cross_entropy_op.cc 14.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/cross_entropy_op.h"
S
sneaxiy 已提交
16
#include <memory>
C
chengduo 已提交
17
#include <string>
18
#include <unordered_map>
Q
Qiao Longfei 已提交
19 20 21 22

namespace paddle {
namespace operators {

S
sneaxiy 已提交
23
class CrossEntropyOpBase : public framework::OperatorWithKernel {
S
sneaxiy 已提交
24 25 26 27
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
28 29 30
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true,
                      "Input(Label) should be not null.");
S
sneaxiy 已提交
31

32 33
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Y"), true,
                      "Output(Y) should be not null.");
S
sneaxiy 已提交
34 35 36 37

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    int rank = x_dims.size();
38

H
Hongyu Liu 已提交
39 40 41
    bool contain_unknown_dim = framework::contain_unknown_dim(x_dims) ||
                               framework::contain_unknown_dim(label_dims);
    bool check = ctx->IsRuntime() || !contain_unknown_dim;
42

S
sneaxiy 已提交
43 44 45 46 47 48
    if (check) {
      PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                        framework::slice_ddim(label_dims, 0, rank - 1),
                        "Input(X) and Input(Label) shall have the same shape "
                        "except the last dimension.");
    }
S
sneaxiy 已提交
49 50

    if (IsSoftLabel(ctx)) {
51 52 53 54
      PADDLE_ENFORCE_EQ(
          rank, label_dims.size(),
          "If Attr(soft_label) == true, Input(X) and Input(Label) "
          "shall have the same rank.");
S
sneaxiy 已提交
55 56 57 58 59 60
      if (check) {
        PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
                          "If Attr(soft_label) == true, the last dimension of "
                          "Input(X) and Input(Label) should be equal.");
      }
    } else {
61 62 63 64 65 66 67 68
      if (rank == label_dims.size()) {
        PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
                          "the last dimension of Input(Label) should be 1.");
      } else {
        PADDLE_ENFORCE_EQ(
            rank, label_dims.size() + 1,
            "The rank of Input(X) should be equal to Input(Label) plus 1.");
      }
S
sneaxiy 已提交
69 70
    }

71 72 73 74
    auto y_dims = label_dims;
    if (rank == label_dims.size()) {
      y_dims[rank - 1] = 1;
    }
S
sneaxiy 已提交
75 76 77 78 79 80 81 82 83 84 85 86
    ctx->SetOutputDim("Y", y_dims);
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
  }
S
sneaxiy 已提交
87 88 89 90

  virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
    return ctx->Attrs().Get<bool>("soft_label");
  }
S
sneaxiy 已提交
91 92
};

S
sneaxiy 已提交
93
class CrossEntropyGradientOpBase : public framework::OperatorWithKernel {
S
sneaxiy 已提交
94 95 96
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

S
sneaxiy 已提交
97
  void InferShape(framework::InferShapeContext* ctx) const {
98 99 100 101 102 103
    PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true,
                      "Input(Label) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Y")), true,
                      "Input(Y@GRAD) shoudl be not null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      "Output(X@GRAD) should be not null.");
S
sneaxiy 已提交
104

S
sneaxiy 已提交
105
    auto x_dims = GetXDim(ctx);
S
sneaxiy 已提交
106 107 108
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    int rank = x_dims.size();
109 110
    PADDLE_ENFORCE_EQ(dy_dims.size(), label_dims.size(),
                      "Input(Y@Grad) and Input(Y) should have the same rank.");
S
sneaxiy 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123

    bool check = true;
    if ((!ctx->IsRuntime()) && (framework::product(x_dims) <= 0 ||
                                framework::product(label_dims) <= 0)) {
      check = false;
    }

    if (check) {
      PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                        framework::slice_ddim(dy_dims, 0, rank - 1),
                        "The Input(X) and Input(Y@Grad) should have the same "
                        "shape except the last dimension.");
    }
124

S
sneaxiy 已提交
125 126
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD(VarNameWithXLoD(), framework::GradVarName("X"));
S
sneaxiy 已提交
127 128 129 130 131 132 133
  }

 protected:
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Y"))->type(),
        ctx.device_context());
  }

  virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
    return ctx->GetInputDim("X");
  }

  virtual const char* VarNameWithXLoD() const { return "X"; }

  virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
    return ctx->Attrs().Get<bool>("soft_label");
  }
};

class CrossEntropyOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
S
sneaxiy 已提交
156 157 158
  }
};

