fc_op.cc 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

// Reorder the elements from istrides to ostrides, borrowed from TRT convert in
// tensorflow.
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/tensorrt/convert/convert_nodes.cc#L318
template <typename T>
void Reorder2(nvinfer1::DimsHW shape, const T* idata, nvinfer1::DimsHW istrides,
              T* odata, nvinfer1::DimsHW ostrides) {
  for (int h = 0; h < shape.h(); ++h) {
    for (int w = 0; w < shape.w(); ++w) {
      odata[h * ostrides.h() + w * ostrides.w()] =
30
          idata[h * istrides.h() + w * istrides.w()];
31 32 33
    }
  }
}
34
// indata c * k
35
// Reorder the data layout from CK to KC.
G
gongweibao 已提交
36
void ReorderCKtoKC(TensorRTEngine::Weight& iweights,  // NOLINT
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
                   TensorRTEngine::Weight* oweights) {
  int c = iweights.dims[0];
  int k = iweights.dims[1];
  oweights->dims.assign({k, c});
  nvinfer1::DimsHW istrides = {1, k};
  nvinfer1::DimsHW ostrides = {c, 1};
  Reorder2({k, c}, static_cast<float const*>(iweights.get().values), istrides,
           static_cast<float*>(const_cast<void*>(oweights->get().values)),
           ostrides);
}
/*
 * FC converter convert a MUL op in Fluid to a FC layer in TRT.
 */
class FcOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
53
                  const framework::Scope& scope, bool test_mode) override {
54
    VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias";
Y
Yan Chunwei 已提交
55
    framework::OpDesc op_desc(op, nullptr);
56 57 58 59 60 61 62 63 64

    auto input_names = op_desc.InputNames();
    bool with_bias = input_names.size() >= 3;
    std::string w_name = "Y";
    std::string i_name = "X";
    if (with_bias) {
      w_name = "W";
      i_name = "Input";
    }
65
    // Declare inputs
66
    auto* X = engine_->GetITensor(op_desc.Input(i_name).front());
67 68

    // Declare weights
69
    auto* Y_v = scope.FindVar(op_desc.Input(w_name).front());
70 71
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
P
Pei Yang 已提交
72 73 74 75 76 77 78 79 80 81
    const int x_num_col_dims =
        op_desc.HasAttr("x_num_col_dims")
            ? boost::get<int>(op_desc.GetAttr("x_num_col_dims"))
            : (op_desc.HasAttr("in_num_col_dims")
                   ? boost::get<int>(op_desc.GetAttr("in_num_col_dims"))
                   : 1);
    const std::string activation_type =
        op_desc.HasAttr("activation_type")
            ? boost::get<std::string>(op_desc.GetAttr("activation_type"))
            : "";
82
    // This may trigger a GPU->CPU copy, because TRT's weight can only be
83
    // assigned from CPU memory, which can't be avoided.
84 85 86 87
    float* weight_data = nullptr;
    bool enable_int8 = boost::get<bool>(op_desc.HasAttr("enable_int8"));
    if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
88 89
      CHECK(op_desc.HasAttr(i_name + "_scale"));
      float in_scale = boost::get<float>(op_desc.GetAttr(i_name + "_scale"));
90 91 92 93 94 95 96 97 98 99
      auto weight_scale =
          boost::get<std::vector<float>>(op_desc.GetAttr("weight_scale"));
      weight_data = engine_->GetWeightCPUData(op_desc.Input(w_name).front(),
                                              Y_t, true, weight_scale);
      engine_->SetTensorDynamicRange(X, in_scale);
#endif
    } else {
      weight_data =
          engine_->GetWeightCPUData(op_desc.Input(w_name).front(), Y_t, false);
    }
N
nhzlx 已提交
100

101 102
    PADDLE_ENFORCE_EQ(Y_t->dims().size(), 2UL);  // a matrix
    size_t n_output = Y_t->dims()[1];
N
nhzlx 已提交
103

N
nhzlx 已提交
104
    std::unique_ptr<framework::Tensor> tmp(new framework::LoDTensor());
105
    tmp->Resize(Y_t->dims());
N
nhzlx 已提交
106 107

    memcpy(tmp->mutable_data<float>(platform::CPUPlace()), weight_data,
108
           Y_t->dims()[0] * Y_t->dims()[1] * sizeof(float));
109 110
    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
N
nhzlx 已提交
111
                                  static_cast<size_t>(Y_t->numel())};
112
    TensorRTEngine::Weight tmp_weight(nvinfer1::DataType::kFLOAT,
N
nhzlx 已提交
113
                                      static_cast<void*>(tmp->data<float>()),
N
nhzlx 已提交
114
                                      static_cast<size_t>(Y_t->numel()));
115 116 117 118 119
    weight.dims.assign({Y_t->dims()[0], Y_t->dims()[1]});
    tmp_weight.dims = weight.dims;

