evaluator.py 16.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

D
dzhwinter 已提交
17
import warnings
D
Dong Zhihong 已提交
18
import numpy as np
武毅 已提交
19

20 21 22 23 24
from . import layers
from .framework import Program, Variable, program_guard
from . import unique_name
from .layer_helper import LayerHelper
from .initializer import Constant
25
from .layers import detection
武毅 已提交
26

27 28
__all__ = [
    'ChunkEvaluator',
29
    'EditDistance',
30
    'DetectionMAP',
31
]
Y
Yu Yang 已提交
32 33 34


def _clone_var_(block, var):
D
Dong Zhihong 已提交
35 36 37 38
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
39
        dtype=var.dtype,
D
Dong Zhihong 已提交
40 41 42 43 44
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


D
Dong Zhihong 已提交
45 46
class Evaluator(object):
    """
47 48 49 50 51 52
    Warning: better to use the fluid.metrics.* things, more
    flexible support via pure Python and Operator, and decoupled
    with executor. Short doc are intended to urge new user
    start from Metrics.

    Base Class for all evaluators.
53

Y
Yu Yang 已提交
54
    Args:
55
        name(str): The name of evaluator. such as, "accuracy". Used for generate
Y
Yu Yang 已提交
56
            temporary variable name.
57
        main_program(Program, optional): The evaluator should be added to this
Y
Yu Yang 已提交
58
            main_program. Default default_main_program()
59
        startup_program(Program, optional):The parameter should be added to this
Y
Yu Yang 已提交
60
            startup_program. Default default_startup_program()
61

Y
Yu Yang 已提交
62
    Attributes:
63
        states(list): The list of state variables. states will be reset to zero
Y
Yu Yang 已提交
64
            when `reset` is invoked.
65
        metrics(list): The list of metrics variables. They will be calculate
Y
Yu Yang 已提交
66
            every mini-batch
D
Dong Zhihong 已提交
67
    """
武毅 已提交
68

D
Dong Zhihong 已提交
69
    def __init__(self, name, **kwargs):
D
dzhwinter 已提交
70 71 72
        warnings.warn(
            "The %s is deprecated, because maintain a modified program inside evaluator cause bug easily, please use fluid.metrics.%s instead."
            % (self.__class__.__name__, self.__class__.__name__), Warning)
Y
Yu Yang 已提交
73 74 75 76 77
        self.states = []
        self.metrics = []
        self.helper = LayerHelper(name, **kwargs)

    def reset(self, executor, reset_program=None):
D
Dong Zhihong 已提交
78
        """
Y
Yu Yang 已提交
79
        reset metric states at the begin of each pass/user specified batch
80 81 82 83

        Args:
            executor(Executor|ParallelExecutor): a executor for executing the reset_program
            reset_program(Program): a single Program for reset process
D
Dong Zhihong 已提交
84
        """
Y
Yu Yang 已提交
85 86 87
        if reset_program is None:
            reset_program = Program()

88 89 90 91 92 93
        with program_guard(main_program=reset_program):
            for var in self.states:
                assert isinstance(var, Variable)
                g_var = _clone_var_(reset_program.current_block(), var)
                layers.fill_constant(
                    shape=g_var.shape, value=0.0, dtype=g_var.dtype, out=g_var)
D
Dong Zhihong 已提交
94

Y
Yu Yang 已提交
95
        executor.run(reset_program)
96

Y
Yu Yang 已提交
97
    def eval(self, executor, eval_program=None):
D
Dong Zhihong 已提交
98
        """
Y
Yu Yang 已提交
99
        Evaluate the statistics merged by multiple mini-batches.
100 101 102
        Args:
            executor(Executor|ParallelExecutor): a executor for executing the eval_program
            eval_program(Program): a single Program for eval process
D
Dong Zhihong 已提交
103 104
        """
        raise NotImplementedError()
D
Dong Zhihong 已提交
105

106
    def _create_state(self, suffix, dtype, shape):
武毅 已提交
107
        """
108 109
        Create state variable.

