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QUANTUM APPROXIMATE OPTIMIZATION

ALGORITHM (QAOA)

 

PREPARATION  

This document provides an interactive experience to show how the quantum approximate 
optimization algorithm (QAOA) [1] works in the Paddle Quantum. 

To get started, let us import some necessary libraries and functions：

BACKGROUND  

QAOA is one of quantum algorithms which can be implemented on near-term quantum 
processors, also called as noisy intermediate-scale quantum (NISQ) processors, and may 
have wide applications in solving hard computational problems.  For example, it could be 
applied to tackle a large family of optimization problems, named as the quadratic 
unconstrained binary optimization (QUBO) which is ubiquitous in the computer science and 
operation research. Basically, this class can be modeled with the form of

import os
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
 
from paddle import fluid
from paddle_quantum.circuit import UAnsatz
from paddle_quantum.utils import pauli_str_to_matrix
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where s are binary parameters and coefficients  refer to the weight associated to . 
Indeed, it is usually extremely difficult for classical computers to give the exact optimal 
solution, while QAOA provides an alternative approach which may have a speedup 
advantage over classical ones to solve these hard problems.

QAOA works as follows: The above optimization problem is first mapped to another problem 
of finding the ground energy or/and the corresponding ground state for a complex many-
body Hamiltonian, e.g., the well-known Ising model or spin-glass model in many-body physics. 
In this tutorial, we use the Max-Cut problem in graph theory to explain how QAOA works. 
Essentially, the Max-cut problem is transformed into a problem of finding the smallest 
eigenvalue and the corresponding eigenvector(s) for a real diagonal matrix . Then, QAOA 
designates a specific routine with adjustable parameters to approximately find the best 
solution. Moreover, to accomplish the task, these parameters could be updated via some 
rules set by fast classical algorithms, such as gradient-free or gradient-based methods. Thus, it 
is also a quantum-classical hybrid algorithm just as the variational quantum eigensolver 
(VQE).

EXAMPLE  

1. Max-Cut problem  
Given a graph  composed of  nodes and  edges, the problem is to find a cut protocol 
which divides the node set into two complementary subsets  and  such that the number 
of edges between these sets is as large as possible. For example, consider the ring case with 
four nodes as shown in the figure.

 



Thus, given a cut protocol, if the node  belongs to the set , then it is assigned to , 
while  for . Then, for any edge connecting nodes  and , if both nodes are in 
the same set  or , then there is ; otherwise, . Hence, the cut problem 
can be formulated as the optimization problem 

Here, the weight  are set to  for all edges. Indeed, any feasible solution to the above 
problem can be described by a bitstring . Moreover, we need to 
search over all possible bitstrings of  to find its optimal solution, which becomes 
computionally hard for classical algorithms.

Two methods are provided to pre-process this optimization problem, i.e., to input the given 
graph with/without weights: 

Method 1 generates the graph via its full description of nodes and edges,
Method 2 specifies the graph via its adjacency matrix.

def generate_graph(N, GRAPHMETHOD):
    """
    It plots an N-node graph which is specified by Method 1 or 2.
    
    Args:
        N: number of nodes (vertices) in the graph
        METHOD: choose which method to generate a graph
    Returns:
        the specific graph and its adjacency matrix
    """
    # Method 1 generates a graph by self-definition
    if GRAPHMETHOD == 1:
        print("Method 1 generates the graph from self-definition\
               using EDGE description")
        graph = nx.Graph()
        graph_nodelist=range(N)
        graph.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0)])
        graph_adjacency = nx.to_numpy_matrix(
                          graph, nodelist=graph_nodelist)
    # Method 2 generates a graph by using its 
    # adjacency matrix directly
    elif GRAPHMETHOD == 2:
        print("Method 2 generates the graph from networks\
               using adjacency matrix")
        graph_adjacency = np.array([[0, 1, 0, 1], [1, 0, 1, 0], 
                                    [0, 1, 0, 1], [1, 0, 1, 0]])
        graph = nx.Graph(graph_adjacency)
    else:
        print("Method doesn't exist ")
 
    return graph, graph_adjacency
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In this notebook, Method 1 is used to process and then visualize the given graph. Note that 
the node label starts from  to  in both methods for an -node graph. 

