batch_norm_op.cc 30.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
Q
qingqing01 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
Q
qingqing01 已提交
18
#include <unordered_map>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/data_layout.h"
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
Q
Qiao Longfei 已提交
23 24 25 26

namespace paddle {
namespace operators {

Q
qingqing01 已提交
27
void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    platform::errors::InvalidArgument(
                        "Input(X) of BatchNormOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Scale"), true,
                    platform::errors::InvalidArgument(
                        "Input(Scale) of BatchNormOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Bias"), true,
                    platform::errors::InvalidArgument(
                        "Input(Bias) of BatchNormOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Mean"), true,
                    platform::errors::InvalidArgument(
                        "Input(Mean) of BatchNormOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Variance"), true,
                    platform::errors::InvalidArgument(
                        "Input(Variance) of BatchNormOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Y"), true,
                    platform::errors::InvalidArgument(
                        "Output(Y) of BatchNormOp should not be null."));
Q
qingqing01 已提交
46 47
  bool is_test = ctx->Attrs().Get<bool>("is_test");
  if (!is_test) {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("MeanOut"), true,
        platform::errors::InvalidArgument(
            "Output(MeanOut) of BatchNormOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("VarianceOut"), true,
        platform::errors::InvalidArgument(
            "Output(VarianceOut) of BatchNormOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("SavedMean"), true,
        platform::errors::InvalidArgument(
            "Output(SavedMean) of BatchNormOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("SavedVariance"), true,
        platform::errors::InvalidArgument(
            "Output(SavedVariance) of BatchNormOp should not be null."));
Q
Qiao Longfei 已提交
64
  }
K
Kexin Zhao 已提交
65

Q
qingqing01 已提交
66 67 68 69 70 71 72 73 74 75
  // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python
  PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0],
                    "Mean and MeanOut should share the same memory");
  PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0], ctx->Outputs("VarianceOut")[0],
                    "Variance and VarianceOut should share the same memory");

  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));

76 77 78 79 80 81 82
  if (ctx->IsRuntime() && ctx->HasInput("MomentumTensor")) {
    auto mom = ctx->Inputs("MomentumTensor");
    PADDLE_ENFORCE_EQ(mom.size(), 1,
                      platform::errors::InvalidArgument(
                          "Input(MomentumTensor) size must be 1"));
  }

83 84 85 86 87 88 89 90 91 92 93 94
  PADDLE_ENFORCE_GE(
      x_dims.size(), 2,
      "ShapeError: the dimension of input X must greater than or equal to 2."
      "But received: the shape of input X = [%s], the dimension of input X ="
      "[%d]",
      x_dims, x_dims.size());
  PADDLE_ENFORCE_LE(
      x_dims.size(), 5,
      "ShapeError: the dimension of input X must smaller than or equal to 5."
      "But received: the shape of input X = [%s], the dimension of input X ="
      "[%d]",
      x_dims, x_dims.size());
Q
qingqing01 已提交
95 96

  const int64_t C =
97 98 99
      ((this->IsMKLDNNType() == true) || (data_layout == DataLayout::kNCHW)
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);
Q
qingqing01 已提交
100

101 102
  auto scale_dim = ctx->GetInputDim("Scale");
  auto bias_dim = ctx->GetInputDim("Bias");
Q
qingqing01 已提交
103

104 105 106 107 108 109 110 111 112 113
  PADDLE_ENFORCE_EQ(scale_dim.size(), 1UL,
                    "ShapeError: the dimension of scale must equal to 1."
                    "But received: the shape of scale is [%s], the dimension "
                    "of scale is [%d]",
                    scale_dim, scale_dim.size());
  PADDLE_ENFORCE_EQ(
      bias_dim.size(), 1UL,
      "ShapeError: the dimension of bias must equal to 1."
      "But received: the shape of bias is [%s],the dimension of bias is [%d]",
      bias_dim, bias_dim.size());
C
ceci3 已提交
114

