test_cond.py 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
18
import os
19 20 21 22 23 24
import unittest

import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
import paddle.fluid.framework as framework
25
from paddle.fluid.backward import append_backward
26
from paddle.fluid.framework import Program, program_guard
27 28 29
from simple_nets import simple_fc_net_with_inputs, batchnorm_fc_with_inputs

np.random.seed(123)
30 31


32
class TestCondInputOutput(unittest.TestCase):
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    def test_return_single_var(self):
        """
        pseudocode:

        if 0.23 < 0.1:
            return 2
        else:
            return -1
        """

        def true_func():
            return layers.fill_constant(shape=[2, 3], dtype='int32', value=2)

        def false_func():
            return layers.fill_constant(shape=[3, 2], dtype='int32', value=-1)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
            pred = layers.less_than(y, x)
            out = layers.cond(pred, true_func, false_func)
            # out is one tensor

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=[out.name])
        self.assertTrue(
            np.allclose(np.asarray(ret), np.full((3, 2), -1, np.int32)))

    def test_return_var_tuple(self):
        """
        pseudocode:

        if True:
            return 1, True
        else:
            return 3, 2
        """

        def true_func():
            return layers.fill_constant(
                shape=[1, 2], dtype='int32', value=1), layers.fill_constant(
                    shape=[2, 3], dtype='bool', value=True)

        def false_func():
            return layers.fill_constant(
                shape=[3, 4], dtype='float32', value=3), layers.fill_constant(
                    shape=[4, 5], dtype='int64', value=2)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            pred = layers.fill_constant(shape=[1], dtype='bool', value=True)
            out = layers.cond(pred, true_func, false_func)
            # out is a tuple containing 2 tensors

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=out)
        self.assertTrue(
            np.allclose(np.asarray(ret[0]), np.full((1, 2), 1, np.int32)))
        self.assertTrue(
            np.allclose(np.asarray(ret[1]), np.full((2, 3), True, np.bool)))

    def test_pass_and_modify_var(self):
        """
        pseudocode:
        for i in range(5):
            a = 7
            if i % 2 == 0:
                a = a * (i + 1)
            else:
                a = a - (i - 1)
        """

        def true_func(a, i):
            a = a * (i + 1)
            return a

        def false_func(a, i):
            a = a - (i - 1)
            return a

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            a = layers.fill_constant(shape=[3, 2, 1], dtype='int32', value=7)
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
            a = layers.cond(pred, lambda: true_func(a, i),
                            lambda: false_func(a, i))
        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        for feed_i in range(5):
            expected_a = 7 * (feed_i + 1) if feed_i % 2 == 0 else 8 - feed_i
            ret = exe.run(main_program,
                          feed={'i': np.full((1), feed_i, np.int32)},
                          fetch_list=[a])
            self.assertTrue(
                np.allclose(
                    np.asarray(ret), np.full((3, 2, 1), expected_a, np.int32)))

    def test_return_none(self):
        """
        pseudocode: test doing nothing in branches
        for i in range(5):
            if i % 2 == 0:
                pass
            else:
                pass
        """

        def true_func():
            pass

        def false_func():
            return None

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
            out1 = layers.cond(pred, true_func, false_func)
            out2 = layers.cond(pred, None, false_func)
            out3 = layers.cond(pred, true_func, None)
        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        for feed_i in range(5):
            # Test that output is None is runnable
            exe.run(main_program, feed={'i': np.full((1), feed_i, np.int32)})
            self.assertIsNone(out1)
            self.assertIsNone(out2)
            self.assertIsNone(out3)

    def test_wrong_structure_exception(self):
        """
        test returning different number of tensors cannot merge into output
        """

        def func_return_none():
            return None

        def func_return_one_tensor():
            return layers.fill_constant(shape=[2, 7], dtype='int32', value=3)

        def func_return_two_tensors():
            return layers.fill_constant(
                shape=[3, 1], dtype='int32', value=7), layers.fill_constant(
                    shape=[3, 1], dtype='int32', value=8)

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='int32')
            pred = ((i % 2) == 0)
195
            with self.assertRaises(TypeError):
196 197
                out = layers.cond(pred, i, func_return_one_tensor)

