activation_mkldnn_op.cc 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/operators/activation_op.h"
K
Krzysztof Binias 已提交
17
#include "paddle/fluid/operators/mkldnn_activation_op.h"
K
Krzysztof Binias 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

namespace {
K
Krzysztof Binias 已提交
27 28
std::string gethash(const mkldnn::memory::dims &operand_dims,
                    const mkldnn::algorithm algorithm) {
K
Krzysztof Binias 已提交
29 30 31 32 33 34 35 36
  auto dim2str = [](const mkldnn::memory::dims &operand_dims) {
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dim2str(operand_dims) + std::to_string(algorithm);
K
Krzysztof Binias 已提交
37 38
}

39 40 41 42 43 44 45 46 47 48 49 50 51 52
template <typename T, typename ExecContext>
void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm,
                     const T alpha = 0, const T beta = 0) {
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                 "It must use CPUPlace.");

  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

  // get buffers
  const auto *src = ctx.template Input<Tensor>("X");
  const auto *src_data = src->template data<T>();

  auto *dst = ctx.template Output<Tensor>("Out");
K
Krzysztof Binias 已提交
53
  T *dst_data = dst->template mutable_data<T>(ctx.GetPlace());
54 55

  // get memory dim
56 57
  PADDLE_ENFORCE(src->dims().size() == 2 || src->dims().size() == 4,
                 "Input dim must be with 2 or 4");
58 59
  std::vector<int> src_tz = framework::vectorize2int(src->dims());

K
Krzysztof Binias 已提交
60
  const std::string key = gethash(src_tz, algorithm);
K
Krzysztof Binias 已提交
61 62
  const std::string key_src_mem = key + "@eltwise_fwd_src_mem";
  const std::string key_dst_mem = key + "@eltwise_fwd_dst_mem";
K
Krzysztof Binias 已提交
63 64
  const std::string key_fwd = key + "@eltwise_fwd";

K
Krzysztof Binias 已提交
65 66
  auto p_fwd = std::static_pointer_cast<mkldnn::eltwise_forward>(
      dev_ctx.GetBlob(key_fwd));
K
Krzysztof Binias 已提交
67

K
Krzysztof Binias 已提交
68
  if (p_fwd == nullptr) {
K
Krzysztof Binias 已提交
69 70 71 72 73 74 75 76
    // create memory description
    auto data_md = src_tz.size() == 2
                       ? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                                 mkldnn::memory::format::nc)
                       : platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                                 mkldnn::memory::format::nchw);

    // create memory primitives
K
Krzysztof Binias 已提交
77 78
    auto p_src_mem = std::make_shared<mkldnn::memory>(mkldnn::memory(
        {data_md, mkldnn_engine}, platform::to_void_cast(src_data)));
K
Krzysztof Binias 已提交
79 80
    dev_ctx.SetBlob(key_src_mem, p_src_mem);

K
Krzysztof Binias 已提交
81 82
    auto p_dst_mem = std::make_shared<mkldnn::memory>(mkldnn::memory(
        {data_md, mkldnn_engine}, platform::to_void_cast(dst_data)));
K
Krzysztof Binias 已提交
83 84 85 86 87 88
    dev_ctx.SetBlob(key_dst_mem, p_dst_mem);

    auto fwd_desc = mkldnn::eltwise_forward::desc(
        mkldnn::prop_kind::forward_training, algorithm, data_md, alpha, beta);
    auto p_fwd_pd = std::make_shared<mkldnn::eltwise_forward::primitive_desc>(
        fwd_desc, mkldnn_engine);
K
Krzysztof Binias 已提交
89 90
    const std::string key_fwd_pd = key + "eltwise_fwd_pd";
    dev_ctx.SetBlob(key_fwd_pd, p_fwd_pd);
K
Krzysztof Binias 已提交
91
    p_fwd = std::make_shared<mkldnn::eltwise_forward>(
K
Krzysztof Binias 已提交
92
        *p_fwd_pd, *(p_src_mem.get()), *(p_dst_mem.get()));
K
Krzysztof Binias 已提交
93 94
    dev_ctx.SetBlob(key_fwd, p_fwd);
  } else {
K
Krzysztof Binias 已提交
95 96 97 98 99 100 101 102 103 104 105 106
    // primitives already exist
    auto p_src_mem =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
    PADDLE_ENFORCE(p_src_mem != nullptr,
                   "Fail to find eltwise p_src_mem in device context.");
    auto p_dst_mem =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_dst_mem));
    PADDLE_ENFORCE(p_dst_mem != nullptr,
                   "Fail to find eltwise p_src_mem in device context.");

    p_src_mem->set_data_handle(platform::to_void_reinterpret_cast(src_data));
    p_dst_mem->set_data_handle(dst_data);
K
Krzysztof Binias 已提交
107
  }
108 109

