ProcessGroupNCCL.cc 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
B
Baibaifan 已提交
20 21 22
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
23 24 25 26 27 28 29 30 31 32 33

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
L
Leo Chen 已提交
34 35
    std::vector<EventManager>& ncclEvents,                     // NOLINT
    std::vector<std::unique_ptr<phi::GPUContext>>& dev_ctx) {  // NOLINT
36
  for (size_t i = 0; i < places.size(); ++i) {
L
Leo Chen 已提交
37
    auto* default_ctx = static_cast<phi::GPUContext*>(
38
        platform::DeviceContextPool::Instance().Get(places[i]));
39 40
    ncclEvents[i].Record(*default_ctx);
    ncclEvents[i].Block(*dev_ctx[i]);
41 42 43 44
  }
}

std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
45 46 47
    std::vector<Place> places,
    int rank,
    CommType comm_type,
48
    const std::vector<phi::DenseTensor>& inputs) {
49 50
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs);
51 52
}

53
ProcessGroupNCCL::NCCLTask::NCCLTask(
54 55 56
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
57
    const std::vector<phi::DenseTensor>& inputs)
58 59 60 61 62 63 64 65
    : Task(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

void ProcessGroupNCCL::NCCLTask::SetOutputs(
66 67
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
68 69 70 71
}

void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
L
Leo Chen 已提交
72
    auto* default_ctx = static_cast<phi::GPUContext*>(
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
        platform::DeviceContextPool::Instance().Get(places_[i]));
    default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent());
  }
}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

88
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>* split_sizes,
89
                                       std::vector<int64_t> tensor_shape) {
90
  int64_t len_size = (*split_sizes).size();
91 92 93 94 95 96
  if (len_size == 0) {
    PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
                      true,
                      platform::errors::InvalidArgument(
                          "Tensor's dim[0] must be divisible by group size "
                          "when split_sizes not given."));
97 98 99 100
    (*split_sizes)
        .insert((*split_sizes).end(),
                size_,
                static_cast<int64_t>(tensor_shape[0] / size_));
101 102 103 104 105 106 107
  } else {
    PADDLE_ENFORCE_EQ(
        len_size == size_,
        true,
        platform::errors::InvalidArgument(
            "The length of split_sizes must be equal to group size."));
    auto sum_size = std::accumulate(
108
        (*split_sizes).begin(), (*split_sizes).end(), static_cast<int64_t>(0));
109 110 111 112 113 114 115 116
    PADDLE_ENFORCE_EQ(
        sum_size == tensor_shape[0],
        true,
        platform::errors::InvalidArgument(
            "The sum of split_sizes must be equal to tensor's dim[0]."));
  }
}

117 118 119 120 121 122 123 124 125
// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  SynchronizeStreams();
  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
  }
B
Baibaifan 已提交
126 127 128 129 130

  if (!barrierTensors_.empty()) {
    // If we use the work to do barrier, we should block cpu
    for (auto& place : places_) {
      platform::CUDADeviceGuard gpuGuard(place);
S
ShenLiang 已提交
131
#ifdef PADDLE_WITH_CUDA
B
Baibaifan 已提交
132
      PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
S
ShenLiang 已提交
133 134 135
#else
      PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif
B
Baibaifan 已提交
136 137
    }
  }
138 139 140 141 142 143
  return true;
}

// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

144
ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
145 146 147 148
                                   int rank,
                                   int size,
                                   const platform::Place& place,
                                   int gid)
149 150 151
    : ProcessGroup(rank, size, place, gid), store_(store) {
  platform::SetDeviceId(place_.device);
}
152 153 154

void ProcessGroupNCCL::BroadcastUniqueNCCLID(
    std::vector<ncclUniqueId>& nccl_ids) {  // NOLINT
155 156
  if (rank_ == 0) {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
157 158
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
159 160 161 162 163 164 165
      auto nccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&nccl_ids[i]),
          reinterpret_cast<uint8_t*>(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES);
      store_->set(key, nccl_id);
    }
  } else {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
166 167
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
168 169 170
      auto ret = store_->get(key);
      std::memcpy(&nccl_ids[i], ret.data(), ret.size());
    }
171 172 173 174 175 176
  }
}

// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
177 178
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
179 180 181 182 183 184 185 186 187 188 189 190
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

  std::vector<std::shared_ptr<NCCLCommManager>> nccl_comms;
  nccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(1);
  auto& nccl_id = nccl_ids.front();

B
Baibaifan 已提交
191 192 193 194
  for (auto& place : places) {
    used_place_ids_.insert(place.GetDeviceId());
  }

195 196 197 198 199
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(nccl_ids);

200 201
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
202 203
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

