rnn.py 61.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Feiyu Chan 已提交
15 16 17 18 19 20 21 22 23
import copy
import collections
import itertools
import six
import math
import sys
import warnings
from functools import partial, reduce

24
import numpy as np
F
Feiyu Chan 已提交
25
import paddle
26
import paddle.fluid as fluid
F
Feiyu Chan 已提交
27
from paddle import framework
28
from paddle.device import get_device, get_cudnn_version
F
Feiyu Chan 已提交
29 30 31 32 33 34
from paddle.nn import functional as F
from paddle.nn import initializer as I
from paddle.fluid.dygraph import Layer, LayerList
from paddle.fluid.layers import utils
from paddle.fluid.layers.utils import map_structure, flatten, pack_sequence_as
from paddle.fluid.data_feeder import convert_dtype
35 36

__all__ = [
F
Feiyu Chan 已提交
37 38 39 40 41 42 43 44 45
    'RNNCellBase',
    'SimpleRNNCell',
    'LSTMCell',
    'GRUCell',
    'RNN',
    'BiRNN',
    'SimpleRNN',
    'LSTM',
    'GRU',
46
]
F
Feiyu Chan 已提交
47 48 49 50 51 52 53


def split_states(states, bidirectional=False, state_components=1):
    r"""
    Split states of RNN network into possibly nested list or tuple of
    states of each RNN cells of the RNN network.

54
    Parameters:
F
Feiyu Chan 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        states (Tensor|tuple|list): the concatenated states for RNN network.
            When `state_components` is 1, states in a Tensor with shape
            `(L*D, N, C)` where `L` is the number of layers of the RNN 
            network, `D` is the number of directions of the RNN network(1 
            for unidirectional RNNs and 2 for bidirectional RNNs), `N` is 
            the batch size of the input to the RNN network, `C` is the 
            hidden size of the RNN network. 

            When `state_components` is larger than 1, `states` is a tuple of 
            `state_components` Tensors that meet the requirements described 
            above. 
            
            For SimpleRNNs and GRUs, `state_components` is 1, and for LSTMs, 
            `state_components` is 2.
        bidirectional (bool): whether the state is of a bidirectional RNN 
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
    
    Returns:
        A nested list or tuple of RNN cell states. 
        If `bidirectional` is True, it can be indexed twice to get an RNN 
        cell state. The first index indicates the layer, the second index 
        indicates the direction.
        If `bidirectional` is False, it can be indexed once to get an RNN
        cell state. The index indicates the layer.
        Note that if `state_components` is larger than 1, an RNN cell state
        can be indexed one more time to get a tensor of shape(N, C), where 
        `N` is the batch size of the input to the RNN cell, and `C` is the
        hidden size of the RNN cell.
    """
    if state_components == 1:
        states = paddle.unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([paddle.unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    r"""
    Concatenate a possibly nested list or tuple of RNN cell states into a 
    compact form.

107
    Parameters:
F
Feiyu Chan 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        states (list|tuple): a possibly nested list or tuple of RNN cell 
            states. 
            If `bidirectional` is True, it can be indexed twice to get an 
            RNN cell state. The first index indicates the layer, the second 
            index indicates the direction.
            If `bidirectional` is False, it can be indexed once to get an RNN
            cell state. The index indicates the layer.
            Note that if `state_components` is larger than 1, an RNN cell 
            state can be indexed one more time to get a tensor of shape(N, C), 
            where `N` is the batch size of the input to the RNN cell, and 
            `C` is the hidden size of the RNN cell. 
        bidirectional (bool): whether the state is of a bidirectional RNN 
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
    
    Returns:
        Concatenated states for RNN network.
        When `state_components` is 1, states in a Tensor with shape
        `(L\*D, N, C)` where `L` is the number of layers of the RNN 
        network, `D` is the number of directions of the RNN network(1 for 
        unidirectional RNNs and 2 for bidirectional RNNs), `N` is the batch 
        size of the input to the RNN network, `C` is the hidden size of the 
        RNN network.
        
    """
    if state_components == 1:
        return paddle.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
141
        return tuple([paddle.stack(item) for item in componnets])
F
Feiyu Chan 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159


class RNNCellBase(Layer):
    r"""
    RNNCellBase is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

    def get_initial_states(self,
                           batch_ref,
                           shape=None,
                           dtype=None,
                           init_value=0.,
                           batch_dim_idx=0):
        r"""
        Generate initialized states according to provided shape, data type and
        value.
160 161

        Parameters:
F
Feiyu Chan 已提交
162 163 164 165 166
            batch_ref (Tensor): A tensor, which shape would be used to 
                determine the batch size, which is used to generate initial 
                states. For `batch_ref`'s shape d, `d[batch_dim_idx]` is 
                treated as batch size.
            shape (list|tuple, optional): A (possibly nested structure of) shape[s], 
167
                where a shape is a list/tuple of integer. `-1` (for batch size) 
F
Feiyu Chan 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180
                will be automatically prepended if a shape does not starts with 
                it. If None, property `state_shape` will be used. Defaults to 
                None.
            dtype (str|list|tuple, optional): A (possibly nested structure of) 
                data type[s]. The structure must be same as that of `shape`, 
                except when all tensors' in states has the same data type, a 
                single data type can be used. If None and property `cell.state_shape` 
                is not available, current default floating type of paddle is 
                used. Defaults to None.
            init_value (float, optional): A float value used to initialize states. 
                Defaults to 0.
            batch_dim_idx (int, optional): An integer indicating which 
                dimension of the of `batch_ref` represents batch. Defaults to 0.
181
                