  // push primitive to stream and wait until it's executed
K
Krzysztof Binias 已提交
110
  std::vector<mkldnn::primitive> pipeline = {*(p_fwd.get())};
111 112 113 114 115 116 117 118 119 120
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

template <typename T, typename ExecContext>
void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm,
                  const T alpha = 0, const T beta = 0) {
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

  // get buffers
K
Krzysztof Binias 已提交
121
  const auto *out = ctx.template Input<Tensor>("Out");
122 123 124 125 126 127 128 129 130

  auto *dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
  const auto *diff_dst = dout->template data<T>();

  auto *dx =
      ctx.template Output<framework::Tensor>(framework::GradVarName("X"));
  const T *diff_src = dx->template mutable_data<T>(ctx.GetPlace());

  // get memory dim
K
Krzysztof Binias 已提交
131 132 133
  std::vector<int> src_tz = framework::vectorize2int(out->dims());

  const std::string key = gethash(src_tz, algorithm);
134

K
Krzysztof Binias 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  const std::string key_diff_src_mem = key + "@eltwise_diff_src_mem";
  const std::string key_diff_dst_mem = key + "@eltwise_diff_dst_mem";
  const std::string key_grad = key + "@eltwise_grad";

  auto p_grad = std::static_pointer_cast<mkldnn::eltwise_forward::primitive>(
      dev_ctx.GetBlob(key_grad));

  if (p_grad == nullptr) {
    // create memory description
    auto data_md = src_tz.size() == 2
                       ? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                                 mkldnn::memory::format::nc)
                       : platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                                 mkldnn::memory::format::nchw);

    // create memory primitives
    std::shared_ptr<void> p_diff_src_mem =
        std::make_shared<mkldnn::memory>(mkldnn::memory(
            {data_md, mkldnn_engine}, platform::to_void_cast(diff_src)));
    dev_ctx.SetBlob(key_diff_src_mem, p_diff_src_mem);
    std::shared_ptr<void> p_diff_dst_mem =
        std::make_shared<mkldnn::memory>(mkldnn::memory(
            {data_md, mkldnn_engine}, platform::to_void_cast(diff_dst)));
    dev_ctx.SetBlob(key_diff_dst_mem, p_diff_dst_mem);

    auto bwd_desc = mkldnn::eltwise_backward::desc(algorithm, data_md, data_md,
                                                   alpha, beta);

    const std::string key_fwd_pd = key + "eltwise_fwd_pd";
    auto *p_fwd_pd = static_cast<mkldnn::eltwise_forward::primitive_desc *>(
        dev_ctx.GetBlob(key_fwd_pd).get());

    auto eltwise_bwd_prim_desc = mkldnn::eltwise_backward::primitive_desc(
        bwd_desc, mkldnn_engine, *p_fwd_pd);

    const std::string key_src_mem = key + "@eltwise_fwd_src_mem";
    const std::shared_ptr<void> p_src_mem = dev_ctx.GetBlob(key_src_mem);

    p_grad = std::make_shared<mkldnn::eltwise_backward>(
        eltwise_bwd_prim_desc, *static_cast<mkldnn::memory *>(p_src_mem.get()),
        *(static_cast<mkldnn::memory *>(p_diff_dst_mem.get())),
        *(static_cast<mkldnn::memory *>(p_diff_src_mem.get())));
  } else {
    // primitives already exist
    auto p_diff_src_mem = std::static_pointer_cast<mkldnn::memory>(
        dev_ctx.GetBlob(key_diff_src_mem));
    auto p_diff_dst_mem = std::static_pointer_cast<mkldnn::memory>(
        dev_ctx.GetBlob(key_diff_dst_mem));

    p_diff_src_mem->set_data_handle(
        platform::to_void_reinterpret_cast(diff_src));
    p_diff_dst_mem->set_data_handle(
        platform::to_void_reinterpret_cast(diff_dst));
  }
189 190

  // push primitive to stream and wait until it's executed
K
Krzysztof Binias 已提交
191
  std::vector<mkldnn::primitive> pipeline = {*(p_grad.get())};
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
}  // anonymous namespace

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
  template <typename ExecContext>
  void operator()(const ExecContext &ctx) const {
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
  template <typename ExecContext>
  void operator()(const ExecContext &ctx) const {
    eltwise_grad<T>(ctx, algorithm);
  }
};

template <typename T>
using ReluMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
using TanhMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
using SqrtMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
using AbsMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
using ReluMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
using TanhMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
using SqrtMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
using AbsMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

K
Krzysztof Binias 已提交
255 256 257 258 259
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)            \
  __macro(relu, ReluMkldnnFunctor, ReluMkldnnGradFunctor); \
  __macro(tanh, TanhMkldnnFunctor, TanhMkldnnGradFunctor); \
  __macro(sqrt, SqrtMkldnnFunctor, SqrtMkldnnGradFunctor); \
  __macro(abs, AbsMkldnnFunctor, AbsMkldnnGradFunctor);
260 261

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);