Y
Yu Yang 已提交
110
        Args:
111
            suffix(str): the state suffix.
112
            dtype(str|core.VarDesc.VarType): the state data type
113
            shape(tuple|list): the shape of state
Y
Yu Yang 已提交
114 115

        Returns: State variable
武毅 已提交
116

D
Dong Zhihong 已提交
117
        """
Y
Yu Yang 已提交
118
        state = self.helper.create_variable(
Y
Yu Yang 已提交
119
            name="_".join([unique_name.generate(self.helper.name), suffix]),
Y
Yu Yang 已提交
120 121 122 123 124
            persistable=True,
            dtype=dtype,
            shape=shape)
        self.states.append(state)
        return state
D
Dong Zhihong 已提交
125

D
Dong Zhihong 已提交
126

G
guosheng 已提交
127 128
class ChunkEvaluator(Evaluator):
    """
129 130 131
    Warning: This would be deprecated in the future. Please use fluid.metrics.ChunkEvaluator 
    instead.

132 133
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
G
guosheng 已提交
134
    numbers.
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): can be IOB/IOE/IOBES and IO. See the chunk_eval op for details.
        num_chunk_types (int): the number of chunk type.
        excluded_chunk_types (list): A list including chunk type ids, indicating chunk types that are not counted.

    Returns:
        tuple: tuple containing: precision, recall, f1_score

    Examples:
        .. code-block:: python

            exe = fluid.executor(place)
            evaluator = fluid.Evaluator.ChunkEvaluator(input, label)
            for epoch in PASS_NUM:
                evaluator.reset(exe)
                for data in batches:
                    loss = exe.run(fetch_list=[cost])
                distance, instance_error = distance_evaluator.eval(exe)
G
guosheng 已提交
158 159
    """

160 161 162 163 164 165 166 167
    def __init__(
            self,
            input,
            label,
            chunk_scheme,
            num_chunk_types,
            excluded_chunk_types=None, ):
        super(ChunkEvaluator, self).__init__("chunk_eval")
G
guosheng 已提交
168 169 170 171
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

172
        self.num_infer_chunks = self._create_state(
G
guosheng 已提交
173
            dtype='int64', shape=[1], suffix='num_infer_chunks')
174
        self.num_label_chunks = self._create_state(
G
guosheng 已提交
175
            dtype='int64', shape=[1], suffix='num_label_chunks')
176
        self.num_correct_chunks = self._create_state(
G
guosheng 已提交
177 178 179 180 181 182
            dtype='int64', shape=[1], suffix='num_correct_chunks')
        precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
            input=input,
            label=label,
            chunk_scheme=chunk_scheme,
            num_chunk_types=num_chunk_types,
183
            excluded_chunk_types=excluded_chunk_types, )
G
guosheng 已提交
184 185
        layers.sums(
            input=[self.num_infer_chunks, num_infer_chunks],
186
            out=self.num_infer_chunks)
G
guosheng 已提交
187 188
        layers.sums(
            input=[self.num_label_chunks, num_label_chunks],
189
            out=self.num_label_chunks)
G
guosheng 已提交
190 191
        layers.sums(
            input=[self.num_correct_chunks, num_correct_chunks],
192
            out=self.num_correct_chunks)
G
guosheng 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

        self.metrics.extend([precision, recall, f1_score])

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
            eval_program,
            fetch_list=[_clone_var_(block, state) for state in self.states])
        num_infer_chunks = num_infer_chunks[0]
        num_label_chunks = num_label_chunks[0]
        num_correct_chunks = num_correct_chunks[0]
        precision = float(
            num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0
        recall = float(
            num_correct_chunks) / num_label_chunks if num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if num_correct_chunks else 0
        return np.array(
            [precision], dtype='float32'), np.array(
                [recall], dtype='float32'), np.array(
                    [f1_score], dtype='float32')
216 217 218 219


class EditDistance(Evaluator):
    """
220 221
    Warning: This would be deprecated in the future. Please use fluid.metrics.EditDistance
    instead.
W
wanghaoshuang 已提交
222
    Accumulate edit distance sum and sequence number from mini-batches and
223
    compute the average edit_distance and instance error of all batches.
W
wanghaoshuang 已提交
224 225

    Args:
W
wanghaoshuang 已提交
226
        input: the sequences predicted by network.
W
wanghaoshuang 已提交
227 228 229 230 231
        label: the target sequences which must has same sequence count
        with input.
        ignored_tokens(list of int): Tokens that should be removed before
        calculating edit distance.

