device_context.h 28.6 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.

Q
QI JUN 已提交
4 5 6 7 8 9 10 11 12 13 14
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

W
Wilber 已提交
15
#include <functional>
16
#include <future>  // NOLINT
D
dzhwinter 已提交
17
#include <memory>
Y
yuyang18 已提交
18
#include <mutex>  // NOLINT
19
#include <string>
D
dzhwinter 已提交
20
#include <unordered_map>
21
#include <utility>
22
#include <vector>
W
wanghuancoder 已提交
23

W
Wilber 已提交
24
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
25
#include "paddle/phi/backends/cpu/cpu_context.h"
26
#include "paddle/phi/backends/custom/custom_context.h"
27 28
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/core/device_context.h"
W
Wilber 已提交
29

Y
Yu Yang 已提交
30
#include "paddle/fluid/memory/malloc.h"
31
#ifdef PADDLE_WITH_CUDA
32
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/dynload/cublas.h"
34
#include "paddle/fluid/platform/dynload/cublasLt.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
36
#include "paddle/fluid/platform/dynload/cusolver.h"
37
#include "paddle/fluid/platform/dynload/cusparse.h"
38
#include "paddle/phi/backends/gpu/gpu_context.h"
39
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
40
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
41
#endif
42
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
43
#endif
D
dzhwinter 已提交
44

45
#ifdef PADDLE_WITH_HIP
46
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
47 48
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
49
#include "paddle/phi/backends/gpu/gpu_context.h"  // NOLINT
50 51 52
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
53
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
54 55
#endif

56 57 58 59
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
60
#ifdef PADDLE_WITH_MKLDNN
61
#include "dnnl.hpp"
62
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
63 64
#endif

65
#include <map>
W
wanghuancoder 已提交
66

67
#include "glog/logging.h"
Y
Yi Wang 已提交
68 69
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
70
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
71
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
72
#endif
73
#ifdef PADDLE_WITH_ASCEND_CL
74 75
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
76
#endif
77

78 79
#include "paddle/phi/backends/device_ext.h"
#include "paddle/phi/backends/stream.h"
80 81

#if !defined(PADDLE_WITH_XPU_KP) || defined(__xpu_on_host__)
Q
qijun 已提交
82
#include "unsupported/Eigen/CXX11/Tensor"
83
#endif
Q
QI JUN 已提交
84

W
wanghuancoder 已提交
85 86 87 88 89
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

90
#ifdef PADDLE_WITH_XPU
91 92
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
93
#include "paddle/phi/backends/xpu/xpu_context.h"
94 95
#endif

96 97
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
98
#include "paddle/fluid/platform/device/npu/npu_info.h"
99 100
#endif

Q
QI JUN 已提交
101 102 103
namespace paddle {
namespace platform {

104
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
105 106 107 108
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
109
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
110 111 112 113
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
114 115
#endif  // PADDLE_WITH_CUDA

116 117 118 119
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
120
  NPU = 3,
J
jianghaicheng 已提交
121
  IPU = 4,
F
fwenguang 已提交
122 123 124
  MLU = 5,

  MAX_DEVICE_TYPES = 6,
125 126
};

127 128
DeviceType Place2DeviceType(const platform::Place& place);

129 130 131
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
132
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
133
constexpr DeviceType kIPU = DeviceType::IPU;
F
fwenguang 已提交
134
constexpr DeviceType kMLU = DeviceType::MLU;
135

136
using DeviceContext = phi::DeviceContext;
Q
QI JUN 已提交
137

138
// using CPUDeviceContext = phi::CPUContext;
W
Wilber 已提交
139
// TODO(wilber): The place constructor is used in many places, it is more
140 141
// difficult to use CPUDeviceContext = phi::CPUContext directly.
class CPUDeviceContext : public phi::CPUContext {
Q
qijun 已提交
142
 public:
143
  CPUDeviceContext();
Q
qijun 已提交
144
  explicit CPUDeviceContext(CPUPlace place);
Q
QI JUN 已提交
145 146
};

Y
Yang Yu 已提交
147 148 149 150 151 152 153 154
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

J
jianghaicheng 已提交
155 156 157 158 159 160 161 162
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
163
  const Place& GetPlace() const override;
J
jianghaicheng 已提交
164 165 166 167 168 169 170 171 172 173
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  IPUPlace place_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};
F
fwenguang 已提交
174
#endif
J
jianghaicheng 已提交
175

