initializer.py 31.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18 19
from . import core
from .framework import in_dygraph_mode
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
from .core import VarDesc
W
Wu Yi 已提交
23
from . import unique_name
24

25
__all__ = [
26 27 28
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
    'MSRA', 'force_init_on_cpu', 'init_on_cpu', 'ConstantInitializer',
    'UniformInitializer', 'NormalInitializer', 'TruncatedNormalInitializer',
29 30
    'XavierInitializer', 'BilinearInitializer', 'MSRAInitializer',
    'NumpyArrayInitializer'
31
]
32

33 34 35 36
_force_init_on_cpu_ = False


def force_init_on_cpu():
Q
qiaolongfei 已提交
37 38 39
    """
    The flag of whether force to init variables on CPU.

Q
Qiao Longfei 已提交
40 41
    Returns:
        bool: the state if we should force init on CPU.
42

Q
qiaolongfei 已提交
43
    Examples:
Q
Qiao Longfei 已提交
44

Q
qiaolongfei 已提交
45 46
        .. code-block:: python

X
xsrobin 已提交
47 48 49 50
            import paddle.fluid as fluid
            if fluid.initializer.force_init_on_cpu():
                step = fluid.layers.create_global_var(
                    shape=[2,3], value=1.0, dtype='float32')
Q
qiaolongfei 已提交
51 52

    """
53 54 55
    return _force_init_on_cpu_


S
rename  
sneaxiy 已提交
56
@signature_safe_contextmanager
57 58
def init_on_cpu():
    """
Q
qiaolongfei 已提交
59
    Force the variable to be inited on CPU.
60 61

    Examples:
Q
qiaolongfei 已提交
62 63
        .. code-block:: python

X
xsrobin 已提交
64 65 66 67
            import paddle.fluid as fluid
            with fluid.initializer.init_on_cpu():
                step = fluid.layers.create_global_var(
                    shape=[2,3], value=1.0, dtype='float32')
68 69 70 71 72 73 74 75 76

    """
    global _force_init_on_cpu_

    pre_state = force_init_on_cpu()
    _force_init_on_cpu_ = True
    yield
    _force_init_on_cpu_ = pre_state

77 78 79 80 81 82 83 84 85 86

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
87
    def __init__(self):
88 89 90 91 92 93 94
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

130 131 132

class ConstantInitializer(Initializer):
    """Implements the constant initializer
133 134

    Args:
D
Double_V 已提交
135
        value (float32): constant value to initialize the variable 
136 137 138 139

    Examples:
        .. code-block:: python

140
    	    import paddle.fluid as fluid
D
Double_V 已提交
141
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
142 143 144
	    fc = fluid.layers.fc(input=x, size=10,
    		param_attr=fluid.initializer.Constant(value=2.0))

145 146
    """

147
    def __init__(self, value=0.0, force_cpu=False):
148 149 150
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
151
        self._force_cpu = force_cpu
152 153 154 155 156 157 158 159 160 161 162 163 164 165

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

181
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
182
        op = block._prepend_op(
183
            type="fill_constant",
184
            outputs={"Out": out_var},
185 186
            attrs={
                "shape": var.shape,
187
                "dtype": int(out_dtype),
188 189
                "value": float(self._value),
                'force_cpu': self._force_cpu or force_init_on_cpu()
M
minqiyang 已提交
190 191
            },
            stop_gradient=True)
192 193 194 195 196 197 198 199 200

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
201
        if not framework.in_dygraph_mode():
202
            var.op = op
203 204 205 206
        return op


class UniformInitializer(Initializer):
207
    """Implements the random uniform distribution initializer
208 209 210 211 212

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
213 214 215 216 217 218
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
219 220 221 222

    Examples:
        .. code-block:: python

X
xiaoting 已提交
223
            import paddle.fluid as fluid
224
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
225
            fc = fluid.layers.fc(input=x, size=10,
226
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
227 228
    """

229 230 231 232 233 234 235
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
236 237
        assert low is not None
        assert high is not None
238
        assert high >= low
239
        assert seed is not None
240 241 242 243 244
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
245 246 247 248
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
249 250 251
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
267 268
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
269