232 233
    Examples:
        .. code-block:: python
W
wanghaoshuang 已提交
234

235 236 237 238 239 240 241
            exe = fluid.executor(place)
            distance_evaluator = fluid.Evaluator.EditDistance(input, label)
            for epoch in PASS_NUM:
                distance_evaluator.reset(exe)
                for data in batches:
                    loss = exe.run(fetch_list=[cost])
                distance, instance_error = distance_evaluator.eval(exe)
W
wanghaoshuang 已提交
242 243

        In the above example:
244
        'distance' is the average of the edit distance in a pass.
245
        'instance_error' is the instance error rate in a pass.
W
wanghaoshuang 已提交
246

247 248
    """

W
wanghaoshuang 已提交
249
    def __init__(self, input, label, ignored_tokens=None, **kwargs):
250 251 252 253 254
        super(EditDistance, self).__init__("edit_distance", **kwargs)
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

255
        self.total_distance = self._create_state(
256
            dtype='float32', shape=[1], suffix='total_distance')
257
        self.seq_num = self._create_state(
W
wanghaoshuang 已提交
258
            dtype='int64', shape=[1], suffix='seq_num')
259
        self.instance_error = self._create_state(
260
            dtype='int64', shape=[1], suffix='instance_error')
261
        distances, seq_num = layers.edit_distance(
W
wanghaoshuang 已提交
262
            input=input, label=label, ignored_tokens=ignored_tokens)
263 264 265 266 267

        zero = layers.fill_constant(shape=[1], value=0.0, dtype='float32')
        compare_result = layers.equal(distances, zero)
        compare_result_int = layers.cast(x=compare_result, dtype='int')
        seq_right_count = layers.reduce_sum(compare_result_int)
268 269
        instance_error_count = layers.elementwise_sub(
            x=seq_num, y=seq_right_count)
270 271 272 273
        total_distance = layers.reduce_sum(distances)
        layers.sums(
            input=[self.total_distance, total_distance],
            out=self.total_distance)
274
        layers.sums(input=[self.seq_num, seq_num], out=self.seq_num)
275 276 277
        layers.sums(
            input=[self.instance_error, instance_error_count],
            out=self.instance_error)
278
        self.metrics.append(total_distance)
279
        self.metrics.append(instance_error_count)
280 281 282 283 284 285

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        with program_guard(main_program=eval_program):
286
            total_distance = _clone_var_(block, self.total_distance)
287
            seq_num = _clone_var_(block, self.seq_num)
288
            instance_error = _clone_var_(block, self.instance_error)
289
            seq_num = layers.cast(x=seq_num, dtype='float32')
290
            instance_error = layers.cast(x=instance_error, dtype='float32')
291
            avg_distance = layers.elementwise_div(x=total_distance, y=seq_num)
292 293 294 295
            avg_instance_error = layers.elementwise_div(
                x=instance_error, y=seq_num)
            result = executor.run(
                eval_program, fetch_list=[avg_distance, avg_instance_error])
296
        return np.array(result[0]), np.array(result[1])
297 298 299 300


class DetectionMAP(Evaluator):
    """
301 302
    Warning: This would be deprecated in the future. Please use fluid.metrics.DetectionMAP
    instead.
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    Calculate the detection mean average precision (mAP).

    The general steps are as follows:
    1. calculate the true positive and false positive according to the input
        of detection and labels.
    2. calculate mAP value, support two versions: '11 point' and 'integral'.

