out_grad_this_bin * w4 / count;
        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_low,
                                  diff1);
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_high,
                                  diff2);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_low,
                                  diff3);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_high,
220
                                  diff4);
J
jerrywgz 已提交
221 222 223 224 225 226 227 228 229 230
        }
      }
    }
  }
}

template <typename Place, typename T>
class GPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
231
    auto* in = ctx.Input<Tensor>("X");
J
jerrywgz 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];

    int rois_num = rois->dims()[0];

    if (rois_num == 0) return;

    int output_size = out->numel();
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;

    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
256 257
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
F
FDInSky 已提交
258
    auto& dev_ctx = ctx.cuda_device_context();
259
    auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
F
FDInSky 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    if (ctx.HasInput("RoisLod")) {
      auto* rois_lod = ctx.Input<Tensor>("RoisLod");
      int rois_batch_size = rois_lod->numel();
      PADDLE_ENFORCE_EQ(
          rois_batch_size - 1, batch_size,
          platform::errors::InvalidArgument(
              "The rois_batch_size and imgs "
              "batch_size must be the same. But received rois_batch_size = %d, "
              "batch_size = %d",
              rois_batch_size, batch_size));

      std::vector<int64_t> rois_lod_(rois_batch_size);
      memory::Copy(cplace, rois_lod_.data(), gplace, rois_lod->data<int64_t>(),
                   sizeof(int64_t) * rois_batch_size, 0);
      for (int n = 0; n < rois_batch_size - 1; ++n) {
        for (size_t i = rois_lod_[n]; i < rois_lod_[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
      }
    } else {
      auto lod = rois->lod();
      PADDLE_ENFORCE_EQ(
          lod.empty(), false,
283 284
          platform::errors::InvalidArgument("Input(ROIs) in ROIAlignOp does "
                                            "not contain LoD information."));
F
FDInSky 已提交
285 286 287 288 289
      auto rois_lod = lod.back();
      int rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
290 291 292
              "The batch size of rois and batch size "
              "of images must be the same. But received rois batch size = %d, "
              "and images batch size = %d",
F
FDInSky 已提交
293 294
              rois_batch_size, batch_size));
      int rois_num_with_lod = rois_lod[rois_batch_size];
295 296 297 298 299 300 301 302
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The actual number of rois and the number of rois "
              "provided from Input(RoIsLoD) in RoIAlign must be the same."
              " But received actual number of rois is %d, and the number "
              "of rois from RoIsLoD is %d",
              rois_num, rois_num_with_lod));
F
FDInSky 已提交
303 304 305 306
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
307 308
      }
    }
309
    int bytes = roi_batch_id_list.numel() * sizeof(int);
310
    auto roi_ptr = memory::Alloc(dev_ctx, bytes);
311 312 313 314
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
    GPUROIAlignForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
315
        output_size, in->data<T>(), rois->data<T>(), spatial_scale, channels,
316
        height, width, pooled_height, pooled_width, sampling_ratio, roi_id_data,
J
jerrywgz 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
        out->mutable_data<T>(ctx.GetPlace()));
  }
};

template <typename Place, typename T>
class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");

    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");

    int rois_num = rois->dims()[0];
    int channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

J
jerrywgz 已提交
341 342 343 344 345
    if (!in_grad) {
      return;
    }
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
346 347
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
F
FDInSky 已提交
348 349

    auto& dev_ctx = ctx.cuda_device_context();
350
    auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
F
FDInSky 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    if (ctx.HasInput("RoisLod")) {
      auto* rois_lod = ctx.Input<Tensor>("RoisLod");
      int rois_batch_size = rois_lod->numel();
      std::vector<int64_t> rois_lod_(rois_batch_size);
      memory::Copy(cplace, rois_lod_.data(), gplace, rois_lod->data<int64_t>(),
                   sizeof(int64_t) * rois_batch_size, 0);
      for (int n = 0; n < rois_batch_size - 1; ++n) {
        for (size_t i = rois_lod_[n]; i < rois_lod_[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
      }
    } else {
      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
369 370
      }
    }
371 372
    auto roi_ptr =
        memory::Alloc(dev_ctx, roi_batch_id_list.numel() * sizeof(int));
373 374 375 376
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    int bytes = roi_batch_id_list.numel() * sizeof(int);
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
J
jerrywgz 已提交
377 378
    in_grad->mutable_data<T>(ctx.GetPlace());
    math::SetConstant<Place, T> set_zero;
379
    set_zero(dev_ctx, in_grad, static_cast<T>(0));
J
jerrywgz 已提交
380 381 382 383 384 385

    int output_grad_size = out_grad->numel();
    int blocks = NumBlocks(output_grad_size);
    int threads = kNumCUDAThreads;

    if (output_grad_size > 0) {
386
      GPUROIAlignBackward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
387 388
          output_grad_size, rois->data<T>(), out_grad->data<T>(), rois_num,
          spatial_scale, channels, height, width, pooled_height, pooled_width,
389
          sampling_ratio, roi_id_data,
J
jerrywgz 已提交
390 391
          in_grad->mutable_data<T>(ctx.GetPlace()));
    }
J
jerrywgz 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    roi_align,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    roi_align_grad,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, double>);