reshape_op.cc 34.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include <string>
W
wanghuancoder 已提交
16

Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
19

20 21
// only can include the headers in paddle/pten/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
W
Wilber 已提交
22
#include "paddle/pten/backends/cpu/cpu_context.h"
23
#include "paddle/pten/common/scalar_array.h"
24
#include "paddle/pten/kernels/reshape_grad_kernel.h"
25
#include "paddle/pten/kernels/reshape_kernel.h"
W
wanghuancoder 已提交
26 27 28 29 30 31 32 33 34 35
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
}  // namespace paddle

Y
Yibing Liu 已提交
36 37 38
namespace paddle {
namespace operators {

39 40 41 42 43 44 45 46
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
47 48
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
49 50 51 52 53
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
54 55
    if (platform::is_gpu_place(tensor->place()) ||
        platform::is_xpu_place(tensor->place())) {
56
      framework::Tensor temp;
57
      paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(), &temp);
58 59 60 61 62 63 64 65 66 67

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
68 69 70 71 72 73 74 75
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
76
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
77 78
                      platform::errors::InvalidArgument(
                          "Input(X) of ReshapeOp should not be null."));
79
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
80 81
                      platform::errors::InvalidArgument(
                          "Output(Out) of ReshapeOp should not be null."));
Y
yuyang18 已提交
82

83 84
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
85
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
86 87
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
88 89 90 91 92
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
93 94 95 96 97 98 99
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
100 101 102 103 104
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
105 106 107 108 109 110 111
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
112

113 114 115 116 117 118 119 120 121 122 123
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
124 125
      return;
    }
126 127

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
128 129 130 131 132
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
133

134 135 136 137
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
151 152 153
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
154 155 156 157 158 159 160 161 162 163
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
164 165
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
166 167 168 169
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
                framework::make_ddim(shape), i));
Y
yuyang18 已提交
170 171
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
172 173
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
174 175 176 177 178 179
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
                framework::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
180
      } else {
181 182
        PADDLE_ENFORCE_GT(
            shape[i], 0,
183 184
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
185
                "be negative except one unknown dimension. "
186 187
                "But received  shape = [%s], shape[%d] = %d.",
                framework::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
188 189
      }

190 191
      // NOTE all non-zero values will be converted to True (include negative
      // value)
Y
yuyang18 已提交
192 193 194 195 196 197
      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
198
      if (all_positive) {
Y
yuyang18 已提交
199 200 201 202 203
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
204 205 206 207 208 209 210
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
211
                "'shape' is [%s], known capacity of 'shape' is %d.",
212
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
yuyang18 已提交
213 214 215 216
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
217 218 219
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
220 221 222 223 224 225 226
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
227
      }
Y
yuyang18 已提交
228
    }
229 230 231 232 233

    // support reshape with zero-input(input tensor with product(shape) == 0)
    // by now we require that if the input tensor is zero shape, the target
    // shape of output must be zero
    if (in_size == 0) {
J
JZ-LIANG 已提交
234
      PADDLE_ENFORCE_LE(
235 236 237 238 239 240 241 242 243
          capacity, in_size,
          platform::errors::InvalidArgument(
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X's shape = [%s], X's capacity = %d."
              "But the target shape of Out is [%s],  the "
              "capacity of 'Out' is %d.",
              in_dims, in_size, framework::make_ddim(shape), capacity));
    }

Y
yuyang18 已提交
244 245 246 247 248 249
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
250 251 252 253
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
254
  }
255 256 257 258 259 260 261 262 263 264

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
265 266
};

Y
Yibing Liu 已提交
267 268
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
269
  void Make() override {
270 271
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
272 273 274
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
275
             "set correctly to guarantee shape inference in compile time.")
276
        .AsDispensable();
277 278
    AddInput(
        "ShapeTensor",
279 280 281 282
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
283 284
        .AsDuplicable()
        .AsDispensable();
285
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
286
    AddAttr<std::vector<int>>(
287 288 289 290
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
291
        .SetDefault({});
292 293
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
Z
zmx 已提交
294 295
        .SetDefault(false)
        .AsExtra();
K
kexinzhao 已提交
296 297
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
298

299 300
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
301

C
caoying03 已提交
302
Examples:
Y
Yibing Liu 已提交
303

C
caoying03 已提交
304 305 306 307
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