F
fwenguang 已提交
176 177 178 179 180
#ifdef PADDLE_WITH_MLU
class MLUDeviceContext;

template <>
struct DefaultDeviceContextType<platform::MLUPlace>;
J
jianghaicheng 已提交
181 182
#endif

183
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
184
namespace xpu = baidu::xpu::api;
185
class XPUDeviceContext : public phi::XPUContext {
186 187 188 189 190
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
191
  xpuStream stream() const { return XPUContext::x_context()->xpu_stream; }
192 193 194 195 196 197 198 199
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

200 201 202 203 204 205
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
206
  const Place& GetPlace() const override;
207
  aclrtContext context() const;
208

209 210 211 212 213 214
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

215 216 217 218 219 220 221
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

237 238 239
 private:
  NPUPlace place_;
  aclrtContext context_;
240 241 242 243

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
259 260 261 262 263 264 265

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

W
Wilber 已提交
266
  const Place& GetPlace() const override;
267 268 269 270 271 272 273 274 275 276 277 278 279

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

280 281 282
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
283
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
284
class EigenCudaStreamDevice;
S
sneaxiy 已提交
285

286 287 288 289 290
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
291 292
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

308 309 310 311 312 313
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

W
Wilber 已提交
314 315
  void SetStream(gpuStream_t stream);

316
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
317

318 319 320
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
321
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
322
#endif
323

324
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
325 326 327
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
328
#endif
G
Guo Sheng 已提交
329

330 331 332 333 334 335 336 337
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

Z
zhangkaihuo 已提交
338
#ifndef PADDLE_WITH_HIP
339 340 341 342 343 344
#if CUDA_VERSION >= 11060
  const std::unique_ptr<CublasLtHandleHolder>& CublasLtHandle() const {
    return cublaslt_handle_;
  }
#endif

Z
zhangkaihuo 已提交
345 346 347 348 349
  const std::unique_ptr<CusparseHandleHolder>& CusparseHandle() const {
    return cusparse_handle_;
  }
#endif

350
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
351 352
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
353
    if (cublas_tf32_tensor_core_handle_) {
W
Wilber 已提交
354
      cublas_tf32_tensor_core_handle_->Call(callback);
355
    } else {
W
Wilber 已提交
356
      cublas_handle_->Call(callback);
357
    }
358 359
  }

Z
zhangkaihuo 已提交
360
#ifndef PADDLE_WITH_HIP
361 362 363 364 365 366 367 368
#if CUDA_VERSION >= 11060
  /*! \brief  Call cublasLt function safely. */
  inline void CublasLtCall(
      const std::function<void(blasLtHandle_t)>& callback) const {
    cublaslt_handle_->Call(callback);
  }
#endif

Z
zhangkaihuo 已提交
369
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
370
  inline void CusparseCall(
371
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
372
    cusparse_handle_->Call(callback);
Z
zhangkaihuo 已提交
373 374 375
  }
#endif

376 377 378 379 380
  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
381 382
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
383
    if (cublas_tensor_core_handle_) {
W
Wilber 已提交
384
      cublas_tensor_core_handle_->Call(callback);
385
    } else {
W
Wilber 已提交
386
      cublas_handle_->Call(callback);
387 388 389 390 391 392
    }
  }

 private:
  void InitEigenContext();

393 394 395 396 397
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
398 399 400 401 402 403 404
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
405 406 407 408 409
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
410 411
    }
  }
412
#endif
413

Z
zhangkaihuo 已提交
414
#ifndef PADDLE_WITH_HIP
415 416 417 418 419 420
#if CUDA_VERSION >= 11060
  void InitCuBlasLtContext() {
    cublaslt_handle_.reset(new CublasLtHandleHolder());
  }
#endif

Z
zhangkaihuo 已提交
421 422 423 424 425
  void InitCuSparseContext() {
    cusparse_handle_.reset(new CusparseHandleHolder(RawStream()));
  }
#endif

426 427
  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
428 429
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
430
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
431 432
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
433 434
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
435 436 437 438
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
439 440
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
441
            << ", but MIOPEN version in your machine is "
442
            << local_miopen_version / 100 << "." << local_miopen_version % 100
443 444 445 446
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
447 448
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
449 450
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
451 452 453 454 455 456 457 458 459 460 461 462 463
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
464 465
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
466
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
467
#endif
468 469 470 471 472
    } else {
      cudnn_handle_ = nullptr;
    }
  }