198
            with self.assertRaises(TypeError):
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
                out = layers.cond(pred, func_return_one_tensor, np.asarray([3]))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_none,
                                  func_return_one_tensor)
            self.assertTrue(
                "Incompatible return values of true_fn and false_fn in cond" in
                str(e.exception))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_two_tensors,
                                  func_return_none)
            self.assertTrue(
                "Incompatible return values of true_fn and false_fn in cond" in
                str(e.exception))

            with self.assertRaises(Exception) as e:
                out = layers.cond(pred, func_return_one_tensor,
                                  func_return_two_tensors)
            self.assertTrue(
                "Incompatible return values of true_fn and false_fn in cond" in
                str(e.exception))

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    def test_extremely_simple_net_with_op_in_condition(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=1.23)
            a.stop_gradient = False
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=1.25)
            b.stop_gradient = False
            out = layers.cond(a - b < -1.0, lambda: a, lambda: b)
        append_backward(out)

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=[out, a.grad_name, b.grad_name])
        # Note: fill_constant has loss of precision, you have to assertEqual
        # with values doens't lose precision in float-point number.
        self.assertEqual(ret[0][0], 1.25)
        self.assertEqual(ret[1][0], 0.0)
        self.assertEqual(ret[2][0], 1.0)

245

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
class TestCondNestedControlFlow(unittest.TestCase):
    def test_cond_inside_cond(self):
        """
        pseudocode:
        for i in range(1, 10):
            a = 2 * i
            if i < 5:
                if i >= 3:
                    return a + a 
                else:
                    return a - a
            else:
                if i < 8:
                    return a * a
                else:
                    return a / a
        """

        def less_than_branch(i, a):
            return layers.cond(i >= 3.0, lambda: layers.elementwise_add(a, a),
                               lambda: layers.elementwise_sub(a, a))

        def greater_equal_branch(i, a):
            return layers.cond(i < 8.0, lambda: layers.elementwise_mul(a, a),
                               lambda: layers.elementwise_div(a, a))

        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            i = fluid.data(name="i", shape=[1], dtype='float32')
            a = 2.0 * i
            out = layers.cond(i < 5.0, lambda: less_than_branch(i, a),
                              lambda: greater_equal_branch(i, a))
            mean = layers.mean(out)
            append_backward(mean)

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        for feed_i in range(0, 10):
            expected_a = 2.0 * feed_i
            if feed_i < 5:
                expected_ret = expected_a + expected_a if feed_i >= 3 else 0.0
                expected_a_grad = 2.0 if feed_i >= 3 else 0.0
            else:
                expected_ret = expected_a * expected_a if feed_i < 8 else 1.0
                expected_a_grad = 2.0 * expected_a if feed_i < 8 else 0.0
            ret = exe.run(main_program,
                          feed={'i': np.full((1), feed_i, np.float32)},
                          fetch_list=[out.name, a.grad_name])
            self.assertEqual(ret[0][0], expected_ret)
            self.assertEqual(ret[1][0], expected_a_grad)

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    def test_cond_op_in_condition(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()

        with fluid.program_guard(main_program, startup_program):
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=1.23)
            a.stop_gradient = False
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=1.24)
            b.stop_gradient = False
            out = fluid.layers.cond(
                a < b,
                lambda: fluid.layers.cond(a - b < -1.0, lambda: fluid.layers.elementwise_add(a, b), lambda: fluid.layers.elementwise_mul(a, b)),
                lambda: fluid.layers.cond(a == b, lambda: fluid.layers.elementwise_sub(a, b), lambda: fluid.layers.elementwise_pow(a, b))
            )
            append_backward(out)

        place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
        exe = fluid.Executor(place)
        ret = exe.run(main_program, fetch_list=[out, a.grad_name, b.grad_name])
        # Note: fill_constant has loss of precision, so we assertAlmostEqual.    
        self.assertAlmostEqual(ret[0][0], 1.5252)
        self.assertAlmostEqual(ret[1][0], 1.24)
        self.assertAlmostEqual(ret[2][0], 1.23)

