lookup_table_op.cc 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/lookup_table_op.h"
16
#include "paddle/framework/var_type_inference.h"
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("W"),
                   "Input(W) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
                   "Input(Ids) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LookupTableOp should not be null.");

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");

36 37 38
    PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
    PADDLE_ENFORCE_EQ(ids_dims[1], 1);

Q
Qiao Longfei 已提交
39 40
    ctx->SetOutputDim("Out", {ids_dims[0], table_dims[1]});
    ctx->ShareLoD("Ids", /*->*/ "Out");
41
  }
Y
Yu Yang 已提交
42

43
 protected:
Y
Yu Yang 已提交
44 45 46 47
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.Input<Tensor>("W")->type());
  }
48 49 50 51
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Q
Qiao Longfei 已提交
52 53
  LookupTableOpMaker(framework::OpProto* proto,
                     framework::OpAttrChecker* op_checker)
54 55 56 57 58 59
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("W",
             "An input represents embedding tensors,"
             " which is a learnable parameter.");
    AddInput("Ids",
             "An input with type int32 or int64"
60 61 62
             "contains the ids to be looked up in W."
             "Ids must be a column vector with rank = 2."
             "The 2nd dimension size must be 1");
63
    AddOutput("Out", "The lookup results, which have the same type with W.");
64
    AddAttr<bool>("is_sparse", "Sparse update").SetDefault(false);
65 66 67 68 69 70 71
    AddComment(R"DOC(
This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

The input `Ids` can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD with input `Ids`.
)DOC");
72 73 74
  }
};

75 76 77 78 79 80 81 82 83
class LookupTableOpGradDescMaker
    : public framework::DefaultGradOpDescMaker<true> {
  using ::paddle::framework::DefaultGradOpDescMaker<
      true>::DefaultGradOpDescMaker;

 protected:
  virtual std::string GradOpType() const { return "lookup_table_grad"; }
};

84 85 86 87
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

88
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
89 90
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
91
  }
Y
Yu Yang 已提交
92

93
 protected:
Y
Yu Yang 已提交
94 95 96 97
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(ctx.Input<Tensor>("W")->type());
  }
98 99
};

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDescBind& op_desc,
                  framework::BlockDescBind* block) const override {
    auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
      block->Var(out_var_name)->SetType(framework::VarDesc::SELECTED_ROWS);
    } else {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
      block->Var(out_var_name)->SetType(framework::VarDesc::LOD_TENSOR);
    }
  }
};

119 120 121 122
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
123 124 125 126 127 128 129 130 131
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp,
                  ops::LookupTableOpGradDescMaker, ops::LookupTableOpMaker);
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
                       ops::LookupTableKernel<double>);
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);