cpu_vec_test.cc 11.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cmath>
T
tensor-tang 已提交
16
#include <cstring>
17
#include <random>
T
tensor-tang 已提交
18 19 20 21 22 23
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

#include "paddle/fluid/operators/math/cpu_vec.h"
P
peizhilin 已提交
24
#include "paddle/fluid/platform/port.h"
T
tensor-tang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37

inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}
constexpr int repeat = 1000;

template <typename T>
inline T _sigmoid(T x) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  T tmp = (x < min) ? min : ((x > max) ? max : x);
T
tensor-tang 已提交
38
  return static_cast<T>(1) / (static_cast<T>(1) + std::exp(-tmp));
T
tensor-tang 已提交
39 40 41 42
}

template <typename T>
inline T _tanh(T x) {
T
tensor-tang 已提交
43 44
  return static_cast<T>(2) * _sigmoid<T>(static_cast<T>(2) * x) -
         static_cast<T>(1);
T
tensor-tang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
}

template <typename T>
void ref_sigmoid(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = _sigmoid(x[i]);
  }
}

template <typename T>
void ref_tanh(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = _tanh(x[i]);
  }
}
template <typename T>
void ref_relu(const int n, const T* x, T* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0 ? x[i] : 0;
  }
}

template <typename T>
68 69
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
T
tensor-tang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
void TestAndBench(const int n, std::function<void(const int, const T*, T*)> tgt,
                  std::function<void(const int, const T*, T*)> ref) {
  std::vector<T> x(n);
  std::vector<T> ytgt(n), yref(n);
  RandomVec<T>(n, x.data());

  const T* x_data = x.data();
  T* ytgt_data = ytgt.data();
  T* yref_data = yref.data();
  auto st = GetCurrentUS();
  for (int i = 0; i < repeat; ++i) {
    tgt(n, x_data, ytgt_data);
  }
  auto mt = GetCurrentUS();
  for (int i = 0; i < repeat; ++i) {
    ref(n, x_data, yref_data);
  }
  auto et = GetCurrentUS();

M
minqiyang 已提交
98 99
  VLOG(3) << "Vec size " << n << ": refer takes: " << (et - mt) / repeat
          << " us, tgt takes: " << (mt - st) / repeat;
T
tensor-tang 已提交
100 101 102 103 104 105
  for (int i = 0; i < n; ++i) {
    EXPECT_NEAR(ytgt_data[i], yref_data[i], 1e-3);
  }
}

TEST(CpuVecTest, sigmoid) {
T
tensor-tang 已提交
106
  namespace platform = paddle::platform;
T
tensor-tang 已提交
107
  using namespace paddle::operators::math;  // NOLINT
108
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
T
tensor-tang 已提交
109
    TestAndBench<float>(sz, vec_sigmoid<float>, ref_sigmoid<float>);
T
tensor-tang 已提交
110 111 112 113 114
    TestAndBench<float>(sz, vec_sigmoid<float, platform::avx>,
                        ref_sigmoid<float>);
    TestAndBench<float>(sz, vec_sigmoid<float, platform::avx2>,
                        ref_sigmoid<float>);
    TestAndBench<float>(sz, vec_sigmoid<float, platform::avx512f>,
T
tensor-tang 已提交
115 116 117 118 119 120
                        ref_sigmoid<float>);
  }
  TestAndBench<double>(30, vec_sigmoid<double>, ref_sigmoid<double>);
}

TEST(CpuVecTest, tanh) {
T
tensor-tang 已提交
121
  namespace platform = paddle::platform;
T
tensor-tang 已提交
122
  using namespace paddle::operators::math;  // NOLINT
123
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
T
tensor-tang 已提交
124
    TestAndBench<float>(sz, vec_tanh<float>, ref_tanh<float>);
T
tensor-tang 已提交
125 126 127 128
    TestAndBench<float>(sz, vec_tanh<float, platform::avx>, ref_tanh<float>);
    TestAndBench<float>(sz, vec_tanh<float, platform::avx2>, ref_tanh<float>);
    TestAndBench<float>(sz, vec_tanh<float, platform::avx512f>,
                        ref_tanh<float>);
T
tensor-tang 已提交
129 130 131 132 133
  }
  TestAndBench<double>(30, vec_tanh<double>, ref_tanh<double>);
}