326

327
class TestCondBackward(unittest.TestCase):
328
    def backward_value_helper(self, cond_func, use_cuda, use_parallel_exe):
329 330 331 332 333 334 335 336 337 338 339 340 341 342
        """
        Helper function that compares calculated backward value is close to dy/dx
        """
        main_program = Program()
        main_program.random_seed = 123
        startup_program = Program()
        startup_program.random_seed = 123
        with program_guard(main_program, startup_program):
            img = fluid.data(name='image', shape=[-1, 9], dtype='float32')
            img.stop_gradient = False
            label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
            i = fluid.data(name="i", shape=[1], dtype='int32')
            loss = cond_func(i, img, label)
            append_backward(loss)
343
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
344 345 346
        exe = fluid.Executor(place)
        exe.run(startup_program)

347 348 349 350 351 352 353 354 355
        num_devices = 1
        if use_parallel_exe:
            os.environ['CPU_NUM'] = str(2)
            exe = fluid.ParallelExecutor(
                use_cuda=use_cuda,
                main_program=main_program,
                loss_name=loss.name)
            num_devices = exe.device_count

356 357 358 359 360
        delta = 0.005
        for feed_i in range(0, 10):
            feed_img = np.random.random(size=[1, 9]).astype(np.float32)
            feed_label = np.random.randint(
                low=0, high=10, size=[1, 1], dtype=np.int64)
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
            if use_parallel_exe:
                img_grad, loss_value = exe.run(
                    feed={
                        'i': np.full((num_devices), feed_i, np.int32),
                        'image': np.repeat(
                            feed_img, num_devices, axis=0),
                        'label': np.repeat(
                            feed_label, num_devices, axis=0)
                    },
                    fetch_list=[img.grad_name, loss.name])
            else:
                img_grad, loss_value = exe.run(
                    main_program,
                    feed={
                        'i': np.full((1), feed_i, np.int32),
                        'image': feed_img,
                        'label': feed_label
                    },
                    fetch_list=[img.grad_name, loss.name])
380

381
            numerical_grad = np.zeros(shape=[num_devices, 9], dtype=np.float32)
382 383 384
            feed_img_delta = np.copy(feed_img)
            for j in range(9):
                feed_img_delta[0][j] = feed_img[0][j] + delta
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
                if use_parallel_exe:
                    loss_delta = exe.run(feed={
                        'i': np.full((num_devices), feed_i, np.int32),
                        'image': np.repeat(
                            feed_img_delta, num_devices, axis=0),
                        'label': np.repeat(
                            feed_label, num_devices, axis=0)
                    },
                                         fetch_list=[loss.name])
                    multi_device_grad = (
                        loss_delta[0] - loss_value[0]) / delta / num_devices
                    for d in range(num_devices):
                        numerical_grad[d][j] = multi_device_grad[d]
                else:
                    loss_delta = exe.run(main_program,
                                         feed={
                                             'i': np.full((1), feed_i,
                                                          np.int32),
                                             'image': feed_img_delta,
                                             'label': feed_label
                                         },
                                         fetch_list=[loss.name])
                    numerical_grad[0][j] = (
                        loss_delta[0] - loss_value[0]) / delta
409 410 411 412 413
                feed_img_delta[0][j] = feed_img[0][j]
            self.assertTrue(
                np.isclose(
                    img_grad, numerical_grad, atol=0.05, rtol=0.05).all())

414
    def add_optimizer_helper(self, cond_func, use_cuda, use_parallel_exe):
415 416 417 418 419 420 421 422 423 424 425 426 427
        """
        Test that program is runnable when add optimizer
        """
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            img = fluid.data(name='image', shape=[-1, 784], dtype='float32')
            label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
            i = fluid.data(name="i", shape=[1], dtype='int32')
            loss = cond_func(i, img, label)
            optimizer = fluid.optimizer.SGD(learning_rate=0.1)
            optimizer.minimize(loss)

