parallel_dygraph_unused_variables.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import paddle

from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase
from paddle.nn import Layer, Embedding


class SimpleNet(Layer):
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 num_steps=20,
                 init_scale=0.1,
                 is_sparse=False,
                 dtype="float32"):
        super(SimpleNet, self).__init__()
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_steps = num_steps
        self.embedding = Embedding(
            self.vocab_size,
            self.hidden_size,
            sparse=True,
            weight_attr=paddle.ParamAttr(
                name='embedding_param',
                initializer=paddle.nn.initializer.Uniform(
                    low=-init_scale, high=init_scale)))
        self.softmax_weight = self.create_parameter(
            attr=paddle.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
            dtype=dtype,
            default_initializer=paddle.nn.initializer.Uniform(
                low=-self.init_scale, high=self.init_scale))
        self.softmax_bias = self.create_parameter(
            attr=paddle.ParamAttr(),
            shape=[self.vocab_size],
            dtype=dtype,
            default_initializer=paddle.nn.initializer.Uniform(
                low=-self.init_scale, high=self.init_scale))
        # add tmp var
        self.tmp = self.create_parameter(
            attr=paddle.ParamAttr(),
            shape=[self.vocab_size],
            dtype=dtype,
            default_initializer=paddle.nn.initializer.Uniform(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label):
        x_emb = self.embedding(input)
        fc = paddle.matmul(x_emb, self.softmax_weight)

        # it use stop gradient to block gradient return
        fc.stop_gradient = True
        fc = paddle.add(fc, self.softmax_bias)
        projection = paddle.reshape(fc, shape=[-1, self.vocab_size])
        loss = paddle.nn.functional.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = paddle.reshape(loss, shape=[-1, self.num_steps])
        loss = paddle.mean(loss, axis=[0])
        loss = paddle.sum(loss)

        return {"loss": loss}


# global configs
batch_size = 4
batch_num = 200
hidden_size = 10
vocab_size = 1000
num_steps = 3
init_scale = 0.1


def fake_sample_reader():
    def __reader__():
        for i in range(batch_num):
            x_data = np.arange(num_steps).astype('int64')
            y_data = np.arange(1, 1 + num_steps).astype('int64')
            yield x_data, y_data

    return __reader__


class TestSparseEmbeddingUnusedVars(TestParallelDyGraphRunnerBase):
    def get_model(self):
        model = SimpleNet(
            hidden_size=hidden_size,
            vocab_size=vocab_size,
            num_steps=num_steps,
            init_scale=init_scale,
            is_sparse=True)

        train_reader = paddle.batch(
            fake_sample_reader(), batch_size=batch_size, drop_last=True)

        optimizer = paddle.optimizer.SGD(learning_rate=0.001,
                                         parameters=model.parameters())

        return model, train_reader, optimizer

    def run_one_loop(self, model, optimizer, batch):
        x_data = np.array([x[0].reshape(3) for x in batch]).astype('int64')
        y_data = np.array([x[1].reshape(3) for x in batch]).astype('int64')
        x_data = x_data.reshape((-1, num_steps, 1))
        y_data = y_data.reshape((-1, 1))

        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)

        dy_loss = model(x, y)

        return dy_loss["loss"]


if __name__ == "__main__":
    runtime_main(TestSparseEmbeddingUnusedVars)