F
Feiyu Chan 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        Returns:
            init_states (Tensor|tuple|list): tensor of the provided shape and 
                dtype, or list of tensors that each satisfies the requirements,
                packed in the same structure as `shape` and `type` does.
        """
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            if sys.version_info < (3, ):
                integer_types = (
                    int,
                    long, )
            else:
                integer_types = (int, )
            """For shape, list/tuple of integer is the finest-grained objection"""
            if (isinstance(seq, list) or isinstance(seq, tuple)):
                if reduce(lambda flag, x: isinstance(x, integer_types) and flag,
                          seq, True):
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
            return (isinstance(seq, collections.Sequence) and
                    not isinstance(seq, six.string_types))

        class Shape(object):
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:
            states_dtypes = framework.get_default_dtype()
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
            lambda shape, dtype: paddle.fluid.layers.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
                value=init_value,
                input_dim_idx=batch_dim_idx), states_shapes, states_dtypes)
        return init_states

    @property
    def state_shape(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) shape[s], where a shape is a 
        list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_shape` in the used cell.")

    @property
    def state_dtype(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_dtype` in the used cell.")


class SimpleRNNCell(RNNCellBase):
    r"""
    Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it 
    computes the outputs and updates states.

    The formula used is as follows:

    .. math::
276
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h{t-1} + b_{hh})
277

F
Feiyu Chan 已提交
278
        y_{t} & = h_{t}
279 280 281
    
    where :math:`act` is for :attr:`activation` , and * is the elemetwise
    multiplication operator.
F
Feiyu Chan 已提交
282 283 284 285

    Please refer to `Finding Structure in Time 
    <https://crl.ucsd.edu/~elman/Papers/fsit.pdf>`_ for more details.
    
286
    Parameters:
F
Feiyu Chan 已提交
287 288 289 290 291 292 293 294 295 296
        input_size (int): The input size.
        hidden_size (int): The hidden size.
        activation (str, optional): The activation in the SimpleRNN cell. 
            It can be `tanh` or `relu`. Defaults to `tanh`.
        weight_ih_attr (ParamAttr, optional): The parameter attribute for 
            `weight_ih`. Default: None.
        weight_hh_attr(ParamAttr, optional): The parameter attribute for 
            `weight_hh`. Default: None.
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
            `bias_ih`. Default: None.
297
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
F
Feiyu Chan 已提交
298 299 300 301
            `bias_hh`. Default: None.
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

302
    Attributes:
F
Feiyu Chan 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        weight_ih (Parameter): shape (hidden_size, input_size), input to hidden 
            weight, corresponding to :math:`W_{ih}` in the formula.
        weight_hh (Parameter): shape (hidden_size, hidden_size), hidden to 
            hidden weight, corresponding to :math:`W_{hh}` in the formula.
        bias_ih (Parameter): shape (hidden_size, ), input to hidden bias, 
            corresponding to :math:`b_{ih}` in the formula.
        bias_hh (Parameter): shape (hidden_size, ), hidden to hidden bias, 
            corresponding to :math:`b_{hh}` in the formula.
    
    Inputs:
        inputs (Tensor): shape `[batch_size, input_size]`, the input, 
                corresponding to :math:`x_t` in the formula.
        states (Tensor, optional): shape `[batch_size, hidden_size]`, the
            previous hidden state, corresponding to :math:`h_{t-1}` in the 
            formula. When states is None, zero state is used. Defaults to 
            None.

    Returns:
        (outputs, new_states)
        outputs (Tensor): shape `[batch_size, hidden_size]`, the output, 
            corresponding to :math:`h_{t}` in the formula.
        states (Tensor): shape `[batch_size, hidden_size]`, the new hidden 
            state, corresponding to :math:`h_{t}` in the formula.
    
    Notes:
        All the weights and bias are initialized with `Uniform(-std, std)` by 
        default. Where std = :math:`\frac{1}{\sqrt{hidden_size}}`. For more 
        information about parameter initialization, please refer to
         :ref:`api_fluid_ParamAttr`.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            y, h = cell(x, prev_h)
344 345 346
            print(y.shape)

            #[4,32]
F
Feiyu Chan 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 activation="tanh",
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(SimpleRNNCell, self).__init__()
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.input_size = input_size
        self.hidden_size = hidden_size
        if activation not in ["tanh", "relu"]:
            raise ValueError(
                "activation for SimpleRNNCell should be tanh or relu, "
                "but get {}".format(activation))
        self.activation = activation
        self._activation_fn = paddle.tanh \
            if activation == "tanh" \
            else F.relu

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_h = states
        i2h = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self._activation_fn(i2h + h2h)
        return h, h

    @property
    def state_shape(self):
        return (self.hidden_size, )


class LSTMCell(RNNCellBase):
    r"""
    Long-Short Term Memory(LSTM) RNN cell. Given the inputs and previous states, 
    it computes the outputs and updates states.