115 116 117 118 119 120 121
  bool check = true;
  if ((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0 ||
                              framework::product(bias_dim) <= 0)) {
    check = false;
  }

  if (check) {
122 123 124 125 126 127 128 129
    PADDLE_ENFORCE_EQ(scale_dim[0], C,
                      "ShapeError: the shape of scale must equal to [%d]"
                      "But received: the shape of scale is [%d]",
                      C, scale_dim[0]);
    PADDLE_ENFORCE_EQ(bias_dim[0], C,
                      "ShapeError: the shape of bias must equal to [%d]"
                      "But received: the shape of bias is [%d]",
                      C, bias_dim[0]);
130
  }
Q
qingqing01 已提交
131 132 133 134 135 136 137 138 139 140
  ctx->SetOutputDim("Y", x_dims);
  ctx->SetOutputDim("MeanOut", {C});
  ctx->SetOutputDim("VarianceOut", {C});
  ctx->SetOutputDim("SavedMean", {C});
  ctx->SetOutputDim("SavedVariance", {C});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType BatchNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
141
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
Q
qingqing01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto bn_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    bn_param_type = framework::proto::VarType::FP64;
  }
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Scale")->type(),
                    "Scale input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Bias")->type(),
                    "Bias input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Mean")->type(),
                    "Mean input should be of float type");
  PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Variance")->type(),
                    "Variance input should be of float type");

  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
161
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
162 163 164 165
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
K
Kexin Zhao 已提交
166
  }
Q
qingqing01 已提交
167
#endif
Q
Qiao Longfei 已提交
168

Q
qingqing01 已提交
169 170 171 172
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                 library);
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
framework::OpKernelType BatchNormOp::GetKernelTypeForVar(
    const std::string &var_name, const Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "X") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
189 190
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
191 192 193 194 195 196 197
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Q
qingqing01 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
void BatchNormOpMaker::Make() {
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
  AddAttr<float>("momentum", "").SetDefault(0.9);
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
        PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                       "'epsilon' should be between 0.0 and 0.001.");
      });
  AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
           "that is applied to the output");
  AddInput("Mean",
           "The global mean (for training) or "
           "estimated mean (for testing)");
  AddInput("Variance",
           "The global variance (for training) "
           "or estimated Variance (for testing)");
224 225 226 227 228
  AddInput("MomentumTensor",
           "(Tensor<float32>, optional) If provided, batch_norm will "
           "use this as momentum, this has a higher priority than "
           "attr(momentum), the shape of this tensor MUST BE [1].")
      .AsDispensable();
Q
qingqing01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
  AddOutput("Y", "result after normalization");
  AddOutput("MeanOut",
            "Share memory with Mean. "
            "Store the global mean when training");
  AddOutput("VarianceOut",
            "Share memory with Variance. "
            "Store the global Variance when training");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
      .AsIntermediate();
244 245 246 247
  AddOutput("ReserveSpace",
            "Reserve GPU space for triggering the new semi-persistent "
            "NHWC kernel")
      .AsDispensable();
Q
qingqing01 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_with_relu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("use_global_stats",
                "(bool, default false) Whether to use global mean and "
                "variance. In inference or test mode, set use_global_stats "
                "to true or is_test true. the behavior is equivalent. "
                "In train mode, when setting use_global_stats True, the "
                "global mean and variance are also used during train time, "
                "the BN acts as scaling and shiffting.")
      .SetDefault(false);
  AddComment(R"DOC(
263
Batch Normalization.
Q
Qiao Longfei 已提交
264

265 266 267 268 269 270
Batch Norm has been implemented as discussed in the paper:
https://arxiv.org/pdf/1502.03167.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Q
Qiao Longfei 已提交
271 272

)DOC");
Q
qingqing01 已提交
273
}
C
chengduo 已提交
274

Q
Qiao Longfei 已提交
275
template <typename T>
Q
QI JUN 已提交
276 277
class BatchNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
278 279 280
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
281
    float momentum = ctx.Attr<float>("momentum");
Q
Qiao Longfei 已提交
282
    const bool is_test = ctx.Attr<bool>("is_test");
283 284 285 286
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

    bool global_stats = is_test || use_global_stats;

Q
QI JUN 已提交
287 288 289
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
290 291 292

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
293 294
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
295 296
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
297 298
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());
    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());

314
    if (!global_stats) {
Q
Qiao Longfei 已提交
315 316 317 318 319 320 321 322
      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          saved_mean->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> saved_variance_e(
          saved_variance->mutable_data<T>(ctx.GetPlace()), C);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

323 324 325 326 327 328
      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), C);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), C);

      if ((N * sample_size) == 1) {
329 330
        // Only 1 element in normalization dimension,
        // we skip the batch norm calculation, let y = x.
331
        framework::TensorCopy(*x, ctx.GetPlace(), y);
332 333 334
        return;
      }