308
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
309 310 311 312 313 314
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

315
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
316 317 318 319
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
320

C
caoying03 已提交
321
Note:
Y
Yibing Liu 已提交
322

C
caoying03 已提交
323 324 325
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
326 327

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
328
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
329
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
330
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
331 332

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
333
Attr(shape) still should be set correctly to guarantee shape inference in
334
compile-time.
Y
Yibing Liu 已提交
335

Y
Yibing Liu 已提交
336 337 338 339 340 341 342 343 344 345 346 347
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

348
  void InferShape(framework::InferShapeContext *ctx) const override {
349 350 351
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) shouldn't be null."));
352
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
353 354
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
Q
Qiao Longfei 已提交
355
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
356
  }
357 358 359 360

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
361 362 363 364
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
365
  }
Y
Yibing Liu 已提交
366 367
};

Y
yuyang18 已提交
368 369 370 371 372
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
373 374 375
    // framework::DDim out_dims = out->dims();
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*in);

376 377 378 379 380 381 382
    // we can't MakePtenDenseTensor by out, because the out of reshape may have
    // multiple states, some can MakePtenDenseTensor but other's cannot:
    // 1. out tensor is not initialized
    // 2. out tensor is input (complete inplace)
    // 3. out tensor is view of input
    // We can't MakePtenDenseTensor for case 2, so we solve this case by
    // creating a temporary tensor here:
383
    pten::DenseTensorMeta meta{pten::TransToPtenDataType(in->type()),
384
                               in->dims(), in->layout()};
385 386 387 388
    auto pt_out_tmp = std::make_shared<pten::DenseTensor>(
        pten::make_intrusive<paddle::experimental::SharedStorage>(
            ctx.GetPlace()),
        std::move(meta));
389
    pten::DenseTensor *pt_out = nullptr;
390 391 392
    if (in != nullptr && out != nullptr && in->Holder() != nullptr &&
        out->Holder() != nullptr &&
        in->Holder()->ptr() == out->Holder()->ptr()) {
393 394 395 396
      pt_out = pt_x.get();
    } else {
      pt_out = pt_out_tmp.get();
    }
Y
yuyang18 已提交
397

398 399
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
400 401 402
    auto *shape_tensor = ctx.HasInput("Shape")
                             ? ctx.Input<framework::LoDTensor>("Shape")
                             : nullptr;
403
    pten::ScalarArray pt_scalar_shape;
404 405
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
406 407 408 409 410
      std::vector<pten::DenseTensor> pt_vec_shape;
      for (auto &tensor : list_new_shape_tensor) {
        if (platform::is_gpu_place(tensor->place()) ||
            platform::is_xpu_place(tensor->place())) {
          framework::Tensor temp;
411 412
          paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(),
                                            &temp);
413 414 415 416 417 418 419
          pt_vec_shape.push_back(
              std::move(*(paddle::experimental::MakePtenDenseTensor(temp))));
        } else {
          pt_vec_shape.push_back(
              std::move(*(paddle::experimental::MakePtenDenseTensor(*tensor))));
        }
      }
420
      pt_scalar_shape = pten::ScalarArray(pt_vec_shape);
421 422 423 424 425
    } else if (shape_tensor) {
      std::unique_ptr<pten::DenseTensor> pt_shape;
      if (platform::is_gpu_place(shape_tensor->place()) ||
          platform::is_xpu_place(shape_tensor->place())) {
        framework::Tensor temp;
426 427
        paddle::framework::TensorCopySync(*shape_tensor, platform::CPUPlace(),
                                          &temp);
428 429 430 431
        pt_shape = paddle::experimental::MakePtenDenseTensor(temp);
      } else {
        pt_shape = paddle::experimental::MakePtenDenseTensor(*shape_tensor);
      }
432
      pt_scalar_shape = pten::ScalarArray(*pt_shape.get());
433
    } else {
434
      auto &shape_attr = ctx.Attr<std::vector<int>>("shape");
435 436 437 438
      pt_scalar_shape = pten::ScalarArray(shape_attr);
    }
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
W
Wilber 已提交
439 440
      pten::ReshapeKernel(static_cast<const pten::CPUContext &>(dev_ctx),
                          *pt_x.get(), pt_scalar_shape, pt_out);
441
    }
442
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
443 444
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
445
      pten::ReshapeKernel(dev_ctx, *pt_x.get(), pt_scalar_shape, pt_out);
446
    }
447 448
#endif
#ifdef PADDLE_WITH_XPU
449 450
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
W
Wilber 已提交
451 452
      pten::ReshapeKernel(static_cast<const pten::XPUContext &>(dev_ctx),
                          *pt_x.get(), pt_scalar_shape, pt_out);
453
    }
454
#endif
455 456 457
    // non-inplace need move all result from pt_out to out, inplace need set
    // result dims.
    if (in != out) {
458
      paddle::experimental::SharesStorage(pt_out, static_cast<Tensor *>(out));
459 460
    } else {
      out->Resize(pt_out->dims());
Y
yuyang18 已提交
461
    }
Y
yuyang18 已提交
462
  }
Y
yuyang18 已提交
463 464 465 466 467 468 469
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
470
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
471 472 473 474 475 476