    The formula used is as follows:

    .. math::
        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
418

F
Feiyu Chan 已提交
419
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
420

F
Feiyu Chan 已提交
421
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
422 423 424 425 426 427 428

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
429 430
        y_{t} & = h_{t}

431
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise 
F
Feiyu Chan 已提交
432 433 434 435 436
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

437
    Parameters:
F
Feiyu Chan 已提交
438 439 440 441 442 443 444 445
        input_size (int): The input size.
        hidden_size (int): The hidden size.
        weight_ih_attr(ParamAttr, optional): The parameter attribute for 
            `weight_ih`. Default: None.
        weight_hh_attr(ParamAttr, optional): The parameter attribute for 
            `weight_hh`. Default: None.
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
            `bias_ih`. Default: None.
446
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
F
Feiyu Chan 已提交
447 448 449 450
            `bias_hh`. Default: None.
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

451
    Attributes:
F
Feiyu Chan 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        weight_ih (Parameter): shape (4 * hidden_size, input_size), input to 
            hidden weight, which corresponds to the concatenation of
             :math:`W_{ii}, W_{if}, W_{ig}, W_{io}` in the formula.
        weight_hh (Parameter): shape (4 * hidden_size, hidden_size), hidden to 
            hidden weight, which corresponds to the concatenation of
             :math:`W_{hi}, W_{hf}, W_{hg}, W_{ho}` in the formula.
        bias_ih (Parameter): shape (4 * hidden_size, ), input to hidden bias, 
            which corresponds to the concatenation of
             :math:`b_{ii}, b_{if}, b_{ig}, b_{io}` in the formula.
        bias_hh (Parameter): shape (4 * hidden_size, ), hidden to hidden bias, 
            which corresponds to the concatenation of
             :math:`b_{hi}, b_{hf}, b_{hg}, b_{ho}` in the formula.

    Inputs:
        inputs (Tensor): shape `[batch_size, input_size]`, the input, 
            corresponding to :math:`x_t` in the formula.
        states (tuple, optional): a tuple of two tensors, each of shape 
            `[batch_size, hidden_size]`, the previous hidden state, 
            corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. 
            When states is None, zero state is used. Defaults to None.

    Returns:
        (outputs, new_states)
        outputs (Tensor): shape `[batch_size, hidden_size]`, the output, 
            corresponding to :math:`h_{t}` in the formula.
        states (tuple): a tuple of two tensors, each of shape 
            `[batch_size, hidden_size]`, the new hidden states,
479
            corresponding to :math:`h_{t}, c_{t}` in the formula.
F
Feiyu Chan 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

    Notes:
        All the weights and bias are initialized with `Uniform(-std, std)` by 
        default. Where std = :math:`\frac{1}{\sqrt{hidden_size}}`. For more 
        information about parameter initialization, please refer to
         :ref:`api_fluid_ParamAttr`.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))
            prev_c = paddle.randn((4, 32))

            cell = paddle.nn.LSTMCell(16, 32)
            y, (h, c) = cell(x, (prev_h, prev_c))

500 501 502 503 504 505 506 507
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,32]
            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(LSTMCell, self).__init__()
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (4 * hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (4 * hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (4 * hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (4 * hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_hidden, pre_cell = states
        gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = paddle.split(gates, num_or_sections=4, axis=-1)

        i = self._gate_activation(chunked_gates[0])
        f = self._gate_activation(chunked_gates[1])
        o = self._gate_activation(chunked_gates[3])
        c = f * pre_cell + i * self._activation(chunked_gates[2])
        h = o * self._activation(c)

        return h, (h, c)

    @property
    def state_shape(self):
        r"""
        The `state_shape` of LSTMCell is a tuple with two shapes: 
        `((hidden_size, ), (hidden_size,))`. (-1 for batch size would be 
        automatically inserted into shape). These two shapes correspond 
        to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
        return ((self.hidden_size, ), (self.hidden_size, ))


class GRUCell(RNNCellBase):
    r"""
    Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states, 
    it computes the outputs and updates states.

    The formula for GRU used is as follows:

583
    ..  math::
F
Feiyu Chan 已提交
584

585
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}x_{t-1} + b_{hr})
586

587
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}x_{t-1} + b_{hz})
588

589
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}x_{t-1} + b_{hc}))
590 591 592

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
593 594
        y_{t} & = h_{t}
    
595
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise 
F
Feiyu Chan 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
        input_size (int): The input size..
        hidden_size (int): The hidden size.
        weight_ih_attr(ParamAttr, optional): The parameter attribute for 
            `weight_ih`. Default: None.
        weight_hh_attr(ParamAttr, optional): The parameter attribute for 
            `weight_hh`. Default: None.
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
            `bias_ih`. Default: None.
610
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
F
Feiyu Chan 已提交
611 612 613 614
            `bias_hh`. Default: None.
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

615
    Attributes:
F
Feiyu Chan 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
        weight_ih (Parameter): shape (3 * hidden_size, input_size), input to 
            hidden weight, which corresponds to the concatenation of
             :math:`W_{ir}, W_{iz}, W_{ic}` in the formula.
        weight_hh (Parameter): shape (3 * hidden_size, hidden_size), hidden to 
            hidden weight, which corresponds to the concatenation of
             :math:`W_{hr}, W_{hz}, W_{hc}` in the formula.
        bias_ih (Parameter): shape (3 * hidden_size, ), input to hidden bias, 
            which corresponds to the concatenation of
             :math:`b_{ir}, b_{iz}, b_{ic}` in the formula.
        bias_hh (Parameter): shape (3 * hidden_size, ), hidden to hidden bias, 
            which corresponds to the concatenation of
             :math:`b_{hr}, b_{hz}, b_{hc}` in the formula.

    Inputs:
        inputs (Tensor): A tensor with shape `[batch_size, input_size]`,
            corresponding to :math:`x_t` in the formula.
        states (Tensor): A tensor with shape `[batch_size, hidden_size]`.
            corresponding to :math:`h_{t-1}` in the formula.

    Returns:
        (outputs, new_states)
        outputs (Tensor): shape `[batch_size, hidden_size]`, the output, 
            corresponding to :math:`h_{t}` in the formula.
        states (Tensor): shape `[batch_size, hidden_size]`, the new hidden 
            state, corresponding to :math:`h_{t}` in the formula.
    
