softmax.h 3.4 KB
Newer Older
C
caoying03 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
caoying03 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
caoying03 已提交
14 15 16 17 18 19 20 21 22 23

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"

namespace paddle {
namespace operators {
namespace math {

C
caoying03 已提交
24 25 26 27
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

C
caoying03 已提交
28 29 30 31 32 33 34 35
template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
    const T kThreshold = -64.;
    return x < kThreshold ? kThreshold : x;
  }
};

C
caoying03 已提交
36
template <typename Place, typename T>
C
caoying03 已提交
37 38
class SoftmaxFunctor {
 public:
39 40
  void operator()(const framework::ExecutionContext& context,
                  const framework::Tensor* X, framework::Tensor* Y) {
C
caoying03 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    auto logits = EigenMatrix<T>::From(*X);
    auto softmax = EigenMatrix<T>::From(*Y);

    const int kBatchDim = 0;
    const int kClassDim = 1;

    const int batch_size = logits.dimension(kBatchDim);
    const int num_classes = logits.dimension(kClassDim);

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);

    auto shifted_logits = (logits -
                           logits.maximum(along_class)
                               .eval()
                               .reshape(batch_by_one)
C
caoying03 已提交
58 59
                               .broadcast(one_by_class))
                              .unaryExpr(ValueClip<T>());
C
caoying03 已提交
60 61 62 63 64 65 66 67 68 69 70

    softmax.device(context.GetEigenDevice<Place>()) = shifted_logits.exp();
    softmax.device(context.GetEigenDevice<Place>()) =
        (softmax *
         softmax.sum(along_class)
             .inverse()
             .eval()
             .reshape(batch_by_one)
             .broadcast(one_by_class));
  }
};
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

template <typename Place, typename T>
class SoftmaxGradFunctor {
 public:
  void operator()(const framework::ExecutionContext& context,
                  const framework::Tensor* y, const framework::Tensor* y_grad,
                  framework::Tensor* x_grad) {
    auto softmax = EigenMatrix<T>::From(*y);
    auto softmax_grad = EigenMatrix<T>::From(*y_grad);
    auto logits_grad = EigenMatrix<T>::From(*x_grad);

    const int kBatchDim = 0;
    const int kClassDim = 1;

    const int batch_size = softmax.dimension(kBatchDim);
    const int num_classes = softmax.dimension(kClassDim);

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);

    auto dot = (softmax * softmax_grad)
                   .sum(along_class)
                   .eval()
                   .reshape(batch_by_one)
                   .broadcast(one_by_class);
    logits_grad.device(context.GetEigenDevice<Place>()) =
        (softmax_grad - dot) * softmax;
  }
};

C
caoying03 已提交
102 103 104
}  // namespace math
}  // namespace operators
}  // namespace paddle