X
polish  
Xin Pan 已提交
270
        # to be compatible of fp16 initializers
W
Wu Yi 已提交
271 272 273
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
274 275
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
276 277 278 279 280 281 282 283
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
284
        op = block._prepend_op(
285
            type="uniform_random",
286
            inputs={},
W
Wu Yi 已提交
287
            outputs={"Out": out_var},
288 289
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
290
                "dtype": out_dtype,
291 292
                "min": self._low,
                "max": self._high,
293 294 295 296
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
297 298
            },
            stop_gradient=True)
W
Wu Yi 已提交
299 300 301 302 303 304 305 306 307

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
308
        if not framework.in_dygraph_mode():
309
            var.op = op
310
        return op
311 312 313


class NormalInitializer(Initializer):
314 315 316 317 318 319 320 321 322 323
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
324
            import paddle.fluid as fluid
325
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
326 327
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
328

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
354 355
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
356 357 358 359 360

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
361 362
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
363 364 365 366 367 368 369 370
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
371
        op = block._prepend_op(
372
            type="gaussian_random",
W
Wu Yi 已提交
373
            outputs={"Out": out_var},
374 375
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
376
                "dtype": out_dtype,
377 378
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
379 380
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
381 382
            },
            stop_gradient=True)
W
Wu Yi 已提交
383 384 385 386 387 388 389 390

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
391
        if not framework.in_dygraph_mode():
392
            var.op = op
393
        return op
394 395


396 397 398 399 400 401 402 403 404 405 406
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
407
            import paddle.fluid as fluid
408
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
409 410 411 412 413 414 415 416
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
417
        super(TruncatedNormalInitializer, self).__init__()
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add truncated normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
438 439 440 441 442 443

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
444
                    ['truncated_gaussian_random', var.name, 'tmp'])),
445 446 447 448 449 450 451 452
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

453 454
        op = block._prepend_op(
            type="truncated_gaussian_random",
455
            outputs={"Out": out_var},
456 457
            attrs={
                "shape": var.shape,
458
                "dtype": out_dtype,
459 460 461
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
462 463
            },
            stop_gradient=True)
464 465 466 467 468 469 470 471

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
472
        if not framework.in_dygraph_mode():
473
            var.op = op
474 475 476
        return op


477
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
478
    """
479
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
480 481 482
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
483 484 485

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
486 487 488 489 490 491
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

492
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
493
    is
494

Q
qiaolongfei 已提交
495
    .. math::
496

Q
qiaolongfei 已提交
497
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
498 499


Q
qiaolongfei 已提交
500
    Args:
X
xiaoting 已提交
501 502
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
503
                inferred from the variable.
X
xiaoting 已提交
504
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
505 506 507 508 509 510 511 512 513
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
514
            import paddle.fluid as fluid
X
xiaoting 已提交
515
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
516 517 518 519 520 521 522
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
550 551 552
        if self._seed == 0:
            self._seed = block.program.random_seed

553 554 555 556 557 558 559 560 561 562 563 564 565 566
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

567 568
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
569
            op = block._prepend_op(
570
                type="uniform_random",
571
                inputs={},
572
                outputs={"Out": out_var},
573
                attrs={
574 575
                    "shape": out_var.shape,
                    "dtype": out_dtype,
576 577 578
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
579 580
                },
                stop_gradient=True)
581 582 583

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
584
            op = block._prepend_op(
585
                type="gaussian_random",
586
                outputs={"Out": out_var},
587
                attrs={
588 589
                    "shape": out_var.shape,
                    "dtype": out_dtype,
590 591 592
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
593 594
                },
                stop_gradient=True)
595 596 597 598 599 600 601 602 603

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
604
        if not framework.in_dygraph_mode():
605
            var.op = op
606
        return op
607 608 609 610 611 612


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
632 633 634
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
635 636 637 638 639 640

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
641 642

            import paddle.fluid as fluid
D
Double_V 已提交
643
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
644 645
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
646