    Notes:
        All the weights and bias are initialized with `Uniform(-std, std)` by 
        default. Where std = :math:`\frac{1}{\sqrt{hidden_size}}`. For more 
        information about parameter initialization, please refer to
         :ref:`api_fluid_ParamAttr`.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.GRUCell(16, 32)
            y, h = cell(x, prev_h)

660 661 662 663 664 665
            print(y.shape)
            print(h.shape)

            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(GRUCell, self).__init__()
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (3 * hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (3 * hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (3 * hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (3 * hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)

        pre_hidden = states
        x_gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh

        x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
        h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)

        r = self._gate_activation(x_r + h_r)
        z = self._gate_activation(x_z + h_z)
        c = self._activation(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c

        return h, h

    @property
    def state_shape(self):
        r"""
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to the shape of :math:`h_{t-1}`.
        """
        return (self.hidden_size, )


class RNN(Layer):
    r"""
    Wrapper for RNN, which creates a recurrent neural network with an RNN cell. 
    It performs :code:`cell.forward()` repeatedly until reaches to the maximum 
    length of `inputs`.

740
    Parameters:
F
Feiyu Chan 已提交
741 742 743 744 745 746 747 748 749
        cell(RNNCellBase): An instance of `RNNCellBase`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
        inputs (Tensor): A (possibly nested structure of) tensor[s]. The input 
            sequences. 
750 751
            If time major is False, the shape is `[batch_size, time_steps, input_size]`
            If time major is True, the shape is `[time_steps, batch_size, input_size]`
F
Feiyu Chan 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
            where `input_size` is the input size of the cell.
        initial_states (Tensor|list|tuple, optional): Tensor of a possibly 
            nested structure of tensors, representing the initial state for 
            the rnn cell. If not provided, `cell.get_initial_states` would be 
            called to produce the initial states. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64 
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as 
            padded sequences. In each input sequence, elements whose time step 
            index are not less than the valid length are treated as paddings.
        **kwargs: Additional keyword arguments to pass to `forward` of the cell. 

    Returns:
        (outputs, final_states)
        outputs (Tensor|list|tuple): the output sequences.
            If `time_major` is True, the shape is 
            `[time_steps, batch_size, hidden_size]`, else 
            `[batch_size, time_steps, hidden_size]`.
        final_states (Tensor|list|tuple): final states of the cell. Tensor or 
            a possibly nested structure of tensors which has the same structure 
            with intial state. Each tensor in final states has the same shape 
            and dtype as the corresponding tensor in initial states.
    
    Notes:
        This class is a low level API for wrapping rnn cell into a RNN network.
        Users should take care of the state of the cell. If `initial_states` is 
        passed to the `forward` method, make sure that it satisfies the 
        requirements of the cell.

    Examples:

        .. code-block:: python

            import paddle

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            rnn = paddle.nn.RNN(cell)
            outputs, final_states = rnn(inputs, prev_h)

794 795 796 797 798 799
            print(outputs.shape)
            print(final_states.shape)

            #[4,23,32]
            #[4,32]

F
Feiyu Chan 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
        super(RNN, self).__init__()
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
816 817 818 819 820 821 822 823
        final_outputs, final_states = paddle.fluid.layers.rnn(
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
            **kwargs)
F
Feiyu Chan 已提交
824 825 826 827 828 829 830 831 832 833
        return final_outputs, final_states


class BiRNN(Layer):
    r"""
    Wrapper for bidirectional RNN, which builds a bidiretional RNN given the 
    forward rnn cell and backward rnn cell. A BiRNN applies forward RNN and 
    backward RNN with coresponding cells separately and concats the outputs 
    along the last axis.

834
    Parameters:
F
Feiyu Chan 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
        cell_fw (RNNCellBase): A RNNCellBase instance used for forward RNN.
        cell_bw (RNNCellBase): A RNNCellBase instance used for backward RNN.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
        inputs (Tensor): the input sequences of both RNN. 
            If time_major is True, the shape of is 
            `[time_steps, batch_size, input_size]`, else the shape is
            `[batch_size, time_steps, input_size]`, where input_size is the 
            input size of both cells.
        initial_states (list|tuple, optional): A tuple/list of the initial 
            states of the forward cell and backward cell. Defaults to None.
            If not provided, `cell.get_initial_states` would be called to 
            produce the initial states for each cell. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64 
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as 
            padded sequences. In each input sequence, elements whose time step 
            index are not less than the valid length are treated as paddings.
        **kwargs: Additional keyword arguments. Arguments passed to `forward` 
            for each cell.

    Outputs:
        (outputs, final_states)
        outputs (Tensor): the outputs of the bidirectional RNN. It is the 
            concatenation of the outputs from the forward RNN and backward 
            RNN along the last axis. 
            If time major is True, the shape is `[time_steps, batch_size, size]`,
            else the shape is `[batch_size, time_steps, size]`, where size is
            `cell_fw.hidden_size + cell_bw.hidden_size`.
        final_states (tuple): A tuple of the final states of the forward 
            cell and backward cell. 

    Notes:
        This class is a low level API for wrapping rnn cells into a BiRNN 
        network. Users should take care of the states of the cells. 
        If `initial_states` is passed to the `forward` method, make sure that 
        it satisfies the requirements of the cells.

