pipeline_train.py 6.7 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import numpy as np
import copy
import pickle
import os
from functools import partial
import logging
import time
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import argparse
import random
import sys
import math

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)

is_profile = False


def parse_args():
38
    parser = argparse.ArgumentParser("Resnet with pipelie parallel.")
H
hutuxian 已提交
39 40 41 42 43 44
    parser.add_argument(
        '--batch_size', type=int, default=100, help='input batch size')
    parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
    return parser.parse_args()


45 46 47 48 49 50 51 52 53
def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
                  act=None):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) // 2,
        groups=groups,
H
hutuxian 已提交
54
        act=None,
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        bias_attr=False)
    return fluid.layers.batch_norm(
        input=conv,
        act=act, )


def shortcut(input, ch_out, stride, is_first):
    ch_in = input.shape[1]
    if ch_in != ch_out or stride != 1 or is_first == True:
        return conv_bn_layer(input, ch_out, 1, stride)
    else:
        return input


def bottleneck_block(input, num_filters, stride):
    conv0 = conv_bn_layer(
        input=input, num_filters=num_filters, filter_size=1, act='relu')
    conv1 = conv_bn_layer(
        input=conv0,
        num_filters=num_filters,
        filter_size=3,
        stride=stride,
        act='relu')
    conv2 = conv_bn_layer(
        input=conv1, num_filters=num_filters * 4, filter_size=1, act=None)

    short = shortcut(input, num_filters * 4, stride, is_first=False)

    return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')


def basic_block(input, num_filters, stride, is_first):
    conv0 = conv_bn_layer(
        input=input,
        num_filters=num_filters,
        filter_size=3,
        act='relu',
        stride=stride)
    conv1 = conv_bn_layer(
        input=conv0, num_filters=num_filters, filter_size=3, act=None)
    short = shortcut(input, num_filters, stride, is_first)
    return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')


def network(input, layers=50, class_dim=1000):
    supported_layers = [18, 34, 50, 101, 152]
    assert layers in supported_layers
    depth = None
    if layers == 18:
        depth = [2, 2, 2, 2]
    elif layers == 34 or layers == 50:
        depth = [3, 4, 6, 3]
    elif layers == 101:
        depth = [3, 4, 23, 3]
    elif layers == 152:
        depth = [3, 8, 36, 3]
    num_filters = [64, 128, 256, 512]
    with fluid.device_guard("gpu:0"):
        conv = conv_bn_layer(
            input=input, num_filters=64, filter_size=7, stride=2, act='relu')
        conv = fluid.layers.pool2d(
            input=conv,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')
    if layers >= 50:
        for block in range(len(depth)):
            with fluid.device_guard("gpu:1"):
                for i in range(depth[block]):
                    conv = bottleneck_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1)

        with fluid.device_guard("gpu:2"):
            pool = fluid.layers.pool2d(
                input=conv, pool_size=7, pool_type='avg', global_pooling=True)
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            out = fluid.layers.fc(
                input=pool,
                size=class_dim,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))
    else:
        for block in range(len(depth)):
            with fluid.device_guard("gpu:1"):
                for i in range(depth[block]):
                    conv = basic_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        is_first=block == i == 0)
        with fluid.device_guard("gpu:2"):
            pool = fluid.layers.pool2d(
                input=conv, pool_size=7, pool_type='avg', global_pooling=True)
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            out = fluid.layers.fc(
                input=pool,
                size=class_dim,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))
    return out
H
hutuxian 已提交
158 159 160 161 162 163


def train():
    args = parse_args()
    lr = args.lr

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    with fluid.device_guard("gpu:0"):
        image = fluid.layers.data(
            name="image", shape=[3, 224, 224], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        data_loader = fluid.io.DataLoader.from_generator(
            feed_list=[image, label],
            capacity=64,
            use_double_buffer=True,
            iterable=False)
        fc = build_network(image, layers=50)

    with fluid.device_guard("gpu:3"):
        out, prob = fluid.layers.softmax_with_cross_entropy(
            logits=fc, label=label, return_softmax=True)
        loss = fluid.layers.mean(out)
        acc_top1 = fluid.layers.accuracy(input=prob, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=prob, label=label, k=5)

    optimizer = fluid.optimizer.SGD(lr)
    optimizer = fluid.optimizer.PipelineOptimizer(optimizer, num_microbatches=2)
    optimizer.minimize(loss)

    def train_reader():
        for _ in range(4000):
            img = np.random.random(size=[3, 224, 224]).astype('float32')
            label = np.random.random(size=[1]).astype('int64')
            yield img, label

    data_loader.set_sample_generator(train_reader, batch_size=args.batch_size)

    place = fluid.CUDAPlace(0)
H
hutuxian 已提交
195 196 197 198
    exe = fluid.Executor(place)

    exe.run(fluid.default_startup_program())

199 200 201
    data_loader.start()
    logger.info("begin training...")
    exe.train_from_dataset(fluid.default_main_program(), debug=is_profile)
H
hutuxian 已提交
202 203 204 205


if __name__ == "__main__":
    train()