L
Leo Chen 已提交
204
  std::vector<std::unique_ptr<phi::GPUContext>> dev_ctx;
205 206 207 208 209 210 211
  dev_ctx.resize(places.size());

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
    nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id);
L
Leo Chen 已提交
212
    dev_ctx[i].reset(new phi::GPUContext(places[i]));
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

  std::vector<EventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
228
    std::vector<phi::DenseTensor>& inputs,
229 230 231
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

S
ShenLiang 已提交
251 252
  {
    platform::NCCLGroupGuard nccl_guard;
253 254
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
255 256
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
257 258 259
    }
  }

S
ShenLiang 已提交
260
  if (FLAGS_use_stream_safe_cuda_allocator) {
261 262
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
263 264
      memory::RecordStream(inputs[i].Holder(),
                           places_to_ctx_[key][i]->stream());
265 266 267 268 269 270 271 272 273 274
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

275 276
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
277 278
                                  phi::DenseTensor* out,
                                  Fn fn,
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
    memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream());
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
    const auto& nccl_stream = places_to_ctx_[key][0]->stream();
    fn(in, out, nccl_comms[0]->GetNcclComm(), nccl_stream);
  }

  cuda_guard.SetDevice(places[0]);
}

B
Baibaifan 已提交
313 314
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
315 316 317
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
318
    CommType op_type) {
B
Baibaifan 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
341
      memory::RecordStream(tensors[i].Holder(),
B
Baibaifan 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

362
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
363
    std::vector<phi::DenseTensor>& in_tensors,
364 365
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
366
  PADDLE_ENFORCE_EQ(
367 368
      CheckTensorsInCudaPlace(in_tensors),
      true,
369
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
370
  return Collective(
371 372 373 374 375 376
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
377
        return platform::dynload::ncclAllReduce(
378 379 380
            input.data(),
            output.data(),
            input.numel(),
381
            platform::ToNCCLDataType(input.type()),
382 383 384
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
385 386
      },
      CommType::ALLREDUCE);
387 388 389
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
390
    std::vector<phi::DenseTensor>& in_tensors,
391 392
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
393
  PADDLE_ENFORCE_EQ(
394 395
      CheckTensorsInCudaPlace(in_tensors),
      true,
396 397
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

398
  return Collective(
399 400 401 402 403
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
404 405 406 407
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
408 409 410 411 412 413 414
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
415 416
      },
      CommType::BROADCAST);
417 418
}

B
Baibaifan 已提交
419 420
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
B
Baibaifan 已提交
421 422
  // Only support single card single process
  std::vector<phi::GPUPlace> places = {place_};
B
Baibaifan 已提交
423

424
  std::vector<phi::DenseTensor> barrierTensors;
B
Baibaifan 已提交
425 426 427 428 429
  barrierTensors.reserve(places.size());

  platform::CUDADeviceGuard gpuGuard;
  for (auto& place : places) {
    gpuGuard.SetDeviceIndex(place.GetDeviceId());
B
Baibaifan 已提交
430
    auto dt = full({1}, 0, phi::DataType::FLOAT32, place);
431 432
    barrierTensors.push_back(
        *std::dynamic_pointer_cast<phi::DenseTensor>(dt.impl()));
B
Baibaifan 已提交
433
  }
434
  auto task = ProcessGroupNCCL::AllReduce(barrierTensors, barrierTensors);
B
Baibaifan 已提交
435 436 437 438 439
  auto nccl_task = dynamic_cast<ProcessGroupNCCL::NCCLTask*>(task.get());
  nccl_task->barrierTensors_ = std::move(barrierTensors);
  return task;
}

440 441
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
442
  PADDLE_ENFORCE_EQ(
443 444
      tensors.size() == 0,
      false,
B
Baibaifan 已提交
445 446
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
447 448
      tensors.size(),
      num_devices,
B
Baibaifan 已提交
449 450 451 452 453 454
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
455 456
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()),
                      true,
B
Baibaifan 已提交
457 458 459
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

460
    const auto inserted = used_devices.insert(t.place()).second;
461 462
    PADDLE_ENFORCE_EQ(inserted,
                      true,
B
Baibaifan 已提交
463 464 465 466 467 468
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
469
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
470 471
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

472 473
  auto task = PointToPoint(
      tensors,
474 475 476
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
477 478
          int dst_rank) {
        return platform::dynload::ncclSend(
479 480 481 482 483 484
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
485
      },
486 487
      dst_rank,
      CommType::SEND);
B
Baibaifan 已提交
488 489 490 491
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
492
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
493 494
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