    Examples:

        .. code-block:: python

            import paddle

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)
            rnn = paddle.nn.BiRNN(cell_fw, cell_bw)

            inputs = paddle.rand((2, 23, 16))
            outputs, final_states = rnn(inputs)

888 889 890 891 892 893
            print(outputs.shape)
            print(final_states[0][0].shape,len(final_states),len(final_states[0]))

            #[4,23,64]
            #[2,32] 2 2

F
Feiyu Chan 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
    """

    def __init__(self, cell_fw, cell_bw, time_major=False):
        super(BiRNN, self).__init__()
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        if cell_fw.input_size != cell_bw.input_size:
            raise ValueError("input size of forward cell({}) does not equals"
                             "that of backward cell({})".format(
                                 cell_fw.input_size, cell_bw.input_size))
        for cell in [self.cell_fw, self.cell_bw]:
            if not hasattr(cell, "call"):
                # for non-dygraph mode, `rnn` api uses cell.call
                cell.call = cell.forward
        self.time_major = time_major

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
        if isinstance(initial_states, (list, tuple)):
            assert len(initial_states) == 2, \
                "length of initial_states should be 2 when it is a list/tuple"

919 920 921
        outputs, final_states = paddle.fluid.layers.birnn(
            self.cell_fw, self.cell_bw, inputs, initial_states, sequence_length,
            self.time_major, **kwargs)
F
Feiyu Chan 已提交
922 923 924
        return outputs, final_states


925
class RNNBase(LayerList):
F
Feiyu Chan 已提交
926
    r"""
927 928
    RNNBase class for RNN networks. It provides `forward`, `flatten_parameters`
    and other common methods for SimpleRNN, LSTM and GRU.
F
Feiyu Chan 已提交
929 930
    """

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
    def __init__(self,
                 mode,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
                 dropout=0.,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None):
        super(RNNBase, self).__init__()
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
        self.num_directions = 2 if direction == "bidirectional" else 1
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2 if mode == "LSTM" else 1

        kwargs = {
            "weight_ih_attr": weight_ih_attr,
            "weight_hh_attr": weight_hh_attr,
            "bias_ih_attr": bias_ih_attr,
            "bias_hh_attr": bias_hh_attr
        }

        if mode == "LSTM":
            rnn_cls = LSTMCell
        elif mode == "GRU":
            rnn_cls = GRUCell
        else:
            rnn_cls = SimpleRNNCell
            kwargs["activation"] = self.activation

        if direction in ["forward", "backward"]:
            is_reverse = direction == "backward"
            cell = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = rnn_cls(hidden_size, hidden_size, **kwargs)
                self.append(RNN(cell, is_reverse, time_major))
        elif direction == "bidirectional":
            cell_fw = rnn_cls(input_size, hidden_size, **kwargs)
            cell_bw = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                cell_bw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
                "direction should be forward, backward or bidirectional, "
                "received direction = {}".format(direction))

988
        self.could_use_cudnn = True
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        self.could_use_cudnn &= direction != "backward"
        self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
            2 if direction == "bidirectional" else 1)

        # Expose params as RNN's attribute, which can make it compatible when
        # replacing small ops composed rnn with cpp rnn kernel.
        # Moreover, `jit.to_static` assumes params are added by current layer
        # and wouldn't include sublayer's params in current layer, which also
        # requires these params are added to current layer for `jit.save`.
        param_names = []
        for layer in range(self.num_layers):
            for direction in range(self.num_directions):
                suffix = '_reverse' if direction == 1 else ''
                param_names.extend(['weight_ih_l{}{}', 'weight_hh_l{}{}'])
                if bias_ih_attr != False: param_names.append('bias_ih_l{}{}')
                if bias_hh_attr != False: param_names.append('bias_hh_l{}{}')
                param_names = [x.format(layer, suffix) for x in param_names]
        for name, param in zip(param_names, self.parameters()):
            setattr(self, name, param)

        self.flatten_parameters()

    def flatten_parameters(self):
        """
        Resets parameter data pointer to address in continuous memory block for
        cudnn usage.
        """
        if self.could_use_cudnn:
            # layer.parameters() is depth first and ordered
            # for i in layer: for j in direct: w_ih, w_hh, b_ih, b_hh
            # need to reorganize to cudnn param layout:
            # all bias following all weights
            params = self.parameters(include_sublayers=False)
            shape = [np.prod(param.shape) for param in params]
            self._all_weights = [None] * len(params)
            for i, param in enumerate(params):
                offset = 0 if i % 4 < 2 else (2 * self.num_layers *
                                              self.num_directions)
                layer_idx = i // 4
                self._all_weights[offset + layer_idx * 2 + i % 2] = param
            # Wrap using a list to avoid registed into params and saving, maybe
            # need a better way to handle this later. Use `create_parameter` to
            # add both to main_program and startup_program for static-graph.
            # Use Constant initializer to avoid make effect on random generator.
            self._flat_weight = [
                self.create_parameter(
                    shape=[np.sum(shape)],
                    dtype=params[0].dtype,
                    default_initializer=I.Constant(0.0))
            ]
            # dropout state may also can be hided and avoid saving
            # should dropout state be persistable for static-graph
            self._dropout_state = self.create_variable(
                dtype=fluid.core.VarDesc.VarType.UINT8)
            # for static-graph, append coalesce_tensor into startup program
            with fluid.program_guard(fluid.default_startup_program(),
                                     fluid.default_startup_program()):
                with framework.no_grad():
                    self._helper.append_op(
                        type="coalesce_tensor",
                        inputs={"Input": self._all_weights},
                        outputs={
                            "Output": self._all_weights,
                            "FusedOutput": self._flat_weight
                        },
                        attrs={
                            "copy_data": True,
                            "use_align": False,
                            "dtype": params[0].dtype
                        })