159
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
160
 public:
Y
Yu Yang 已提交
161
  void Make() override {
C
caoying03 已提交
162
    AddInput("X",
F
stash  
fengjiayi 已提交
163 164 165 166 167 168 169 170 171 172
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "probability computed by the previous operator, which is almost "
             "always the result of a softmax operator.");
    AddInput(
        "Label",
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. When soft_label is set "
        "to false, the last dimension size is 1; when soft_label is set to "
        "true, the last dimension size is equal to the number of classes.");
C
caoying03 已提交
173
    AddOutput("Y",
F
stash  
fengjiayi 已提交
174 175 176
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the cross entropy loss.");
C
caoying03 已提交
177 178 179
    AddAttr<bool>("soft_label",
                  "(bool, default false), a flag indicating whether to "
                  "interpretate the given labels as soft labels.")
180
        .SetDefault(false);
181 182 183 184 185
    AddAttr<int>("ignore_index",
                 "(int, default -100), Specifies a target value that is"
                 "ignored and does not contribute to the input gradient."
                 "Only valid if soft_label is set to False")
        .SetDefault(-100);
Q
Qiao Longfei 已提交
186
    AddComment(R"DOC(
187
CrossEntropy Operator.
Q
Qiao Longfei 已提交
188

F
stash  
fengjiayi 已提交
189 190 191 192 193 194
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs. 
The matrix's second dimension(row length) is as same as the original last 
dimension, and the first dimension(column length) is the product of all other 
original dimensions. Then the softmax computation will take palce on each raw 
of flattened matrixs.

195 196 197
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
198
    soft_label = false, Label[i, 0] indicates the class index for sample i:
199

K
Kexin Zhao 已提交
200
                $Y[i] = -\log(X[i, Label[i]])$
Q
Qiao Longfei 已提交
201

202
2) Soft-label cross-entropy:
203
    soft_label = true, Label[i, j] indicates the soft label of class j
204
    for sample i:
205

K
Kexin Zhao 已提交
206
                $Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}$
207

208
   Please make sure that in this case the summuation of each row of Label
209 210 211 212 213 214
   equals one.

3) One-hot cross-entropy with vecterized Input(Label):
     As a special case of 2), when each row of Input(Label) has only one
     non-zero element (equals 1), soft-label cross-entropy degenerates to a
     one-hot cross-entropy with one-hot label representation.
D
dangqingqing 已提交
215

K
Kexin Zhao 已提交
216 217 218
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

Q
Qiao Longfei 已提交
219 220 221
)DOC");
  }
};
C
chengduo 已提交
222

S
sneaxiy 已提交
223 224 225 226 227
class CrossEntropyGradientOp : public CrossEntropyGradientOpBase {
 public:
  using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;

  void InferShape(framework::InferShapeContext* ctx) const override {
228
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) should be not null.");
S
sneaxiy 已提交
229 230 231 232
    CrossEntropyGradientOpBase::InferShape(ctx);
  }
};

S
sneaxiy 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
class CrossEntropyGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("cross_entropy_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("Label", Input("Label"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

S
sneaxiy 已提交
250 251 252 253 254 255 256
class CrossEntropyOp2 : public CrossEntropyOpBase {
 public:
  using CrossEntropyOpBase::CrossEntropyOpBase;

  void InferShape(framework::InferShapeContext* ctx) const override {
    CrossEntropyOpBase::InferShape(ctx);

257 258
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
                      "Output(XShape) should be not null.");
S
sneaxiy 已提交
259

260 261
    PADDLE_ENFORCE_EQ(ctx->HasOutput("MatchX"), true,
                      "Output(MatchX) should be not null.");
S
sneaxiy 已提交
262 263 264 265
    auto x_dims = ctx->GetInputDim("X");
    auto x_dims_vec = framework::vectorize(x_dims);
    x_dims_vec.push_back(0);
    ctx->SetOutputDim("XShape", framework::make_ddim(x_dims_vec));
S
sneaxiy 已提交
266 267
    x_dims[x_dims.size() - 1] = 1;
    ctx->SetOutputDim("MatchX", x_dims);
S
sneaxiy 已提交
268 269 270
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