    // The data layout of TRT FC layer's weight is different from fluid's FC,
    // need to reorder the elements.
120
    ReorderCKtoKC(weight, &tmp_weight);
121 122 123 124 125

    // Currently, the framework can only handle one fluid op -> one TRT layer,
    // but fc fuses `mul` and `bias` (2 fluid ops), so here is a trick, just
    // handle `mul`, leave `add` as another layer.
    // DEBUG
126 127 128 129 130 131 132 133 134 135 136 137
    float* bias_data = nullptr;
    int bias_num = 0;
    if (with_bias) {
      auto* b_v = scope.FindVar(op_desc.Input("Bias").front());
      auto* b_t = b_v->GetMutable<framework::LoDTensor>();
      bias_data =
          engine_->GetWeightCPUData(op_desc.Input("Bias").front(), b_t, false);
      bias_num = b_t->numel();
    }
    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(bias_data),
                                static_cast<size_t>(bias_num)};
138

P
Pei Yang 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    // in order to handle situations in NLP models(input dims < 3,
    // x_num_col_dims != 1, etc.), reshape input to perform FC correctly.
    auto* reshape_itensor = X;
    int input_dims = X->getDimensions().nbDims;
    auto input_d = X->getDimensions().d;
    int reshape_dim3[3] = {0};
    int reshape_dim4[4] = {0};
    PADDLE_ENFORCE_EQ(
        x_num_col_dims == 1 || x_num_col_dims == 2, true,
        platform::errors::InvalidArgument(
            "Wrong x_num_col_dims param of op mul. Paddle-TRT FC converter "
            "expects x_num_col_dims is either 1 or 2, but got %d",
            x_num_col_dims));
    PADDLE_ENFORCE_LE(x_num_col_dims, input_dims,
                      platform::errors::InvalidArgument(
                          "Params and input dims mismatch. Paddle-TRT FC "
                          "converter expects x_num_col_dims <= input dims"));
    if (x_num_col_dims == 1) {
      if (input_dims == 4) {
        PADDLE_ENFORCE_EQ(
            input_d[3], 1,
            platform::errors::InvalidArgument(
                "Invalid dimensions. When x_num_col_dims equals to 1 and input "
                "dims equals to 4, the last dim of input must be 1, but got %d",
                input_d[3]));
      }
      for (int i = 0; i < 3; i++) {
        if (i < input_dims) {
          reshape_dim3[i] = input_d[i];
        } else {
          reshape_dim3[i] = 1;
        }
      }
      nvinfer1::Dims3 reshape_dim(reshape_dim3[0], reshape_dim3[1],
                                  reshape_dim3[2]);
      auto* reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
      reshape_layer->setReshapeDimensions(reshape_dim);
      reshape_itensor = reshape_layer->getOutput(0);
    } else {
      PADDLE_ENFORCE_NE(input_dims, 1,
                        platform::errors::InvalidArgument(
                            "Invalid dimensions. When x_num_col_dims equals to "
                            "2, input_dims should not be 1"));
      for (int i = 0; i < 4; i++) {
        if (i < input_dims) {
          reshape_dim4[i] = input_d[i];
        } else {
          reshape_dim4[i] = 1;
        }
      }
      nvinfer1::Dims4 reshape_dim(reshape_dim4[0], reshape_dim4[1],
                                  reshape_dim4[2], reshape_dim4[3]);
      auto* reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
      reshape_layer->setReshapeDimensions(reshape_dim);
      reshape_itensor = reshape_layer->getOutput(0);
    }
    auto* fc_layer =
        TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *reshape_itensor,
                             n_output, tmp_weight.get(), bias.get());
198

199
    engine_->SetWeights(op_desc.Input(w_name).front(), std::move(tmp));
200
    auto output_name = op_desc.Output("Out").front();
P
Pei Yang 已提交
201 202 203 204 205 206 207 208
    if (activation_type == "relu") {
      nvinfer1::IActivationLayer* relu_layer =
          TRT_ENGINE_ADD_LAYER(engine_, Activation, *(fc_layer->getOutput(0)),
                               nvinfer1::ActivationType::kRELU);
      RreplenishLayerAndOutput(relu_layer, "fc", {output_name}, test_mode);
    } else {
      RreplenishLayerAndOutput(fc_layer, "fc", {output_name}, test_mode);
    }
209 210 211 212 213 214 215
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

N
nhzlx 已提交
216
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);