TEST(CpuVecTest, relu) {
T
tensor-tang 已提交
134
  namespace platform = paddle::platform;
T
tensor-tang 已提交
135
  using namespace paddle::operators::math;  // NOLINT
136
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
T
tensor-tang 已提交
137
    TestAndBench<float>(sz, vec_relu<float>, ref_relu<float>);
T
tensor-tang 已提交
138 139 140 141
    TestAndBench<float>(sz, vec_relu<float, platform::avx>, ref_relu<float>);
    TestAndBench<float>(sz, vec_relu<float, platform::avx2>, ref_relu<float>);
    TestAndBench<float>(sz, vec_relu<float, platform::avx512f>,
                        ref_relu<float>);
T
tensor-tang 已提交
142 143 144
  }
  TestAndBench<double>(30, vec_relu<double>, ref_relu<double>);
}
T
tensor-tang 已提交
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
template <typename T>
void compare_sum(size_t n, std::function<void(const size_t, const T*, T*)> tgt,
                 std::function<void(const size_t, const T*, T*)> ref) {
  std::vector<T> x(n);
  T ytgt_data, yref_data;
  RandomVec<T>(n, x.data(), static_cast<T>(-2), static_cast<T>(2));

  const T* x_data = x.data();
  tgt(n, x_data, &ytgt_data);
  ref(n, x_data, &yref_data);
  EXPECT_NEAR(ytgt_data, yref_data, 1e-3);
}

TEST(CpuVecTest, vec_sum) {
  namespace platform = paddle::platform;
  using namespace paddle::operators::math;  // NOLINT
  for (size_t sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
    compare_sum<float>(sz, vec_sum<float>, vec_sum<float, platform::isa_any>);
    compare_sum<float>(sz, vec_sum<float, platform::avx>,
                       vec_sum<float, platform::isa_any>);
  }
  compare_sum<double>(30U, vec_sum<double>, vec_sum<double, platform::isa_any>);
}

template <typename T>
void compare_clip(
    size_t n, T threshold,
    std::function<void(const size_t, const T, const T*, T*)> tgt,
    std::function<void(const size_t, const T, const T*, T*)> ref) {
  std::vector<T> x(n);
  std::vector<T> ytgt(n), yref(n);
  RandomVec<T>(n, x.data(), static_cast<T>(-2), static_cast<T>(2));

  const T* x_data = x.data();
  T* yref_data = yref.data();
  T* ytgt_data = ytgt.data();
  tgt(n, threshold, x_data, ytgt_data);
  ref(n, threshold, x_data, yref_data);
184
  for (size_t i = 0; i < n; ++i) {
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    EXPECT_NEAR(ytgt_data[i], yref_data[i], 1e-3);
  }
}

TEST(CpuVecTest, vec_clip) {
  namespace platform = paddle::platform;
  using namespace paddle::operators::math;  // NOLINT
  for (size_t sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
    compare_clip<float>(sz, -4.f, vec_clip<float>,
                        vec_clip<float, platform::isa_any>);
    compare_clip<float>(sz, -1.1f, vec_clip<float, platform::avx>,
                        vec_clip<float, platform::isa_any>);
  }
  compare_clip<double>(30U, 1.0, vec_clip<double>,
                       vec_clip<double, platform::isa_any>);
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
template <typename T>
void compare_mul(
    size_t n, std::function<void(const size_t, const T*, const T*, T*)> tgt,
    std::function<void(const size_t, const T*, const T*, T*)> ref) {
  std::vector<T> x(n), y(n);
  std::vector<T> ztgt(n), zref(n);

  RandomVec<T>(n, x.data(), static_cast<T>(-2), static_cast<T>(2));
  RandomVec<T>(n, y.data(), static_cast<T>(-2), static_cast<T>(2));

  const T* x_data = x.data();
  const T* y_data = y.data();
  T* ztgt_data = ztgt.data();
  T* zref_data = zref.data();

  tgt(n, x_data, y_data, ztgt_data);
  ref(n, x_data, y_data, zref_data);
  for (size_t i = 0; i < n; ++i) {
    EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
  }
}

TEST(CpuVecTest, vec_mul) {
  namespace platform = paddle::platform;
  using namespace paddle::operators::math;  // NOLINT
  for (size_t sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
    compare_mul<float>(sz, vec_mul<float>, vec_mul<float, platform::isa_any>);
    compare_mul<float>(sz, vec_mul<float, platform::avx>,
                       vec_mul<float, platform::isa_any>);
  }
  compare_mul<double>(30U, vec_mul<double>, vec_mul<double, platform::isa_any>);
}

template <typename T>
void compare_mul_reduce(
    size_t n, std::function<void(const size_t, const T*, const T*, T*)> tgt,
    std::function<void(const size_t, const T*, const T*, T*)> ref) {
  std::vector<T> x(n), y(n);
  T ztgt_data, zref_data;