428
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
429 430
        exe = fluid.Executor(place)
        exe.run(startup_program)
431 432 433 434 435 436 437
        if use_parallel_exe:
            os.environ['CPU_NUM'] = str(2)
            exe = fluid.ParallelExecutor(
                use_cuda=use_cuda,
                main_program=main_program,
                loss_name=loss.name)
            num_devices = exe.device_count
438 439 440 441 442

        for feed_i in range(0, 10):
            feed_img = np.random.random(size=[16, 784]).astype(np.float32)
            feed_label = np.random.randint(
                low=0, high=10, size=[16, 1], dtype=np.int64)
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
            if use_parallel_exe:
                exe.run(feed={
                    'i': np.full((num_devices), feed_i, np.int32),
                    'image': np.repeat(
                        feed_img, num_devices, axis=0),
                    'label': np.repeat(
                        feed_label, num_devices, axis=0)
                },
                        fetch_list=[loss.name])
            else:
                exe.run(main_program,
                        feed={
                            'i': np.full((1), feed_i, np.int32),
                            'image': feed_img,
                            'label': feed_label
                        },
                        fetch_list=[loss])
460 461 462 463 464 465 466 467

    def test_cond_backward(self):
        def cond_func(i, img, label):
            predicate = ((i % 2) == 0)
            return layers.cond(predicate,
                               lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                               lambda: batchnorm_fc_with_inputs(img, label, class_num=10))

468 469 470 471 472 473 474
        for use_parallel_exe in [False, True]:
            self.backward_value_helper(cond_func,
                                       core.is_compiled_with_cuda(),
                                       use_parallel_exe)
            self.add_optimizer_helper(cond_func,
                                      core.is_compiled_with_cuda(),
                                      use_parallel_exe)
475 476 477 478 479 480 481 482 483 484 485 486 487 488

    def test_half_nested_cond_backward(self):
        def branch(i, img, label):
            return layers.cond((i % 2) == 0, lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                               lambda: batchnorm_fc_with_inputs(img, label, class_num=10))

        def cond_func_simple_net_at_true(i, img, label):
            return layers.cond(i < 5, lambda: branch(i, img, label),
                               lambda: layers.mean(img))

        def cond_func_simple_net_at_false(i, img, label):
            return layers.cond(i < 5, lambda: layers.mean(img),
                               lambda: branch(i, img, label))

489 490 491 492 493 494 495 496 497 498 499 500 501
        for use_parallel_exe in [False, True]:
            self.backward_value_helper(cond_func_simple_net_at_true,
                                       core.is_compiled_with_cuda(),
                                       use_parallel_exe)
            self.add_optimizer_helper(cond_func_simple_net_at_true,
                                      core.is_compiled_with_cuda(),
                                      use_parallel_exe)
            self.backward_value_helper(cond_func_simple_net_at_false,
                                       core.is_compiled_with_cuda(),
                                       use_parallel_exe)
            self.add_optimizer_helper(cond_func_simple_net_at_false,
                                      core.is_compiled_with_cuda(),
                                      use_parallel_exe)
502 503 504 505 506 507 508 509 510 511 512 513 514 515

    def test_nested_cond_backward(self):
        def branch(i, img, label, mod_two):
            if mod_two:
                predicate = ((i % 2) == 0)
            else:
                predicate = ((i % 2) != 0)
            return layers.cond(predicate, lambda: simple_fc_net_with_inputs(img, label, class_num=10),
                               lambda: batchnorm_fc_with_inputs(img, label, class_num=10))

        def cond_func(i, img, label):
            return layers.cond(i < 5, lambda: branch(i, img, label, True),
                               lambda: branch(i, img, label, False))

516 517 518 519 520 521 522
        for use_parallel_exe in [False, True]:
            self.backward_value_helper(cond_func,
                                       core.is_compiled_with_cuda(),
                                       use_parallel_exe)
            self.add_optimizer_helper(cond_func,
                                      core.is_compiled_with_cuda(),
                                      use_parallel_exe)
523 524


525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
class TestCondWithError(unittest.TestCase):
    def test_input_type_error(self):
        main_program = framework.Program()
        startup_program = framework.Program()
        with framework.program_guard(main_program, startup_program):
            pred = fluid.data(name='y', shape=[1], dtype='bool')

            def func():
                return pred

            with self.assertRaises(TypeError):
                layers.cond(None, func, func)

            with self.assertRaises(TypeError):
                layers.cond(pred, func, set())

            with self.assertRaises(TypeError):
                layers.cond(pred, set(), func)

            with self.assertRaises(TypeError):
                layers.cond(pred, func, func, set())


548 549
if __name__ == '__main__':
    unittest.main()