    def _cudnn_impl(self, inputs, initial_states, sequence_length):
        if not self.time_major:
            inputs = paddle.tensor.transpose(inputs, [1, 0, 2])
        out = self._helper.create_variable_for_type_inference(inputs.dtype)
G
Guo Sheng 已提交
1064 1065 1066 1067
        state = [
            self._helper.create_variable_for_type_inference(inputs.dtype)
            for i in range(self.state_components)
        ]
1068 1069 1070 1071 1072 1073
        reserve = self._helper.create_variable_for_type_inference(
            dtype=fluid.core.VarDesc.VarType.UINT8, stop_gradient=True)

        inputs = {
            'Input': inputs,
            'WeightList': self._all_weights,
G
Guo Sheng 已提交
1074
            'PreState': initial_states,
1075 1076 1077 1078 1079 1080 1081 1082
            'SequenceLength': sequence_length
        }
        attrs = {
            'dropout_prob': self.dropout,
            'is_bidirec': self.num_directions == 2,
            'input_size': self.input_size,
            'hidden_size': self.hidden_size,
            'num_layers': self.num_layers,
G
Guo Sheng 已提交
1083
            'mode': self.mode,
1084 1085 1086 1087 1088
            'is_test': not self.training
        }

        outputs = {
            'Out': out,
G
Guo Sheng 已提交
1089
            'State': state,
1090
            'Reserve': reserve,
G
Guo Sheng 已提交
1091
            'DropoutState': self._dropout_state,
1092 1093 1094
        }

        self._helper.append_op(
G
Guo Sheng 已提交
1095
            type="rnn", inputs=inputs, outputs=outputs, attrs=attrs)
1096 1097
        out = paddle.tensor.transpose(out,
                                      [1, 0, 2]) if not self.time_major else out
G
Guo Sheng 已提交
1098
        return out, tuple(state) if len(state) > 1 else state[0]
1099

F
Feiyu Chan 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        dtype = inputs.dtype
        if initial_states is None:
            state_shape = (self.num_layers * self.num_directions, -1,
                           self.hidden_size)
            if self.state_components == 1:
                initial_states = paddle.fluid.layers.fill_constant_batch_size_like(
                    inputs, state_shape, dtype, 0, batch_index, 1)
            else:
                initial_states = tuple([
                    paddle.fluid.layers.fill_constant_batch_size_like(
                        inputs, state_shape, dtype, 0, batch_index, 1)
                    for _ in range(self.state_components)
                ])

1116 1117 1118 1119
        if self.could_use_cudnn:
            # Add CPU kernel and dispatch in backend later
            return self._cudnn_impl(inputs, initial_states, sequence_length)

F
Feiyu Chan 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
        states = split_states(initial_states, self.num_directions == 2,
                              self.state_components)
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
                inputs = F.dropout(
                    inputs,
                    self.dropout,
                    training=self.training,
                    mode="upscale_in_train")
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

        final_states = concat_states(final_states, self.num_directions == 2,
                                     self.state_components)
        return outputs, final_states


1140
class SimpleRNN(RNNBase):
F
Feiyu Chan 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    r"""
    Multilayer Elman network(SimpleRNN). It takes input sequences and initial 
    states as inputs, and returns the output sequences and the final states.

    Each layer inside the SimpleRNN maps the input sequences and initial states 
    to the output sequences and final states in the following manner: at each 
    step, it takes step inputs(:math:`x_{t}`) and previous 
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
    and new states(:math:`h_{t}`).

    .. math::

1153
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h{t-1} + b_{hh})
1154

F
Feiyu Chan 已提交
1155
        y_{t} & = h_{t}
1156 1157 1158 1159 1160
    
    where :math:`act` is for :attr:`activation` , and * is the elemetwise
    multiplication operator.

    Using key word arguments to construct is recommended.
F
Feiyu Chan 已提交
1161

1162
    Parameters:
F
Feiyu Chan 已提交
1163 1164 1165 1166
        input_size (int): The input size for the first layer's cell.
        hidden_size (int): The hidden size for each layer's cell.
        num_layers (int, optional): Number of layers. Defaults to 1.
        direction (str, optional): The direction of the network. It can be "forward", 
1167 1168
            "backward" and "bidirectional". When "bidirectional", the way to merge
            outputs of forward and backward is concatenating. Defaults to "forward".
F
Feiyu Chan 已提交
1169 1170
        time_major (bool, optional): Whether the first dimension of the input means the
            time steps. Defaults to False.
1171 1172 1173 1174
        dropout (float, optional): The droput probability. Dropout is applied to the 
            input of each layer except for the first layer. Defaults to 0.
        activation (str, optional): The activation in each SimpleRNN cell. It can be 
            `tanh` or `relu`. Defaults to `tanh`.
F
Feiyu Chan 已提交
1175 1176 1177 1178 1179 1180
        weight_ih_attr (ParamAttr, optional): The parameter attribute for 
            `weight_ih` of each cell. Defaults to None.
        weight_hh_attr (ParamAttr, optional): The parameter attribute for 
            `weight_hh` of each cell. Defaults to None.
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
            `bias_ih` of each cells. Defaults to None.
1181
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
F
Feiyu Chan 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190
            `bias_hh` of each cells. Defaults to None.
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
        inputs (Tensor): the input sequence. 
            If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`,
            else, the shape is `[batch_size, time_steps, hidden_size]`.
        initial_states (Tensor, optional): the initial state. The shape is
1191
            `[num_layers * num_directions, batch_size, hidden_size]`. 
F
Feiyu Chan 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
            If initial_state is not given, zero initial states are used.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64 
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as 
            padded sequences. In each input sequence, elements whose time step 
            index are not less than the valid length are treated as paddings.