  RandomVec<T>(n, x.data(), static_cast<T>(-2), static_cast<T>(2));
  RandomVec<T>(n, y.data(), static_cast<T>(-2), static_cast<T>(2));

  const T* x_data = x.data();
  const T* y_data = y.data();

  tgt(n, x_data, y_data, &ztgt_data);
  ref(n, x_data, y_data, &zref_data);
  EXPECT_NEAR(ztgt_data, zref_data, 1e-3);
}

TEST(CpuVecTest, vec_mul_reduce) {
  namespace platform = paddle::platform;
  using namespace paddle::operators::math;  // NOLINT
  for (size_t sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
    compare_mul_reduce<float>(sz, vec_mul_reduce<float>,
                              vec_mul_reduce<float, platform::isa_any>);
    compare_mul_reduce<float>(sz, vec_mul_reduce<float, platform::avx>,
                              vec_mul_reduce<float, platform::isa_any>);
  }
  compare_mul_reduce<double>(30U, vec_mul_reduce<double>,
                             vec_mul_reduce<double, platform::isa_any>);
}

T
tensor-tang 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
template <typename T>
void TestInplace(const int n, std::function<void(const int, const T*, T*)> tgt,
                 std::function<void(const int, const T*, T*)> ref) {
  std::vector<T> x(n);
  std::vector<T> ytgt(n), yref(n);
  RandomVec<T>(n, x.data());

  const T* x_data = x.data();
  T* yref_data = yref.data();
  T* ytgt_data = ytgt.data();
  std::memcpy(yref_data, x_data, sizeof(T) * n);
  std::memcpy(ytgt_data, x_data, sizeof(T) * n);

  ref(n, yref_data, yref_data);
  tgt(n, ytgt_data, ytgt_data);

  for (int i = 0; i < n; ++i) {
    EXPECT_NEAR(ytgt_data[i], yref_data[i], 1e-3);
  }
}

TEST(CpuVecTest, inplace_sigmoid) {
T
tensor-tang 已提交
288
  namespace platform = paddle::platform;
T
tensor-tang 已提交
289 290 291
  using namespace paddle::operators::math;  // NOLINT
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
    TestInplace<float>(sz, vec_sigmoid<float>, ref_sigmoid<float>);
T
tensor-tang 已提交
292 293 294 295 296
    TestInplace<float>(sz, vec_sigmoid<float, platform::avx>,
                       ref_sigmoid<float>);
    TestInplace<float>(sz, vec_sigmoid<float, platform::avx2>,
                       ref_sigmoid<float>);
    TestInplace<float>(sz, vec_sigmoid<float, platform::avx512f>,
T
tensor-tang 已提交
297 298 299 300 301 302
                       ref_sigmoid<float>);
  }
  TestInplace<double>(30, vec_sigmoid<double>, ref_sigmoid<double>);
}

TEST(CpuVecTest, inplace_tanh) {
T
tensor-tang 已提交
303
  namespace platform = paddle::platform;
T
tensor-tang 已提交
304 305 306
  using namespace paddle::operators::math;  // NOLINT
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
    TestInplace<float>(sz, vec_tanh<float>, ref_tanh<float>);
T
tensor-tang 已提交
307 308 309
    TestInplace<float>(sz, vec_tanh<float, platform::avx>, ref_tanh<float>);
    TestInplace<float>(sz, vec_tanh<float, platform::avx2>, ref_tanh<float>);
    TestInplace<float>(sz, vec_tanh<float, platform::avx512f>, ref_tanh<float>);
T
tensor-tang 已提交
310 311 312 313 314
  }
  TestInplace<double>(30, vec_tanh<double>, ref_tanh<double>);
}

TEST(CpuVecTest, inplace_relu) {
T
tensor-tang 已提交
315
  namespace platform = paddle::platform;
T
tensor-tang 已提交
316 317 318
  using namespace paddle::operators::math;  // NOLINT
  for (auto sz : {1, 2, 15, 16, 30, 32, 128, 200, 512}) {
    TestInplace<float>(sz, vec_relu<float>, ref_relu<float>);
T
tensor-tang 已提交
319 320 321
    TestInplace<float>(sz, vec_relu<float, platform::avx>, ref_relu<float>);
    TestInplace<float>(sz, vec_relu<float, platform::avx2>, ref_relu<float>);
    TestInplace<float>(sz, vec_relu<float, platform::avx512f>, ref_relu<float>);
T
tensor-tang 已提交
322 323 324
  }
  TestInplace<double>(30, vec_relu<double>, ref_relu<double>);
}