    auto pt_d_x = paddle::experimental::MakePtenDenseTensor(*d_x);
    auto pt_d_out = paddle::experimental::MakePtenDenseTensor(*d_out);

    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
W
Wilber 已提交
477 478
      pten::ReshapeGradKernel(static_cast<const pten::CPUContext &>(dev_ctx),
                              *pt_d_out.get(), pt_d_x.get());
479 480 481 482 483 484 485 486 487 488
    }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
      pten::ReshapeGradKernel(dev_ctx, *pt_d_out.get(), pt_d_x.get());
    }
#endif
#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
W
Wilber 已提交
489 490
      pten::ReshapeGradKernel(static_cast<const pten::XPUContext &>(dev_ctx),
                              *pt_d_out.get(), pt_d_x.get());
491 492
    }
#endif
Y
yuyang18 已提交
493
  }
Y
yuyang18 已提交
494 495
};

496 497 498 499 500
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");
501
    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
502

503 504
    auto pt_dd_x = paddle::experimental::MakePtenDenseTensor(*dd_x);
    auto pt_dd_out = paddle::experimental::MakePtenDenseTensor(*dd_out);
505

506 507
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
W
Wilber 已提交
508 509 510
      pten::ReshapeDoubleGradKernel(
          static_cast<const pten::CPUContext &>(dev_ctx), *pt_dd_x.get(),
          pt_dd_out.get());
511 512 513 514 515 516 517 518 519 520
    }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
      pten::ReshapeDoubleGradKernel(dev_ctx, *pt_dd_x.get(), pt_dd_out.get());
    }
#endif
#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
W
Wilber 已提交
521 522 523
      pten::ReshapeDoubleGradKernel(
          static_cast<const pten::XPUContext &>(dev_ctx), *pt_dd_x.get(),
          pt_dd_out.get());
524 525
    }
#endif
526 527 528
  }
};

529 530 531 532 533 534 535 536 537 538 539 540 541
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
542
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
543 544
                      platform::errors::InvalidArgument(
                          "Output(XShape) of ReshapeOp should not be null."));
545 546 547 548 549 550 551 552
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
553 554

    ReshapeOp::InferShape(ctx);
555
  }
556 557 558

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
559
    std::string shape;
560 561
    auto multi_inputs = ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (multi_inputs.size() > 0) {
562
      shape = "ShapeTensor";
563
    } else if (ctx.HasInput("Shape")) {
564
      shape = "Shape";
565
    } else {
566
      shape = "shape";
567
    }
568
    return framework::KernelSignature("reshape", {"X"}, {shape}, {"Out"});
569
  }
570 571 572 573 574 575 576 577 578 579
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
580 581 582 583
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
584
        .SetDefault(false);
585 586 587 588 589
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
590 591 592
  }
};

H
hong 已提交
593 594
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
595
 public:
H
hong 已提交
596
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
597

598
  void Apply(GradOpPtr<T> grad_op) const override {
599
    grad_op->SetType("reshape2_grad");
H
hong 已提交
600 601 602 603
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
604 605 606
  }
};

H
hong 已提交
607 608
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
609
 public:
H
hong 已提交
610
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
611

612
  void Apply(GradOpPtr<T> grad_op) const override {
613
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
614 615 616 617
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
618 619 620
  }
};