Q
QI JUN 已提交
335 336
      switch (data_layout) {
        case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
337 338 339 340 341 342 343 344 345 346 347 348
          ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
Q
QI JUN 已提交
349
        case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362
          ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
          for (int i = 0; i < N * sample_size; ++i) {
            saved_mean_e += x_arr.col(i);
          }
          saved_mean_e /= N * sample_size;
          for (int i = 0; i < N * sample_size; ++i) {
            saved_variance_e +=
                (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e);
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
Q
QI JUN 已提交
363
          PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
364 365
      }

366 367 368 369 370 371 372
      // if MomentumTensor is set, use MomentumTensor value, momentum
      // is only used in this training branch
      if (ctx.HasInput("MomentumTensor")) {
        const auto *mom_tensor = ctx.Input<Tensor>("MomentumTensor");
        momentum = mom_tensor->data<float>()[0];
      }

Q
Qiao Longfei 已提交
373 374 375 376 377 378 379 380
      running_mean_arr =
          running_mean_arr * momentum + saved_mean_e * (1. - momentum);
      running_var_arr =
          running_var_arr * momentum + saved_variance_e * (1. - momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
381
    if (global_stats) {
Q
Qiao Longfei 已提交
382 383 384 385 386 387 388 389 390 391 392
      ConstEigenVectorArrayMap<T> var_arr(
          ctx.Input<Tensor>("Variance")->data<T>(), C);
      inv_std = (var_arr + epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
          ctx.Output<Tensor>("SavedVariance")->data<T>(), C);
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }
    ConstEigenVectorArrayMap<T> mean_arr(
393 394
        global_stats ? ctx.Input<Tensor>("Mean")->data<T>()
                     : ctx.Output<Tensor>("SavedMean")->data<T>(),
Q
Qiao Longfei 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407
        C);

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

Q
QI JUN 已提交
408 409
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
410 411 412 413 414 415 416 417
        EigenArrayMap<T> y_arr(y->mutable_data<T>(ctx.GetPlace()), sample_size,
                               N * C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
Q
QI JUN 已提交
418
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
419 420 421 422 423 424 425 426 427
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C,
                         N * sample_size) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N * sample_size).colwise() *
             new_scale)
                .colwise() +
            new_bias;
        break;
      }
      default:
Q
QI JUN 已提交
428
        PADDLE_THROW("Unknown storage order: %d", data_layout);
Q
Qiao Longfei 已提交
429 430 431 432
    }
  }
};

Q
qingqing01 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445
void BatchNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
  // check input
  PADDLE_ENFORCE(ctx->HasInput("X"));
  PADDLE_ENFORCE(ctx->HasInput("Scale"), "Input(scale) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                 "Input(Y@GRAD) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("SavedMean"),
                 "Input(SavedMean) should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("SavedVariance"),
                 "Input(SavedVariance) should not be null");

  // check output
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "");
446 447 448 449 450 451 452 453 454 455 456

  const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
  const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));

  PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad), true,
                    platform::errors::InvalidArgument(
                        "Output(Scale@GRAD) and Output(Bias@GRAD) must be null "
                        "or not be null at same time. But now, "
                        "has Scale@Grad=[%d], has Bias@GRAD=[%d]",
                        has_scale_grad, has_bias_grad));

Q
qingqing01 已提交
457 458 459 460 461 462
  const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
  if (use_global_stats) {
    PADDLE_ENFORCE(!ctx->Attrs().Get<bool>("use_mkldnn"),
                   "Using global stats during training is not supported "
                   "in gradient op kernel of batch_norm_mkldnn_op now.");
  }
Q
Qiao Longfei 已提交
463

Q
qingqing01 已提交
464 465 466
  const auto x_dims = ctx->GetInputDim("X");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
467 468 469 470 471

  const int C =
      ((this->IsMKLDNNType() == true) || (data_layout == DataLayout::kNCHW)
           ? x_dims[1]
           : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
472

Q
qingqing01 已提交
473
  ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
474 475
  // has_scale_grad == has_bias_grad, judge has_scale_grad is enough
  if (has_scale_grad) {
Q
qingqing01 已提交
476 477
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
Q
Qiao Longfei 已提交
478
  }
Q
qingqing01 已提交
479
}
Q
Qiao Longfei 已提交
480

Q
qingqing01 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
framework::OpKernelType BatchNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
    PADDLE_THROW("can't find Y@GRAD");
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
    PADDLE_THROW("can't find Y@GRAD");
  }
496

Q
qingqing01 已提交
497 498 499
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
500

501
#ifdef PADDLE_WITH_MKLDNN
Q
qingqing01 已提交
502 503 504 505 506
  if (library == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
507
#endif
508

509 510 511
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(), layout,
      library);
Q
qingqing01 已提交
512
}
Q
Qiao Longfei 已提交
513