473
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
474
  void InitCuSolverContext() {
475 476
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
477 478
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
479
#endif
G
Guo Sheng 已提交
480

481 482
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
483
#ifdef PADDLE_WITH_HIP
484
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
485
#else
486
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
487
#endif
488 489 490 491 492 493 494
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
495
    cublas_tf32_tensor_core_handle_.reset();
496 497
  }

Z
zhangkaihuo 已提交
498
#ifndef PADDLE_WITH_HIP
499 500 501 502
#if CUDA_VERSION >= 11060
  void DestoryCuBlasLtContext() { cublaslt_handle_.reset(); }
#endif

Z
zhangkaihuo 已提交
503 504 505
  void DestoryCuSparseContext() { cusparse_handle_.reset(); }
#endif

506
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
507 508
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
509
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
510 511 512
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
513
#endif
G
Guo Sheng 已提交
514

515 516 517 518
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
519 520 521
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
522
  cudnnHandle_t cudnn_handle_;
523
#endif
524 525
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
526
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
527
#ifndef PADDLE_WITH_HIP
528 529 530
#if CUDA_VERSION >= 11060
  std::unique_ptr<CublasLtHandleHolder> cublaslt_handle_;
#endif
G
Guo Sheng 已提交
531
  cusolverDnHandle_t cusolver_dn_handle_;
Z
zhangkaihuo 已提交
532
  std::unique_ptr<CusparseHandleHolder> cusparse_handle_;
533
#endif
534 535 536
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

537
class CUDADeviceContext : public phi::GPUContext {
Q
QI JUN 已提交
538
 public:
D
dzhwinter 已提交
539
  explicit CUDADeviceContext(CUDAPlace place);
540
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
541

542
  /*! \brief  Wait for all operations completion in the stream. */
543
  void Wait() const override;
Q
QI JUN 已提交
544

545 546 547
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

548
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
549 550 551
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
552
      phi::GPUContext::CublasCall(callback);
W
Wilber 已提交
553 554
      return;
    }
555
    return context()->CublasCall(callback);
556 557
  }

Z
zhangkaihuo 已提交
558 559
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
560
  inline void CusparseCall(
561
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
562
    if (!thread_ctx_.count(this)) {
563
      phi::GPUContext::CusparseCall(callback);
W
Wilber 已提交
564 565 566
      return;
    }
    context()->CusparseCall(callback);
Z
zhangkaihuo 已提交
567 568 569
  }
#endif

570 571
  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
572 573 574
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
575
      phi::GPUContext::TensorCoreCublasCallIfAvailable(callback);
W
Wilber 已提交
576 577 578
      return;
    }
    context()->TensorCoreCublasCallIfAvailable(callback);
579
  }
S
sneaxiy 已提交
580

581 582 583 584
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
585
  cudnnHandle_t cudnn_handle() const;
586
#endif
587

588 589 590 591
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
592
  cublasHandle_t cublas_handle() const;
593
  cublasLtHandle_t cublaslt_handle() const;
Z
zhangkaihuo 已提交
594
  cusparseHandle_t cusparse_handle() const;
595
#endif
596

W
Wilber 已提交
597 598 599 600
#ifndef PADDLE_WITH_HIP
  cusolverDnHandle_t cusolver_dn_handle() const;
#endif

S
sneaxiy 已提交
601 602 603 604 605 606 607
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
608
  phi::DnnWorkspaceHandle cudnn_workspace_handle() const;
S
sneaxiy 已提交
609

Q
init  
qijun 已提交
610
  /*! \brief  Return cuda stream in the device context. */
611
  gpuStream_t stream() const;
Q
QI JUN 已提交
612

W
Wilber 已提交
613
  void RecordEvent(gpuEvent_t ev, const std::function<void()>& callback) const;
614

W
Wilber 已提交
615
  void AddStreamCallback(const std::function<void()>& callback) const;
616

W
Wilber 已提交
617
  void WaitStreamCallback() const;
618

619
  void ResetThreadContext(const stream::Priority& priority) {
620
    std::lock_guard<std::mutex> guard(ctx_mtx_);
W
Wilber 已提交
621
    thread_ctx_[this].reset(new CUDAContext(this->GetPlace(), priority));
622 623
  }

W
Wilber 已提交
624
  std::shared_ptr<CUDAContext> context() const;
S
sneaxiy 已提交
625

