operator.cc 36.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
22
#include "paddle/fluid/framework/lod_tensor.h"
23
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
24
#include "paddle/fluid/framework/shape_inference.h"
25
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/var_type.h"
27
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
28

D
dzhwinter 已提交
29
DECLARE_bool(benchmark);
C
chengduoZH 已提交
30 31 32
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
33

Q
Qiao Longfei 已提交
34 35 36
namespace paddle {
namespace framework {

37 38 39 40 41 42
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
43

Q
qiaolongfei 已提交
44 45
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
46
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
47
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
48
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
49 50 51 52 53
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

54 55
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
56
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
57 58
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
59 60
  }

M
minqiyang 已提交
61 62
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
63
    if (UNLIKELY(!tensor.IsInitialized())) {
64
      return DDim({-1});
65
    }
M
minqiyang 已提交
66 67 68 69 70 71 72
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
73 74 75 76 77
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
78 79 80 81 82 83
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
84 85 86 87 88
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
89

M
minqiyang 已提交
90 91 92
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
93 94
      return "";
    }
Y
Yu Yang 已提交
95
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
96
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
97 98 99 100
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
101
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
102
    }
D
dzhwinter 已提交
103 104 105 106 107
  } else {
    return "";
  }
}

108 109 110 111 112 113
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
114 115
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
116 117 118 119 120
  }

  return -1;
}

Q
Qiao Longfei 已提交
121 122 123 124 125 126 127 128
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
129 130 131
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
132 133
      return default_lod;
    }
M
minqiyang 已提交
134
    return tensor.lod();
Q
Qiao Longfei 已提交
135 136 137 138 139
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
140 141 142 143 144
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
145
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
146 147 148 149 150 151
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
152
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
153 154 155 156 157 158
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

159
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
160 161
  VLOG(4) << place << " " << DebugStringEx(&scope);
  if (platform::is_gpu_place(place)) {
162
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
163
    PADDLE_THROW("Cannot run operator on place %s", place);
164
#else
P
peizhilin 已提交
165 166
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
167
#endif
P
peizhilin 已提交
168
  }
P
peizhilin 已提交
169

P
peizhilin 已提交
170 171 172 173 174 175 176 177 178
  // The profile has a process-wide mutex, results in serious performance issue
  // in concurrency scenerio. Here use an `if` to fix this issue.
  // Please not remove the `if`, ask @Superjomn if there are any concern.
  if (platform::IsProfileEnabled()) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::RecordEvent record_event(Type(), pool.Get(place));
    RunImpl(scope, place);
  } else {
    RunImpl(scope, place);
179
  }
P
peizhilin 已提交
180
  VLOG(3) << place << " " << DebugStringEx(&scope);
181 182
}

183
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
184
  return inputs_.find(name) != inputs_.end();
185 186
}

187
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
188
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
189
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
190 191
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
192
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
193 194
}

Y
Yu Yang 已提交
195 196
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
197
  auto it = inputs_.find(name);
198 199
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
200
  return it->second;
Y
Yan Chunwei 已提交
201 202
}

203
bool OperatorBase::HasOutputs(const std::string& name) const {
204
  if (outputs_.find(name) != outputs_.end()) {
205 206 207 208 209 210
    return true;
  } else {
    return false;
  }
}

211
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
212
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
213
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
214 215
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
216
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
217 218
}

Y
Yu Yang 已提交
219 220
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
221
  auto it = outputs_.find(name);
222 223
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
224
  return it->second;
Y
Yan Chunwei 已提交
225 226
}