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
framework::OpKernelType BatchNormGradOp::GetKernelTypeForVar(
    const std::string &var_name, const Tensor &tensor,
    const framework::OpKernelType &expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "X") || (var_name == framework::GradVarName("Y"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_layout = ar.Get<std::string>("data_layout");
    auto dl = framework::StringToDataLayout(data_layout);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Q
Qiao Longfei 已提交
539
template <typename T>
Q
QI JUN 已提交
540
class BatchNormGradKernel<platform::CPUDeviceContext, T>
Q
Qiao Longfei 已提交
541 542 543 544 545 546 547 548 549
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    // SavedVariance have been reverted in forward operator
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");
Q
QI JUN 已提交
550
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
551
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
552
    const bool is_test = ctx.Attr<bool>("is_test");
553
    const float epsilon = ctx.Attr<float>("epsilon");
Q
QI JUN 已提交
554 555
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
556

557 558 559 560 561 562 563
    PADDLE_ENFORCE_EQ(
        is_test, false,
        platform::errors::InvalidArgument(
            "`is_test = True` CANNOT be used in train program. If "
            "you want to use global status in pre_train model, "
            "please set `use_global_stats = True`"));

Q
Qiao Longfei 已提交
564 565 566
    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
567 568
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
569 570
    const int N = x_dims[0];
    const int C =
Q
QI JUN 已提交
571 572
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
Q
Qiao Longfei 已提交
573 574 575 576 577 578 579 580
    const int sample_size = x->numel() / N / C;

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
581 582 583 584 585 586 587 588

    const T *mean_data = saved_mean->data<T>();
    const T *inv_var_data = saved_inv_variance->data<T>();
    Tensor inv_var_tensor;
    if (use_global_stats) {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_variance = ctx.Input<Tensor>("Variance");
      mean_data = running_mean->data<T>();
Z
Zeng Jinle 已提交
589
      inv_var_tensor.Resize({C});
590 591 592 593
      T *running_inv_var_data = inv_var_tensor.mutable_data<T>(ctx.GetPlace());
      EigenVectorArrayMap<T> inv_var_tmp(running_inv_var_data, C);
      ConstEigenVectorArrayMap<T> var_arr(running_variance->data<T>(), C);

594
      inv_var_tmp = (var_arr + epsilon).sqrt().inverse();
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
      inv_var_data = running_inv_var_data;
    }

    ConstEigenVectorArrayMap<T> scale_arr(scale->data<T>(), C);
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

    T *d_bias_data = nullptr;
    T *d_scale_data = nullptr;
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
      d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
    }
Q
Qiao Longfei 已提交
610 611 612 613 614

    // d_bias = np.sum(d_y, axis=0)
    // d_scale = np.sum((X - mean) / inv_std * dy, axis=0)
    // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0)
    //   - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0))
615 616
    EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
    EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
Q
Qiao Longfei 已提交
617

618 619 620 621
    if (d_scale && d_bias) {
      d_bias_arr.setZero();
      d_scale_arr.setZero();
    }
Q
Qiao Longfei 已提交
622

623 624
    if ((N * sample_size) == 1 && !use_global_stats) {
      framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
625 626 627
      return;
    }

628 629
    int scale_coefff = use_global_stats ? 1 : N * sample_size;
    const auto scale_inv_var_nhw = scale_arr * inv_var_arr / scale_coefff;
Q
Qiao Longfei 已提交
630

L
lvmengsi 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    Tensor dy_sum;
    dy_sum.Resize({C});
    dy_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_sum_arr(dy_sum.mutable_data<T>(ctx.GetPlace()),
                                      C);

    Tensor dy_mul_x_sub_mean_mul_invstd_sum;
    dy_mul_x_sub_mean_mul_invstd_sum.Resize({C});
    dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> dy_mul_x_sub_mean_mul_invstd_sum_arr(
        dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace()), C);

    dy_sum_arr.setZero();
    dy_mul_x_sub_mean_mul_invstd_sum_arr.setZero();

Q
QI JUN 已提交
646 647
    switch (data_layout) {
      case DataLayout::kNCHW: {
Q
Qiao Longfei 已提交
648 649 650 651 652 653
        ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), sample_size, N * C);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()),
                                 sample_size, N * C);
        d_x_arr.setZero();

L
lvmengsi 已提交
654 655 656 657 658 659 660 661
        for (int nc = 0; nc < N * C; ++nc) {
          int c = nc % C;
          dy_sum_arr(c) += d_y_arr.col(nc).sum();
          dy_mul_x_sub_mean_mul_invstd_sum_arr(c) +=
              ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc))
                  .sum();
        }