W
Wilber 已提交
626 627 628 629 630
  // Note: Can only be used under thread_local semantics.
  void SetThreadLocalStream(const gpuStream_t stream) {
    thread_ctx_.at(this)->SetStream(stream);
  }

W
Wilber 已提交
631 632 633 634
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  stream::CUDAStream* GetCudaStream() const;
  stream::CUDAStream* SetCudaStream(stream::CUDAStream*);
Q
QI JUN 已提交
635

W
Wilber 已提交
636
 private:
637 638 639 640 641 642
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
643

644 645
  mutable std::mutex cudnn_handle_mtx_;

W
Wilber 已提交
646 647 648
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  std::unique_ptr<stream::CUDAStream> cuda_stream_;
649
  std::unique_ptr<phi::DnnWorkspaceHandle> workspace_{nullptr};
Y
yuyang18 已提交
650

651
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
652
};
Q
qijun 已提交
653

654 655
class CudnnWorkspaceHandle {
 public:
656 657
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
658 659 660 661 662 663 664 665

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
666 667 668 669
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
670 671 672 673 674 675 676 677 678 679 680 681 682
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

683
  void ReallocWorkspace(size_t required_workspace_bytes);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
700
  std::mutex* mtx_;
701 702
};

Y
Yang Yu 已提交
703 704
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
705
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
706 707
};

C
chengduoZH 已提交
708
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
709 710 711 712 713
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

W
Wilber 已提交
714
  const Place& GetPlace() const override;
C
chengduoZH 已提交
715

C
chengduoZH 已提交
716 717 718 719 720 721 722 723 724 725 726
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
727
#endif
Q
qijun 已提交
728

T
tensor-tang 已提交
729
#ifdef PADDLE_WITH_MKLDNN
730 731 732 733 734 735

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
736
    bool said_once = false;
737 738 739 740 741 742 743 744 745 746 747
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
748
    // MKL-DNN stream used for execution of primitives (per-thread)
749 750
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
751 752
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
753
    void* exec_ptr_ = nullptr;
754 755

    Body();
756
    ~Body();
757 758 759 760 761 762
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
763
    void log_lib_version(void);
764 765
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
766 767 768 769
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
770 771
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
787

T
tensor-tang 已提交
788 789
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
790 791 792 793 794 795 796 797 798 799
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
800
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
801 802 803
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
804
  using ShapeBlob = umap_key_string_t<KeyBlob>;
805 806
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

807 808 809 810
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
811
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
812 813 814
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
815

T
tensor-tang 已提交
816 817 818
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
819
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
820

821
  // Register object to currently used executor's map
822 823
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
824

825
  // Remove all entries from the blob map
826
  void ResetBlobMap(void* ptr);
827 828 829

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
830

831 832 833
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

834 835
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
836

837
  // Calculate number of oneDNN objects cached
838
  unsigned int GetCachedObjectsNumber(void) const;
839

840 841
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
842

843 844 845 846
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
847
 private:
848
  std::shared_ptr<BlobMap> p_blobmap_;
849 850
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
851
  std::shared_ptr<ExecShape> p_exec_items_;
852
  std::shared_ptr<std::mutex> p_mutex_;
853
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
854 855 856
};
#endif

857
#ifdef PADDLE_WITH_CUSTOM_DEVICE
858
class CustomDeviceContext : public phi::CustomContext {
859 860 861 862 863 864 865 866 867 868 869 870 871 872
 public:
  explicit CustomDeviceContext(CustomPlace place);
  virtual ~CustomDeviceContext();

  Eigen::DefaultDevice* eigen_device() const { return nullptr; }

  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

 private:
873
  std::shared_ptr<phi::stream::Stream> stream_;
874 875 876 877 878 879 880 881 882 883 884 885
};
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = CustomDeviceContext;
};
#else
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = DeviceContext;
};
#endif

D
dzhwinter 已提交
886 887 888 889 890
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
891
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
892 893 894
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
895 896 897 898
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
899
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
900 901 902 903 904 905
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

906 907
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
908
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
909
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
910

Y
Yang Yu 已提交
911 912 913 914 915 916 917
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

918 919
  size_t size() const { return device_contexts_.size(); }

920 921 922 923 924
  const std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>&
  device_contexts() const {
    return device_contexts_;
  }

D
dzhwinter 已提交
925 926
 private:
  static DeviceContextPool* pool;
927 928
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
929 930 931
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
932 933
}  // namespace platform
}  // namespace paddle