Here, we need to specify:

number of nodes: 
which method to preprocess the graph: GRAPHMETHOD = 1 

 

 

 

# number of qubits or number of nodes in the graph
N=4  
classical_graph, classical_graph_adjacency= generate_graph(N, 
GRAPHMETHOD=1)
print(classical_graph_adjacency)
 
pos = nx.circular_layout(classical_graph)
nx.draw(classical_graph, pos, width=4, with_labels=True, 
font_weight='bold')
plt.show()
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Method 1 generates the graph from self-definition using EDGE 
description
[[0. 1. 0. 1.]
 [1. 0. 1. 0.]
 [0. 1. 0. 1.]
 [1. 0. 1. 0.]]
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2. Encoding  
This step encodes the classical optimization problem to its quantum version. Using the 

transformation  and , the binary parameter  is 

encoded as the eigenvalues of the Pauli-Z operator acting on the single qubit, i.e., 

. It yields that the objective function in the classical optimization problem 

is transformed to the Hamiltonian

Here, for simplicity  stands for the tensor product  which represents that Pauli-Z 
operator acts on each qubit  and the identity operation is imposed on the rest. And the 
Max-Cut problem is mapped to the following quantum optimization problem

where the state vector  describes a -dimensional complex vector which is normalized to 
, and  is its conjugate transpose form. It is equivalent to find the smallest eigenvalue  

and the corresponding eigenstate(s) for the matrix .

def H_generator(N, adjacency_matrix):
    """
    This function maps the given graph via its adjacency matrix to 
the corresponding Hamiltiona H_c.
    
    Args:
        N: number of qubits, or number of nodes in the graph,
        or number of parameters in the classical problem
        adjacency_matrix:  the adjacency matrix generated from 
        the graph encoding the classical problem
    Returns:
        the problem-based Hmiltonian H's list form generated 
        from the graph_adjacency matrix for the given graph
    """
    H_list = []
    # Generate the Hamiltonian H_c from the graph 
    # via its adjacency matrix
    for row in range(N):
        for col in range(N):
            if adjacency_matrix[row, col] and row < col:
                # Construct the Hamiltonian in the list 
                # form for the calculation of expectation value
                H_list.append([1.0, 'z'+str(row) 
                               + ',z' + str(col)])
 
    return H_list
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The explicit form of the matrix , including its maximal and minimal eigenvalues, can be 
imported, which later could be used to benchmark the performance of QAOA. 

3. Building  
This part is to build up the parameterized quantum circuit of QAOA to perform the 
computation process. Particularly, the QAOA circuit is constructed by alternatively placing 
two parameterized modules

where  is the number of layers to place these two modules. Particularly, one is governed by 
the encoding matrix  via the unitary transformation

where  is the imaginary unit, and  is to be optimized. The other one is 

where  and the driving Hamiltonian or matrix  adimits an explicit form of

where the operator  defines the Pauli-X operation acting on the qubit.

 

Further, each module in the QAOA circuit can be decomposed into a series of operations 
acting on single qubits and two qubits. In particular, the first has the decomposition of 

 while there is  for the second. This is illustrated in 

the following figure.

# Convert the Hamiltonian's list form to matrix form
H_matrix = pauli_str_to_matrix(H_generator(
                 N, classical_graph_adjacency), N)
 
H_diag = np.diag(H_matrix).real
H_max = np.max(H_diag)
H_min = np.min(H_diag)
 
print(H_diag)
print('H_max:', H_max, '  H_min:', H_min)
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[ 4.  0.  0.  0.  0. -4.  0.  0.  0.  0. -4.  0.  0.  0.  0.  4.]
H_max: 4.0   H_min: -4.0
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Then, based on

initial state of QAOA circuits 
adjacency matrix describing the graph
number of qubits
number of layers

we are able to construct the standard QAOA circuit:

def circuit_QAOA(theta, adjacency_matrix, N, P):
    """
    This function constructs the parameterized QAOA circuit which 
is composed of P layers of two blocks: one block is based on the 
problem Hamiltonian H which encodes the classical problem, and the 
other is constructed from the driving Hamiltonian describing the 
rotation around Pauli X acting on each qubit. It outputs the final 
state of the QAOA circuit.
    
    Args:
        theta: parameters to be optimized in the QAOA circuit
        adjacency_matrix:  the adjacency matrix of the graph 
        encoding the classical problem
        N: number of qubits, or equivalently, the number of
        parameters in the original classical problem
        P: number of layers of two blocks in the QAOA circuit
    Returns:
        the QAOA circuit
    """
 
    cir = UAnsatz(N)
    
    # prepare the input state in the uniform superposition of 
    # 2^N bit-strings in the computational basis
    cir.superposition_layer()
    # This loop defines the QAOA circuit 
    # with P layers of two blocks
    for layer in range(P):
        # The second and third loops construct 
        # the first block which involves two-qubit operation
        # e^{-i\gamma Z_iZ_j} acting on a pair of qubits 
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Indeed, the QAOA circuit could be extended to other structures by replacing the modules in 
the above standard circuit to improve QAOA performance. Here, we provide one candidate 
extension in which the Pauli-X rotation  on each qubit in the driving matrix  is 
replaced by an arbitrary rotation described by . 