S
sneaxiy 已提交
271
 protected:
S
sneaxiy 已提交
272 273 274 275 276 277 278 279
  bool IsSoftLabel(framework::InferShapeContext* ctx) const override {
    return false;
  }
};

class CrossEntropyGradientOp2 : public CrossEntropyGradientOpBase {
 public:
  using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;
S
sneaxiy 已提交
280
  void InferShape(framework::InferShapeContext* ctx) const override {
281 282
    PADDLE_ENFORCE_EQ(ctx->HasInput("MatchX"), true,
                      "Input(MatchX) must exist");
S
sneaxiy 已提交
283 284
    CrossEntropyGradientOpBase::InferShape(ctx);
  }
S
sneaxiy 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

 protected:
  virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
    auto x_shape = ctx->GetInputDim("XShape");
    return framework::DDim(x_shape.Get(), x_shape.size() - 1);
  }

  virtual const char* VarNameWithXLoD() const { return "XShape"; }

  virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
    return false;
  }
};

class CrossEntropyOpMaker2 : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "probability computed by the previous operator, which is almost "
             "always the result of a softmax operator.");
    AddInput(
        "Label",
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. One hot Tensor.");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the cross entropy loss.");
    AddOutput("XShape", "Temporaily variable to save shape and LoD of X.");
S
sneaxiy 已提交
316 317
    AddOutput("MatchX",
              "X value that matches label, used for gradient computation.");
S
sneaxiy 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    AddAttr<int>("ignore_index",
                 "(int, default -100), Specifies a target value that is"
                 "ignored and does not contribute to the input gradient."
                 "Only valid if soft_label is set to False")
        .SetDefault(-100);
    AddComment(R"DOC(
Hard-label CrossEntropy Operator.

The input 'X' and 'Label' will first be logically flattened to 2-D matrixs. 
The matrix's second dimension(row length) is as same as the original last 
dimension, and the first dimension(column length) is the product of all other 
original dimensions. Then the softmax computation will take palce on each raw 
of flattened matrixs.

Only support hard label.

Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

)DOC");
  }
};

class CrossEntropyGradOpDescMaker2 : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("cross_entropy_grad2");
    op->SetInput("Label", Input("Label"));
S
sneaxiy 已提交
350
    op->SetInput("MatchX", Output("MatchX"));
S
sneaxiy 已提交
351 352 353 354 355
    op->SetInput("XShape", Output("XShape"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
S
sneaxiy 已提交
356 357
  }
};
S
sneaxiy 已提交
358

Q
Qiao Longfei 已提交
359 360 361
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
362
namespace ops = paddle::operators;
363 364
using CPUCtx = paddle::platform::CPUDeviceContext;

S
sneaxiy 已提交
365 366
REGISTER_OPERATOR(cross_entropy, ops::CrossEntropyOpBase,
                  ops::CrossEntropyOpMaker, ops::CrossEntropyOpInferVarType,
S
sneaxiy 已提交
367
                  ops::CrossEntropyGradOpDescMaker);
368
REGISTER_OPERATOR(cross_entropy_grad, ops::CrossEntropyGradientOp);
369 370
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<CPUCtx, float>,
                       ops::CrossEntropyOpKernel<CPUCtx, double>);
371
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
372 373
                       ops::CrossEntropyGradientOpKernel<CPUCtx, float>,
                       ops::CrossEntropyGradientOpKernel<CPUCtx, double>);
S
sneaxiy 已提交
374 375 376 377 378 379 380 381 382 383 384

REGISTER_OPERATOR(cross_entropy2, ops::CrossEntropyOp2,
                  ops::CrossEntropyOpMaker2, ops::CrossEntropyOpInferVarType,
                  ops::CrossEntropyGradOpDescMaker2);
REGISTER_OPERATOR(cross_entropy_grad2, ops::CrossEntropyGradientOp2);
REGISTER_OP_CPU_KERNEL(cross_entropy2,
                       ops::CrossEntropyOpKernel2<CPUCtx, float>,
                       ops::CrossEntropyOpKernel2<CPUCtx, double>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad2,
                       ops::CrossEntropyGradientOpKernel2<CPUCtx, float>,
                       ops::CrossEntropyGradientOpKernel2<CPUCtx, double>);