    Please get more information from the following articles:
      https://sanchom.wordpress.com/tag/average-precision/
      https://arxiv.org/abs/1512.02325

    Args:
        input (Variable): The detection results, which is a LoDTensor with shape
            [M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax].
        gt_label (Variable): The ground truth label index, which is a LoDTensor
318
            with shape [N, 1].
319
        gt_box (Variable): The ground truth bounding box (bbox), which is a
320
            LoDTensor with shape [N, 4]. The layout is [xmin, ymin, xmax, ymax].
321 322 323
        gt_difficult (Variable|None): Whether this ground truth is a difficult
            bounding bbox, which can be a LoDTensor [N, 1] or not set. If None,
            it means all the ground truth labels are not difficult bbox.
324 325 326 327
        class_num (int): The class number.
        background_label (int): The index of background label, the background
            label will be ignored. If set to -1, then all categories will be
            considered, 0 by defalut.
328 329 330
        overlap_threshold (float): The threshold for deciding true/false
            positive, 0.5 by defalut.
        evaluate_difficult (bool): Whether to consider difficult ground truth
331 332
            for evaluation, True by defalut. This argument does not work when
            gt_difficult is None.
333 334 335 336 337 338
        ap_version (string): The average precision calculation ways, it must be
            'integral' or '11point'. Please check
            https://sanchom.wordpress.com/tag/average-precision/ for details.
            - 11point: the 11-point interpolated average precision.
            - integral: the natural integral of the precision-recall curve.

339 340
    Examples:
        .. code-block:: python
341

342 343 344 345 346 347 348 349 350
            exe = fluid.executor(place)
            map_evaluator = fluid.Evaluator.DetectionMAP(input,
                gt_label, gt_box, gt_difficult)
            cur_map, accum_map = map_evaluator.get_map_var()
            fetch = [cost, cur_map, accum_map]
            for epoch in PASS_NUM:
                map_evaluator.reset(exe)
                for data in batches:
                    loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)
351 352 353 354 355 356 357 358 359 360 361

        In the above example:

        'cur_map_v' is the mAP of current mini-batch.
        'accum_map_v' is the accumulative mAP of one pass.
    """

    def __init__(self,
                 input,
                 gt_label,
                 gt_box,
362 363
                 gt_difficult=None,
                 class_num=None,
364
                 background_label=0,
365 366 367 368 369 370
                 overlap_threshold=0.5,
                 evaluate_difficult=True,
                 ap_version='integral'):
        super(DetectionMAP, self).__init__("map_eval")

        gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype)
371 372 373 374 375
        if gt_difficult:
            gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype)
            label = layers.concat([gt_label, gt_difficult, gt_box], axis=1)
        else:
            label = layers.concat([gt_label, gt_box], axis=1)
376 377

        # calculate mean average precision (mAP) of current mini-batch
378
        map = detection.detection_map(
379 380
            input,
            label,
381 382
            class_num,
            background_label,
383 384 385 386
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            ap_version=ap_version)

387 388 389 390
        self._create_state(dtype='int32', shape=None, suffix='accum_pos_count')
        self._create_state(dtype='float32', shape=None, suffix='accum_true_pos')
        self._create_state(
            dtype='float32', shape=None, suffix='accum_false_pos')
391 392 393 394 395 396 397 398 399

        self.has_state = None
        var = self.helper.create_variable(
            persistable=True, dtype='int32', shape=[1])
        self.helper.set_variable_initializer(
            var, initializer=Constant(value=int(0)))
        self.has_state = var

        # calculate accumulative mAP
400
        accum_map = detection.detection_map(
401 402
            input,
            label,
403 404
            class_num,
            background_label,
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            has_state=self.has_state,
            input_states=self.states,
            out_states=self.states,
            ap_version=ap_version)

        layers.fill_constant(
            shape=self.has_state.shape,
            value=1,
            dtype=self.has_state.dtype,
            out=self.has_state)

        self.cur_map = map
        self.accum_map = accum_map

    def get_map_var(self):
        return self.cur_map, self.accum_map

    def reset(self, executor, reset_program=None):
        if reset_program is None:
            reset_program = Program()
        with program_guard(main_program=reset_program):
            var = _clone_var_(reset_program.current_block(), self.has_state)
            layers.fill_constant(
                shape=var.shape, value=0, dtype=var.dtype, out=var)
        executor.run(reset_program)