        # or nodes i and j in the circuit in each layer.
        for row in range(N):
            for col in range(N):
                if adjacency_matrix[row, col] and row < col:
                    cir.cnot([row, col])
                    cir.rz(theta[layer][0], col)
                    cir.cnot([row, col])
        # This loop constructs the second block only 
        # involving the single-qubit operation e^{-i\beta X}.
        for i in range(N):
            cir.rx(theta[layer][1], i)
 
    return cir
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def circuit_extend_QAOA(theta, adjacency_matrix, N, P):
    """
    This is an extended version of the QAOA circuit, and the main 
difference is the block constructed from the driving Hamiltonian 
describing the rotation around an arbitrary direction on each 
qubit.
 
    Args:
        theta: parameters to be optimized in the QAOA circuit
        input_state: input state of the QAOA circuit which usually
        is the uniform superposition of 2^N bit-strings 
        in the computational basis
        adjacency_matrix:  the adjacency matrix of the problem 
        graph encoding the original problem
        N: number of qubits, or equivalently, the number of
        parameters in the original classical problem
        P: number of layers of two blocks in the QAOA circuit
    Returns:
        the extended QAOA circuit
 
    Note:
        If this circuit_extend_QAOA function is used to construct 
QAOA circuit, then we need to change the parameter layer in the Net 
function defined below from the Net(shape=[D, 2]) for circuit_QAOA 
function to Net(shape=[D, 4]) because the number of parameters 
doubles in each layer in this QAOA circuit.
    """
    cir = UAnsatz(N)
 
    # prepare the input state in the uniform superposition of 
    # 2^N bit-strings in the computational basis
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Finally, the QAOA circuit outputs

where each qubit is initialized as the superposition state . And we are 

able to obtain the loss function for the QAOA circuit

Additionally, we may tend to fast classical algorithms to update the parameter vectors  
to achieve the optimal value for the above quantum optimization problem. 

In Paddle Quantum, this process is accomplished in the Net function:

    cir.superposition_layer()
    for layer in range(P):
        for row in range(N):
            for col in range(N):
                if adjacency_matrix[row, col] and row < col:
                    cir.cnot([row, col])
                    cir.rz(theta[layer][0], col)
                    cir.cnot([row, col])
 
        for i in range(N):
            cir.u3(*theta[layer][1:], i)
 
    return cir
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class Net(fluid.dygraph.Layer):
    """
    It constructs the net for QAOA which combines the  QAOA circuit 
with the classical optimizer which sets rules to update parameters 
described by theta introduced in the QAOA circuit.
 
    """
    def __init__(
        self,
        shape,
        param_attr=fluid.initializer.Uniform(
        low=0.0, high=np.pi, seed=1024),
        dtype="float64",
    ):
        super(Net, self).__init__()
 
        self.theta = self.create_parameter(shape=shape, 
          attr=param_attr, dtype=dtype, is_bias=False)
 
    def forward(self, adjacency_matrix, N, P, METHOD):
        """
        This function constructs the loss function 
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4. Training  
In this part, the QAOA circuit is trained to find the "optimal" solution to the optimization 
problem.

First, let us specify some parameters:

number of qubits: N
number of layes: P
iteration steps: ITR
learning rate: LR

        for the QAOA circuit.
 
        Args:
            adjacency_matrix: the adjacency matrix generated 
            from the graph encoding the classical problem
            N: number of qubits
            P: number of layers
            METHOD: which version of QAOA is chosen to solve 
            the problem, i.e., standard version labeled by 1 
            or extended version by 2.
        Returns:
            the loss function for the parameterized QAOA circuit
            and the circuit itself
        """
        
        # Generate the problem_based quantum Hamiltonian 
        # H_problem based on the classical problem in paddle
        H_problem = H_generator(N, adjacency_matrix)
 
        # The standard QAOA circuit: the function 
        # circuit_QAOA 
        # is used to construct the circuit, indexed by METHOD 1.
        if METHOD == 1:
            cir = circuit_QAOA(self.theta, adjacency_matrix, N, P)
        # The extended QAOA circuit: the function 
        # circuit_extend_QAOA 
        # is used to construct the net, indexed by METHOD 2.
        elif METHOD == 2:
            cir = circuit_extend_QAOA(self.theta, 
                                      adjacency_matrix, N, P)
        else:
            raise ValueError("Wrong method called!")
 
        cir.run_state_vector()
        loss = cir.expecval(H_problem)
 
        return loss, cir
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Then, with the following inputs

initial state: each qubit is initialized as  by calling 

cir.superposition_layer()

Standard QAOA circuit (METHOD = 1) or Extended QAOA (METHOD = 2) 
Classical optimizer: Adam optimizer

we are able to train the whole net：

N = 4      # number of qubits, or number of nodes in the graph
P = 4      # number of layers 
ITR = 120  # number of iteration steps
LR = 0.1   # learning rate
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def Paddle_QAOA(classical_graph_adjacency, N, P, METHOD, ITR, LR):
    """
    This is the core function to run QAOA.
 