495 496
  auto task = PointToPoint(
      tensors,
497 498 499
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
500 501
          int src_rank) {
        return platform::dynload::ncclRecv(
502 503 504 505 506 507
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
508
      },
509 510
      src_rank,
      CommType::RECV);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors, int dst_rank, int offset, int length) {
  // CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

526 527
  auto task = PointToPoint(
      shared_tensors,
528 529 530
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
531 532
          int dst_rank) {
        return platform::dynload::ncclSend(
533 534 535 536 537 538
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
539
      },
540 541
      dst_rank,
      CommType::SEND);
542 543 544 545 546 547 548 549 550 551 552 553 554 555
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors, int src_rank, int offset, int length) {
  // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length);

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});
  phi::DenseTensor shared_input = flatten_tensor.Slice(offset, offset + length);

  std::vector<phi::DenseTensor> shared_tensors;
  shared_tensors.push_back(shared_input);

556 557
  auto task = PointToPoint(
      shared_tensors,
558 559 560
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
561 562
          int src_rank) {
        return platform::dynload::ncclRecv(
563 564 565 566 567 568
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
569
      },
570 571
      src_rank,
      CommType::RECV);
B
Baibaifan 已提交
572 573 574
  return task;
}

575
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
576 577
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
578
  PADDLE_ENFORCE_EQ(
579 580
      CheckTensorsInCudaPlace(in_tensors),
      true,
581 582
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
583 584
      CheckTensorsInCudaPlace(out_tensors),
      true,
585
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
586
  return Collective(
587 588 589 590 591 592
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
593
        return platform::dynload::ncclAllGather(
594 595 596 597 598 599
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
600 601
      },
      CommType::ALLGATHER);
602 603
}

604 605
void* GetPointerByOffset(void* raw_pointer,
                         size_t offset,
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
626
  return nullptr;
627 628
}

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    int offset,
    int length) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER);
}

660
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
661 662
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
663
  PADDLE_ENFORCE_EQ(
664 665
      CheckTensorsInCudaPlace(in_tensors),
      true,
666 667
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
668 669
      CheckTensorsInCudaPlace(out_tensors),
      true,
670 671
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
672 673 674 675 676
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
677 678 679 680 681
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
682
              GetPointerByOffset(input.data(), offset, input.dtype()),
683 684 685 686 687
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
688
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
689
              GetPointerByOffset(output.data(), offset, input.dtype()),
690 691 692 693 694
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
695
          offset += input.numel() / size_;
696 697 698
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
      CommType::ALLTOALL);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
729 730
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE);
762 763 764
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
765
    std::vector<phi::DenseTensor>& in_tensors,
766 767
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts) {
768
  PADDLE_ENFORCE_EQ(
769 770
      CheckTensorsInCudaPlace(in_tensors),
      true,
771 772
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
773 774 775 776 777 778
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
779
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
780 781 782
            input.data(),
            output.data(),
            input.numel(),
783
            platform::ToNCCLDataType(input.dtype()),
784 785 786 787
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
788 789 790 791 792
      },
      CommType::REDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
793
    std::vector<phi::DenseTensor>& in_tensors,
794 795
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts) {
796
  PADDLE_ENFORCE_EQ(
797 798
      CheckTensorsInCudaPlace(in_tensors),
      true,
799 800
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
801 802
      CheckTensorsInCudaPlace(out_tensors),
      true,
803 804
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
805 806 807 808 809
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
810 811 812 813 814 815
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
816
                GetPointerByOffset(input.data(), offset, input.dtype()),
817 818 819 820 821
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
822
            offset += input.numel() / size_;
823 824
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
825 826 827 828 829
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
830 831 832 833
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
834 835 836 837 838
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
839 840 841 842 843 844
              stream));
        }
      },
      CommType::SCATTER);
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::_ReduceScatterBase(
    phi::DenseTensor& out_tensor,
    phi::DenseTensor& in_tensor,
    const ReduceScatterOptions& opts) {
  // auto tensor = out_tensors.back();
  PADDLE_ENFORCE_EQ(
      out_tensor.dtype(),
      in_tensor.dtype(),
      platform::errors::InvalidArgument(
          "Input tensor and output tensor should be same dtype."));

  PADDLE_ENFORCE_EQ(
      out_tensor.numel() * size_,
      in_tensor.numel(),
      platform::errors::InvalidArgument("input tensor must be the same size as "
                                        "output tensor size times world_size"));

  auto inputs = std::vector<phi::DenseTensor>{in_tensor};
  auto outputs = std::vector<phi::DenseTensor>{out_tensor};

  return Collective(
      inputs,
      outputs,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER);
}

void ProcessGroupNCCL::GroupStart() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
}

void ProcessGroupNCCL::GroupEnd() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}

897 898
}  //  namespace distributed
}  //  namespace paddle