662
        if (d_scale && d_bias) {
L
lvmengsi 已提交
663 664
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
Q
Qiao Longfei 已提交
665
        }
L
lvmengsi 已提交
666

667 668 669 670 671
        if (!use_global_stats) {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) +=
                scale_inv_var_nhw(c) *
L
lvmengsi 已提交
672 673 674
                (d_y_arr.col(nc) * N * sample_size - dy_sum_arr(c) -
                 (x_arr.col(nc) - mean_arr[c]) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr(c) * inv_var_arr(c));
675 676 677 678 679 680
          }
        } else {
          for (int nc = 0; nc < N * C; ++nc) {
            int c = nc % C;
            d_x_arr.col(nc) += scale_inv_var_nhw(c) * d_y_arr.col(nc);
          }
Q
Qiao Longfei 已提交
681 682 683
        }
        break;
      }
Q
QI JUN 已提交
684
      case DataLayout::kNHWC: {
Q
Qiao Longfei 已提交
685 686 687 688 689 690
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N * sample_size);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N * sample_size);
        EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C,
                                 N * sample_size);
        d_x_arr.setZero();

L
lvmengsi 已提交
691 692 693 694 695
        for (int nhw = 0; nhw < N * sample_size; ++nhw) {
          dy_sum_arr += d_y_arr.col(nhw);
          dy_mul_x_sub_mean_mul_invstd_sum_arr +=
              (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw);
        }
696 697

        if (d_scale && d_bias) {
L
lvmengsi 已提交
698 699
          d_bias_arr = dy_sum_arr;
          d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
700 701 702 703 704 705
        }

        if (!use_global_stats) {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) +=
                scale_inv_var_nhw *
L
lvmengsi 已提交
706 707 708
                (d_y_arr.col(nhw) * N * sample_size - dy_sum_arr -
                 (x_arr.col(nhw) - mean_arr) *
                     dy_mul_x_sub_mean_mul_invstd_sum_arr * inv_var_arr);
709 710 711 712 713
          }
        } else {
          for (int nhw = 0; nhw < N * sample_size; ++nhw) {
            d_x_arr.col(nhw) += scale_inv_var_nhw * d_y_arr.col(nhw);
          }
Q
Qiao Longfei 已提交
714 715 716 717
        }
        break;
      }
      default:
Q
QI JUN 已提交
718
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
Q
Qiao Longfei 已提交
719 720 721 722
    }
  }
};

H
hong 已提交
723
template <typename T>
724 725 726 727 728 729 730 731 732 733
std::unique_ptr<T> BatchNormGradMaker<T>::Apply() const {
  auto *op = new T();
  op->SetType(this->ForwardOpType() + "_grad");
  op->SetInput("X", this->Input("X"));
  op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

  op->SetInput("Scale", this->Input("Scale"));
  op->SetInput("Bias", this->Input("Bias"));
  op->SetInput("SavedMean", this->Output("SavedMean"));
  op->SetInput("SavedVariance", this->Output("SavedVariance"));
734 735 736
  if (this->HasOutput("ReserveSpace")) {
    op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
  }
737 738 739 740 741 742

  // used when setting use_global_stats True during training
  if (boost::get<bool>(this->GetAttr("use_global_stats"))) {
    op->SetInput("Mean", this->Output("MeanOut"));
    op->SetInput("Variance", this->Output("VarianceOut"));
  }
743

744
  op->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
745

746 747 748
  op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
  op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
Y
Yu Yang 已提交
749

750 751
  return std::unique_ptr<T>(op);
}
Y
Yu Yang 已提交
752

Q
Qiao Longfei 已提交
753 754 755 756
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yu Yang 已提交
757
REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker,
H
hong 已提交
758 759 760
                  ops::BatchNormOpInferVarType,
                  ops::BatchNormGradMaker<paddle::framework::OpDesc>,
                  ops::BatchNormGradMaker<paddle::imperative::OpBase>);
761
REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp);
Y
Yu Yang 已提交
762

Q
QI JUN 已提交
763
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
764 765
    batch_norm, ops::BatchNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormKernel<paddle::platform::CPUDeviceContext, double>);
Q
Qiao Longfei 已提交
766 767
REGISTER_OP_CPU_KERNEL(
    batch_norm_grad,
D
dzhwinter 已提交
768 769
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::BatchNormGradKernel<paddle::platform::CPUDeviceContext, double>);