227
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
228
  std::stringstream ss;
Y
Yu Yang 已提交
229
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
230 231
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
232 233
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
234 235
      auto var_name = input.second[i];
      ss << var_name;
236
      if (scope) {
Q
Qiao Longfei 已提交
237 238 239 240 241 242 243 244 245 246 247
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
248
        }
249
      }
Y
Yu Yang 已提交
250 251 252
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
253
    }
Y
Yu Yang 已提交
254
    ss << "]";
Y
Yu Yang 已提交
255 256
    ++it;
    if (it != inputs_.end()) {
257 258
      ss << ", ";
    }
Q
Qiao Longfei 已提交
259
  }
Y
Yu Yang 已提交
260
  ss << "}, outputs:{";
Y
Yu Yang 已提交
261 262
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
263 264
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
265 266
      auto var_name = output.second[i];
      ss << var_name;
267
      if (scope) {
Q
Qiao Longfei 已提交
268 269 270 271 272 273 274
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
275 276
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
Q
Qiao Longfei 已提交
277 278
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
279
        }
280
      }
Y
Yu Yang 已提交
281 282 283
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
284
    }
Y
Yu Yang 已提交
285
    ss << "]";
Y
Yu Yang 已提交
286 287
    ++it;
    if (it != outputs_.end()) {
288 289
      ss << ", ";
    }
Q
Qiao Longfei 已提交
290
  }
Y
Yu Yang 已提交
291
  ss << "}.";
Q
Qiao Longfei 已提交
292 293 294
  return ss.str();
}

Y
Yu Yang 已提交
295
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
296 297
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
298 299
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
300 301
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
302
}
303

Q
qijun 已提交
304 305
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
306
  for (auto& o : inputs_) {
Q
qijun 已提交
307 308 309 310 311 312
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
313 314 315 316 317 318 319 320 321 322
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
323
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
324 325

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
326
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
327 328 329 330 331 332 333 334 335
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
336 337
}

338 339 340
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
341
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
342 343

  for (auto& in : op_info->Proto().inputs()) {
344 345 346 347
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
348 349 350
  }

  for (auto& out : op_info->Proto().outputs()) {
351 352 353 354 355
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
372
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
373
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
374 375
}

C
chengduo 已提交
376
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
377 378 379 380
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
381
  } else {
Y
Yang Yang 已提交
382
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
C
chengduo 已提交
383
                 var.Type().name());
Q
QI JUN 已提交
384 385 386
  }
}

C
chengduo 已提交
387
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
388
  if (var->IsType<LoDTensor>()) {
389
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
390
  } else if (var->IsType<SelectedRows>()) {
391
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
392
  } else {
Y
Yang Yang 已提交
393 394
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
395 396 397
  }
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
430 431 432 433 434 435 436 437 438 439
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
440 441 442 443
const Variable* ExecutionContext::LegacyInputVar(
    const std::string& name) const {
  auto ipt = op_.Input(name);
  return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
X
Xin Pan 已提交
444 445
}

X
clean  
Xin Pan 已提交
446
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
447 448 449 450 451 452 453 454 455
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
456 457 458 459 460
Variable* ExecutionContext::LegacyOutputVar(const std::string& name) const {
  auto opt = op_.Output(name);
  return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
}

461
template <>
462
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
463
  return Input<LoDTensor>(name);
464 465
}

X
Xin Pan 已提交
466
template <>
X
clean  
Xin Pan 已提交
467
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
468
    const std::string& name) const {
X
clean  
Xin Pan 已提交
469
  return LegacyInput<LoDTensor>(name);
X
Xin Pan 已提交
470 471
}

472
template <>
473
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
474
    const std::string& name) const {
X
Xin Pan 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
                       var->Type().name());
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const {
497 498 499
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
500
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
501
                 [&](const std::string& sub_name) -> const Tensor* {
502
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
503 504 505 506 507 508
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
                       sub_name, var->Type().name());
                   return &(var->Get<LoDTensor>());
509
                 });
510 511 512 513
  return res;
}

template <>
514
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
515
  return Output<LoDTensor>(name);
516 517
}

X
Xin Pan 已提交
518
template <>
X
clean  
Xin Pan 已提交
519 520
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const {
  return LegacyOutput<LoDTensor>(name);
X
Xin Pan 已提交
521 522
}