    Returns:
        (outputs, final_states)
        outputs (Tensor): the output sequence. 
            If `time_major` is True, the shape is 
            `[time_steps, batch_size, num_directions * hidden_size]`,
            else, the shape is 
            `[batch_size, time_steps, num_directions * hidden_size]`.
            Note that `num_directions` is 2 if direction is "bidirectional" 
            else 1.
        final_states (Tensor): final states. The shape is
1209
            `[num_layers * num_directions, batch_size, hidden_size]`.
F
Feiyu Chan 已提交
1210 1211 1212
            Note that `num_directions` is 2 if direction is "bidirectional" 
            else 1.

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
    Attributes:
        weight_ih_l[k]: the learnable input-hidden weights of the k-th layer,
            If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise,
            the shape is `[hidden_size, num_directions * hidden_size]`.
        weight_hh_l[k]: the learnable hidden-hidden weights of the k-th layer,
            with shape `[hidden_size, hidden_size]`.
        bias_ih_l[k]: the learnable input-hidden bias of the k-th layer,
            with shape `[hidden_size]`.
        bias_hh_l[k]: the learnable hidden-hidden bias of the k-th layer,
            with shape `[hidden_size]`.

F
Feiyu Chan 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.SimpleRNN(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1236 1237 1238 1239 1240 1241
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1242 1243 1244 1245 1246 1247 1248 1249
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1250 1251
                 dropout=0.,
                 activation="tanh",
F
Feiyu Chan 已提交
1252 1253 1254 1255 1256
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1257 1258 1259 1260
        if activation == "tanh":
            mode = "RNN_TANH"
        elif activation == "relu":
            mode = "RNN_RELU"
F
Feiyu Chan 已提交
1261
        else:
1262 1263 1264 1265 1266
            raise ValueError("Unknown activation '{}'".format(activation))
        self.activation = activation
        super(SimpleRNN, self).__init__(
            mode, input_size, hidden_size, num_layers, direction, time_major,
            dropout, weight_ih_attr, weight_hh_attr, bias_ih_attr, bias_hh_attr)
F
Feiyu Chan 已提交
1267 1268


1269
class LSTM(RNNBase):
F
Feiyu Chan 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
    r"""
    Multilayer LSTM. It takes a sequence and an initial state as inputs, and 
    returns the output sequences and the final states.

    Each layer inside the LSTM maps the input sequences and initial states 
    to the output sequences and final states in the following manner: at each 
    step, it takes step inputs(:math:`x_{t}`) and previous 
    states(:math:`h_{t-1}, c_{t-1}`) as inputs, and returns step 
    outputs(:math:`y_{t}`) and new states(:math:`h_{t}, c_{t}`).

    .. math::

        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
1283

F
Feiyu Chan 已提交
1284
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
1285

F
Feiyu Chan 已提交
1286
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
1287 1288 1289 1290 1291 1292 1293

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
1294 1295
        y_{t} & = h_{t}

1296
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise 
F
Feiyu Chan 已提交
1297 1298
    multiplication operator.

1299 1300
    Using key word arguments to construct is recommended.

1301
    Parameters:
F
Feiyu Chan 已提交
1302 1303 1304
        input_size (int): The input size for the first layer's cell.
        hidden_size (int): The hidden size for each layer's cell.
        num_layers (int, optional): Number of layers. Defaults to 1.
1305 1306 1307
        direction (str, optional): The direction of the network. It can be "forward", 
            "backward" and "bidirectional". When "bidirectional", the way to merge
            outputs of forward and backward is concatenating. Defaults to "forward".
F
Feiyu Chan 已提交
1308 1309
        time_major (bool, optional): Whether the first dimension of the input 
            means the time steps. Defaults to False.
1310 1311
        dropout (float, optional): The droput probability. Dropout is applied 
            to the input of each layer except for the first layer. Defaults to 0.
F
Feiyu Chan 已提交
1312 1313 1314 1315 1316 1317
        weight_ih_attr (ParamAttr, optional): The parameter attribute for 
            `weight_ih` of each cell. Default: None.
        weight_hh_attr (ParamAttr, optional): The parameter attribute for 
            `weight_hh` of each cell. Default: None.
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
            `bias_ih` of each cells. Default: None.
1318
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
F
Feiyu Chan 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327
            `bias_hh` of each cells. Default: None.
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
        inputs (Tensor): the input sequence. 
            If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`,
            else, the shape is `[batch_size, time_steps, hidden_size]`.
        initial_states (tuple, optional): the initial state, a tuple of (h, c), 
1328
            the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. 
F
Feiyu Chan 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
            If initial_state is not given, zero initial states are used.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64 
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as 
            padded sequences. In each input sequence, elements whos time step 
            index are not less than the valid length are treated as paddings.

    Returns:
        (outputs, final_states)
        outputs (Tensor): the output sequence. 
            If `time_major` is True, the shape is 
            `[time_steps, batch_size, num_directions * hidden_size]`, 
            If `time_major` is False, the shape is 
            `[batch_size, time_steps, num_directions * hidden_size]`. 
            Note that `num_directions` is 2 if direction is "bidirectional" 
            else 1. 
1345
        final_states (tuple): the final state, a tuple of two tensors, h and c. 
F
Feiyu Chan 已提交
1346
            The shape of each is 
1347
            `[num_layers * num_directions, batch_size, hidden_size]`. 
F
Feiyu Chan 已提交
1348 1349 1350
            Note that `num_directions` is 2 if direction is "bidirectional" 
            else 1.