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
677 678 679
        if self._seed == 0:
            self._seed = block.program.random_seed

680 681 682 683 684 685 686 687 688 689 690 691 692 693
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

694 695
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
696
            op = block._prepend_op(
697
                type="uniform_random",
698
                inputs={},
699
                outputs={"Out": out_var},
700
                attrs={
701 702
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
703 704 705
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
706 707
                },
                stop_gradient=True)
708 709 710

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
711
            op = block._prepend_op(
712
                type="gaussian_random",
713
                outputs={"Out": out_var},
714
                attrs={
715 716
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
717 718 719
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
720 721
                },
                stop_gradient=True)
722 723 724 725 726 727 728 729 730

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
731
        if not framework.in_dygraph_mode():
732
            var.op = op
733
        return op
734 735


736
class BilinearInitializer(Initializer):
737
    """
738 739 740
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
741 742 743 744 745

    Examples:

        .. code-block:: python

X
xsrobin 已提交
746
            import paddle.fluid as fluid
747
            import math
X
xsrobin 已提交
748 749
            factor = 2
            C = 2
D
Double_V 已提交
750 751
            B = 8
            H = W = 32
X
xsrobin 已提交
752 753 754
            w_attr = fluid.param_attr.ParamAttr(
                learning_rate=0., 
                regularizer=fluid.regularizer.L2Decay(0.),
755
                initializer=fluid.initializer.Bilinear())
D
Double_V 已提交
756
            x = fluid.data(name="data", shape=[B, 3, H, W], 
X
xsrobin 已提交
757 758 759 760 761 762 763 764 765 766 767
                                  dtype="float32")
            conv_up = fluid.layers.conv2d_transpose(
                input=x,
                num_filters=C,
                output_size=None,
                filter_size=2 * factor - factor % 2,
                padding=int(math.ceil((factor - 1) / 2.)),
                stride=factor,
                groups=C,
                param_attr=w_attr,
                bias_attr=False)
768 769

    Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
770 771 772 773 774
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
775 776
    interpolation unchanged during training.

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

    def __call__(self, var, block):
        """Add biliear initialization ops for a variable

        Args:
            var (Variable): Variable that needs to be initialized.
            block (Block): The block in which initialization ops should
                           be added.

        Returns:
793
            Operator: the initialization op
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

        Raises:
            ValueError: If type of `var` and `block` is not right.
                        If the shape of `var` size is not 4 and
                        var.shape[2] != var.shape[3].
        """
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
839 840 841 842 843 844 845 846
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
847
            outputs={'Out': [out_var]},
848
            attrs={
849
                'dtype': out_dtype,
850 851 852
                'shape': list(shape),
                value_name: values
            })
853 854 855 856 857 858 859 860 861

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
862
        if not framework.in_dygraph_mode():
863
            var.op = op
864 865 866
        return op


867 868
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
869
    This op initialize the variable by numpy array.
870 871 872 873

    Args:
        value (numpy): numpy array to initialize the variable

874 875 876
    Returns:
        A Tensor variable initialized by numpy.

877 878 879
    Examples:
        .. code-block:: python

880
            import paddle.fluid as fluid
881 882
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

923
        # Initialization Ops should be prepended and not appended
924
        if out_dtype == VarDesc.VarType.FP32:
925
            value_name = "fp32_values"
926 927
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
928
            value_name = "int32_values"
929
            values = [int(v) for v in np_value.flat]
930 931
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
932
        if self._value.size > 1024 * 1024 * 1024:
933 934 935 936
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
937
            outputs={'Out': out_var},
938
            attrs={
939
                'dtype': out_dtype,
940
                'shape': list(self._value.shape),
941 942 943
                value_name: values
            },
            stop_gradient=True)
944 945 946 947 948 949 950 951 952

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
953
        if not framework.in_dygraph_mode():
954
            var.op = op
955 956 957
        return op


958 959 960 961 962 963 964 965 966 967 968 969
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
970
TruncatedNormal = TruncatedNormalInitializer
971 972
Xavier = XavierInitializer
MSRA = MSRAInitializer
973
Bilinear = BilinearInitializer