523
template <>
524
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
525 526 527 528
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
529
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
530
                 [&](const std::string& sub_name) -> Tensor* {
531
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
532 533 534 535 536 537
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
                       sub_name, var->Type().name());
                   return var->GetMutable<LoDTensor>();
538
                 });
539 540 541
  return res;
}

Y
Yu Yang 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

557 558
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
559 560 561
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
      : op_(op), scope_(scope), ctx_(ctx) {}
562 563

  bool HasInput(const std::string& name) const override {
564
    // has only one input
X
Xin Pan 已提交
565
    const auto& ins = ctx_.inputs;
566 567
    auto it = ins.find(name);
    if (it == ins.end()) {
568 569
      return false;
    }
570
    const auto& in = it->second;
X
Xin Pan 已提交
571
    if (in.size() == 0) return false;
T
tensor-tang 已提交
572
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
573
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
574
    return in[0] != nullptr;
575 576 577
  }

  bool HasOutput(const std::string& name) const override {
578
    // has only one output
X
Xin Pan 已提交
579
    const auto& outs = ctx_.outputs;
580 581
    auto it = outs.find(name);
    if (it == outs.end()) {
582 583
      return false;
    }
584
    const auto& out = it->second;
X
Xin Pan 已提交
585
    if (out.size() == 0) {
586 587
      return false;
    }
T
tensor-tang 已提交
588 589
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
590
    return out[0] != nullptr;
591 592 593
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
594 595
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
596
    if (it == ins.end() || it->second.empty()) {
597 598
      return false;
    }
X
Xin Pan 已提交
599 600
    for (auto& input : it->second) {
      if (input == nullptr) {
601 602 603 604 605 606 607
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
608 609
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
610
    if (it == outs.end() || it->second.empty()) {
611 612
      return false;
    }
X
Xin Pan 已提交
613 614
    for (auto& output : it->second) {
      if (output == nullptr) {
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

633 634
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
635 636 637 638 639 640 641 642 643
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
644 645

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
646
                   "The type of %s and %s is not the same.", in, out);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
665 666
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
667 668 669 670 671 672 673 674
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
675
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
676
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
677 678 679 680 681
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
682

M
mozga-intel 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
702 703
  }

C
chengduo 已提交
704 705 706 707 708
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

709 710
  bool IsRuntime() const override { return true; }

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
743 744 745 746 747 748 749 750 751 752
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

767
 protected:
X
Xin Pan 已提交
768
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
769
    PADDLE_ENFORCE_NOT_NULL(var);
770 771 772 773 774
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
775
      PADDLE_THROW(
X
Xin Pan 已提交
776
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
777
          "type_id is %s.",
X
Xin Pan 已提交
778
          var->Type().name());
F
fengjiayi 已提交
779 780 781
    }
  }

X
Xin Pan 已提交
782 783 784 785 786 787 788 789
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
790
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
791
    PADDLE_THROW("Only compile time support this method");
792 793
  }

X
Xin Pan 已提交
794
  void SetDim(Variable* var, const DDim& dim) {
795 796 797 798 799
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                   var->Type().name());
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
814 815 816
    }
  }

F
fengjiayi 已提交
817 818
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
819
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
820 821
  }

X
Xin Pan 已提交
822 823 824 825 826 827 828 829 830 831 832
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
833 834 835
    return ToVarType(var->Type());
  }

836 837 838 839 840 841 842 843 844 845 846 847 848 849
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
850 851
  }

852 853
  const OperatorBase& op_;
  const Scope& scope_;
X
Xin Pan 已提交
854
  const RuntimeContext& ctx_;
855 856
};

C
chengduoZH 已提交
857 858 859 860 861
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
862 863
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
864 865 866 867 868 869 870 871
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

B
baojun-nervana 已提交
872
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
873 874 875
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
876 877 878
  this->InferShape(&infer_shape_ctx);
}