621 622 623 624 625 626 627 628 629
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
630 631 632
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
633
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
634 635
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
636 637 638 639 640 641 642 643 644
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
645 646 647 648
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
649
  }
650 651 652 653 654 655 656 657 658 659

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
660 661 662 663 664 665 666

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    return framework::KernelSignature("reshape_grad",
                                      {framework::GradVarName("Out")}, {},
                                      {framework::GradVarName("X")});
  }
667 668
};

669 670 671 672 673 674 675 676 677 678
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
679 680
                      platform::errors::InvalidArgument(
                          "Input(X@GRAD_GRAD) shouldn't be null."));
681 682 683 684 685 686 687 688
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
689 690 691
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
692 693 694 695 696 697 698 699 700 701 702
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
703 704 705 706 707
  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    return framework::KernelSignature("reshape_double_grad", {"DDX"}, {},
                                      {"DDOut"});
  }
708 709
};

710 711
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
712 713
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
714 715
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
716
                                    "DOut");
D
dzhwinter 已提交
717

Y
Yibing Liu 已提交
718 719 720
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
721
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
722

H
hong 已提交
723 724 725 726
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
727
    ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
728
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
729
                  ops::ReshapeGradInplaceInferer);
730

731 732 733 734 735 736 737
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
738
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
739 740
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
741
                  ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
742
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
743 744
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
745
                  ops::ReshapeGradInplaceInferer);
746
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
747 748
                  ops::ReshapeDoubleGradInplaceInferer,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
749

750 751 752 753
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2, float, ops::ReshapeKernel, double, ops::ReshapeKernel, int8_t,
    ops::ReshapeKernel, uint8_t, ops::ReshapeKernel, int, ops::ReshapeKernel,
    int64_t, ops::ReshapeKernel, bool, ops::ReshapeKernel,
754 755 756
    paddle::platform::bfloat16, ops::ReshapeKernel,
    paddle::platform::complex<float>, ops::ReshapeKernel,
    paddle::platform::complex<double>, ops::ReshapeKernel);
757 758 759 760 761

REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, bool,
J
Jacek Czaja 已提交
762
    ops::ReshapeGradKernel, paddle::platform::bfloat16, ops::ReshapeGradKernel,
763 764
    paddle::platform::complex<float>, ops::ReshapeGradKernel,
    paddle::platform::complex<double>, ops::ReshapeGradKernel);
765 766 767 768
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel, bool,
J
Jacek Czaja 已提交
769
    ops::ReshapeDoubleGradKernel, paddle::platform::bfloat16,
770 771
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<float>,
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<double>,
772
    ops::ReshapeDoubleGradKernel);
773

774
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
775 776
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
777 778
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
779
                                ops::ReshapeKernel);
780 781 782
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
J
joejiong 已提交
783
                                ops::ReshapeGradKernel, uint8_t,
784
                                ops::ReshapeGradKernel, plat::float16,
785

786 787 788
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
789 790
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
791
                                ops::ReshapeKernel, bool, ops::ReshapeKernel,
792 793
                                plat::complex<float>, ops::ReshapeKernel,
                                plat::complex<double>, ops::ReshapeKernel);
794 795 796 797
REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, plat::float16,
798 799
    ops::ReshapeGradKernel, bool, ops::ReshapeGradKernel, plat::complex<float>,
    ops::ReshapeGradKernel, plat::complex<double>, ops::ReshapeGradKernel);
800 801 802 803 804 805

REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel,
    plat::float16, ops::ReshapeDoubleGradKernel, bool,
806 807 808
    ops::ReshapeDoubleGradKernel, plat::complex<float>,
    ops::ReshapeDoubleGradKernel, plat::complex<double>,
    ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
809
#endif
810 811 812 813 814

#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel, plat::float16,
815
                               ops::ReshapeKernel, bool, ops::ReshapeKernel,
816 817
                               plat::complex<float>, ops::ReshapeKernel,
                               plat::complex<double>, ops::ReshapeKernel);
818 819 820 821
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel, plat::float16,
822
                               ops::ReshapeGradKernel, bool,
823 824
                               ops::ReshapeGradKernel, plat::complex<float>,
                               ops::ReshapeGradKernel, plat::complex<double>,
825
                               ops::ReshapeGradKernel);
826
#endif