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    Attributes:
        weight_ih_l[k]: the learnable input-hidden weights of the k-th layer,
            If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise,
            the shape is `[hidden_size, num_directions * hidden_size]`.
        weight_hh_l[k]: the learnable hidden-hidden weights of the k-th layer,
            with shape `[hidden_size, hidden_size]`.
        bias_ih_l[k]: the learnable input-hidden bias of the k-th layer,
            with shape `[hidden_size]`.
        bias_hh_l[k]: the learnable hidden-hidden bias of the k-th layer,
            with shape `[hidden_size]`.

F
Feiyu Chan 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    Examples:
    
        .. code-block:: python

            import paddle

            rnn = paddle.nn.LSTM(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            prev_c = paddle.randn((2, 4, 32))
            y, (h, c) = rnn(x, (prev_h, prev_c))

1375 1376 1377 1378 1379 1380 1381 1382
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,23,32]
            #[2,4,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1383 1384 1385 1386 1387 1388 1389 1390
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1391
                 dropout=0.,
F
Feiyu Chan 已提交
1392 1393 1394 1395 1396
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1397 1398 1399
        super(LSTM, self).__init__(
            "LSTM", input_size, hidden_size, num_layers, direction, time_major,
            dropout, weight_ih_attr, weight_hh_attr, bias_ih_attr, bias_hh_attr)
F
Feiyu Chan 已提交
1400 1401


1402
class GRU(RNNBase):
F
Feiyu Chan 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    r"""
    Multilayer GRU. It takes input sequencse and initial states as inputs, and 
    returns the output sequences and the final states.

    Each layer inside the GRU maps the input sequences and initial states 
    to the output sequences and final states in the following manner: at each 
    step, it takes step inputs(:math:`x_{t}`) and previous 
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`) 
    and new states(:math:`h_{t}`).

    .. math::

1415
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}x_{t-1} + b_{hr})
1416

1417
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}x_{t-1} + b_{hz})
1418

1419
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}x_{t-1} + b_{hc}))
1420 1421 1422

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1423 1424
        y_{t} & = h_{t}

1425
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise 
F
Feiyu Chan 已提交
1426 1427
    multiplication operator.

1428 1429
    Using key word arguments to construct is recommended.

1430
    Parameters:
F
Feiyu Chan 已提交
1431 1432 1433
        input_size (int): The input size for the first layer's cell.
        hidden_size (int): The hidden size for each layer's cell.
        num_layers (int, optional): Number of layers. Defaults to 1.
1434 1435 1436
        direction (str, optional): The direction of the network. It can be "forward",
            "backward" and "bidirectional". When "bidirectional", the way to merge
            outputs of forward and backward is concatenating. Defaults to "forward".
F
Feiyu Chan 已提交
1437 1438
        time_major (bool, optional): Whether the first dimension of the input 
            means the time steps. Defaults to False.
1439 1440
        dropout (float, optional): The droput probability. Dropout is applied 
            to the input of each layer except for the first layer. Defaults to 0.
F
Feiyu Chan 已提交
1441 1442 1443 1444 1445 1446
        weight_ih_attr (ParamAttr, optional): The parameter attribute for 
            `weight_ih` of each cell. Default: None.
        weight_hh_attr (ParamAttr, optional): The parameter attribute for 
            `weight_hh` of each cell. Default: None.
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
            `bias_ih` of each cells. Default: None.
1447
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
F
Feiyu Chan 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456
            `bias_hh` of each cells. Default: None.
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
        inputs (Tensor): the input sequence. 
            If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`,
            else, the shape is `[batch_size, time_steps, hidden_size]`.
        initial_states (Tensor, optional): the initial state. The shape is
1457
            `[num_layers * num_directions, batch_size, hidden_size]`. 
F
Feiyu Chan 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
            If initial_state is not given, zero initial states are used. 
            Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64 
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as 
            padded sequences. In each input sequence, elements whos time step 
            index are not less than the valid length are treated as paddings.

    Returns:
        (outputs, final_states)
        outputs (Tensor): the output sequence. 
            If `time_major` is True, the shape is 
            `[time_steps, batch_size, num_directions * hidden_size]`,
            else, the shape is 
            `[batch_size, time_steps, num_directions * hidden_size]`.
            Note that `num_directions` is 2 if direction is "bidirectional" 
            else 1.
        final_states (Tensor): final states. The shape is
1476
            `[num_layers * num_directions, batch_size, hidden_size]`.
F
Feiyu Chan 已提交
1477 1478 1479
            Note that `num_directions` is 2 if direction is "bidirectional" 
            else 1.

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
    Attributes:
        weight_ih_l[k]: the learnable input-hidden weights of the k-th layer,
            If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise,
            the shape is `[hidden_size, num_directions * hidden_size]`.
        weight_hh_l[k]: the learnable hidden-hidden weights of the k-th layer,
            with shape `[hidden_size, hidden_size]`.
        bias_ih_l[k]: the learnable input-hidden bias of the k-th layer,
            with shape `[hidden_size]`.
        bias_hh_l[k]: the learnable hidden-hidden bias of the k-th layer,
            with shape `[hidden_size]`.

F
Feiyu Chan 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.GRU(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1503 1504 1505 1506 1507 1508
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1509 1510 1511 1512 1513 1514 1515 1516
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1517
                 dropout=0.,
F
Feiyu Chan 已提交
1518 1519 1520 1521 1522
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1523 1524 1525
        super(GRU, self).__init__(
            "GRU", input_size, hidden_size, num_layers, direction, time_major,
            dropout, weight_ih_attr, weight_hh_attr, bias_ih_attr, bias_hh_attr)