879 880
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
X
Xin Pan 已提交
881
  RuntimeContext ctx(Inputs(), Outputs(), scope);
Y
Yu Yang 已提交
882
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
883
  auto* dev_ctx = pool.Get(place);
884

885 886 887 888
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
889 890
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
891 892
  }

Q
qiaolongfei 已提交
893 894
  OpKernelMap& kernels = kernels_iter->second;

X
Xin Pan 已提交
895 896
  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx));
M
minqiyang 已提交
897
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
Q
qiaolongfei 已提交
898

899
  auto kernel_iter = kernels.find(expected_kernel_key);
900
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
901
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
902 903
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
M
minqiyang 已提交
904
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
905 906 907 908 909
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
910 911 912 913 914
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
915 916 917
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
X
Xin Pan 已提交
918
      PrepareData(scope, expected_kernel_key, &transfered_inplace_vars, &ctx);
919

Y
yuyang18 已提交
920 921 922 923 924 925
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
926
  }
Q
QI JUN 已提交
927

X
Xin Pan 已提交
928
  RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, ctx);
X
Xin Pan 已提交
929
  this->InferShape(&infer_shape_ctx);
X
clean  
Xin Pan 已提交
930 931
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
X
Xin Pan 已提交
932
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx, ctx));
D
dzhwinter 已提交
933

Y
yuyang18 已提交
934 935 936
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
937 938
  }

D
dzhwinter 已提交
939
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
940
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
941
    dev_ctx->Wait();
D
dzhwinter 已提交
942
  }
C
chengduoZH 已提交
943 944 945

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
946
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
947 948 949
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
950 951
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
952 953 954
      }
    }
  }
Q
Qiao Longfei 已提交
955
}
X
Xin Pan 已提交
956

Y
yuyang18 已提交
957 958 959 960
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
961
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
962 963
    auto* original_tensor =
        GetMutableLoDTensorOrSelectedRowsValueFromVar(scope.FindVar(var_name));
C
chengduo 已提交
964 965 966
    auto* var = transfer_scope.FindVar(var_name);
    PADDLE_ENFORCE(var != nullptr, "The var[%s] should not be nullptr",
                   var_name);
C
chengduo 已提交
967
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
968 969 970 971
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
972
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
973
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
974 975
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
976 977
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
X
Xin Pan 已提交
978 979 980 981
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
982
      auto* var = input_vars[i];
X
Xin Pan 已提交
983

Y
yuyang18 已提交
984
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
985
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
986 987 988
        continue;
      }

C
chengduo 已提交
989
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1007 1008
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1009

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
      if (!run_by_executor_) {
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1025
      }
1026
      if (!new_scope) {
Y
yuyang18 已提交
1027 1028 1029 1030
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1031
      input_vars[i] = trans_var;
1032

Y
yuyang18 已提交
1033
      Tensor out;
Y
yuyang18 已提交
1034
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1035 1036 1037 1038 1039 1040
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1041

1042
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1043 1044 1045
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
1046
  std::string last_input_name;
Y
Yu Yang 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
1060 1061
          PADDLE_ENFORCE(t->IsInitialized(), "Input %s is not initialized",
                         ipt_name);
Y
Yu Yang 已提交
1062
          int tmp = static_cast<int>(t->type());
1063 1064
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
1065 1066
              "DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)",
              Type(), last_input_name, data_type, ipt_name, tmp);
Y
Yu Yang 已提交
1067
          data_type = tmp;
1068
          last_input_name = ipt_name;
Y
Yu Yang 已提交
1069 1070 1071 1072 1073
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
1074
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
1075
}
1076

1077 1078 1079 1080 1081 1082 1083 1084
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1085 1086
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1087 1088
}

Q
Qiao Longfei 已提交
1089
}  // namespace framework
L
liaogang 已提交
1090
}  // namespace paddle