     Args:
         classical_graph_adjacency: adjacency matrix to describe
         the graph which encodes the classical problem
         N: number of qubits (default value N=4)
         P: number of layers of blocks in the QAOA circuit 
         (default value P=4)
         METHOD: which version of the QAOA circuit is used: 
         1, standard circuit (default); 
         2, extended circuit
         ITR: number of iteration steps for QAOA 
         (default value ITR=120)
         LR: learning rate for the gradient-based 
         optimization method (default value LR=0.1)
     Returns:
         the optimized QAOA circuit
    """
    with fluid.dygraph.guard():
        # Construct the net or QAOA circuits based on 
        # the standard modules
        if METHOD == 1:
            net = Net(shape=[P, 2])
        # Construct the net or QAOA circuits based on 
        # the extended modules
        elif METHOD == 2:
            net = Net(shape=[P, 4])
        else:
            raise ValueError("Wrong method called!")
 
        # Classical optimizer
        opt = fluid.optimizer.AdamOptimizer(
          learning_rate=LR, parameter_list=net.parameters())
 
        # Gradient descent loop
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After the completion of training, the QAOA outputs the results, including the optimal 
parameters  and . By contrast, its performance can be evaluated with the true value of 
the optimization problem.

        summary_iter, summary_loss = [], []
        for itr in range(1, ITR + 1):
            loss, cir = net(
                classical_graph_adjacency, N, P, METHOD
            )
            loss.backward()
            opt.minimize(loss)
            net.clear_gradients()
 
            if itr % 10 == 0:
                print("iter:", itr, 
                      "loss:", "%.4f" % loss.numpy())
            summary_loss.append(loss[0][0].numpy())
            summary_iter.append(itr)
 
        theta_opt = net.parameters()[0].numpy()
        print("Optmized parameters theta:\n", theta_opt)
        
        os.makedirs("output", exist_ok=True)
        np.savez("./output/summary_data", 
                 iter=summary_iter, energy=summary_loss)
 
    return cir
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classical_graph, classical_graph_adjacency = generate_graph(N, 1)
 
opt_cir = Paddle_QAOA(classical_graph_adjacency, N =4, P=4, 
METHOD=1, ITR=120, LR=0.1)
 
# Load the data of QAOA
x1 = np.load('./output/summary_data.npz')
 
H_min = np.ones([len(x1['iter'])]) * H_min
 
# Plot loss
loss_QAOA, = plt.plot(x1['iter'], x1['energy'], \
                                        alpha=0.7, marker='', 
linestyle="--", linewidth=2, color='m')
benchmark, = plt.plot(x1['iter'], H_min, alpha=0.7, marker='', 
linestyle=":", linewidth=2, color='b')
plt.xlabel('Number of iterations')
plt.ylabel('Loss function for QAOA')
 
plt.legend(handles=[
    loss_QAOA,
    benchmark
],
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    labels=[
            r'Loss function $\left\langle {\psi \left( {\bf{\theta 
}} \right)} '
            r'\right|H\left| {\psi \left( {\bf{\theta }} \right)} 
\right\rangle $',
            'The benchmark result',
    ], loc='best')
 
# Show the plot
plt.show()
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Method 1 generates the graph from self-definition using EDGE 
description
iter: 10   loss: -3.8531
iter: 20   loss: -3.9626
iter: 30   loss: -3.9845
iter: 40   loss: -3.9944
iter: 50   loss: -3.9984
iter: 60   loss: -3.9996
iter: 70   loss: -3.9999
iter: 80   loss: -4.0000
iter: 90   loss: -4.0000
iter: 100   loss: -4.0000
iter: 110   loss: -4.0000
iter: 120   loss: -4.0000
Optmized parameters theta:
 [[0.24726127 0.53087308]
 [0.94954664 1.9974811 ]
 [1.14545257 2.27267827]
 [2.98845718 2.84445401]]
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5. Decoding  
However, the output of optimized QAOA circuits 

does not give us the answer to the Max-Cut problem directly. Instead, each bitstring 
 in the state  represents a possible classical solution. 

Thus, we need to decode the ouptut of QAOA circuits. 

The task of decoding quantum answer can be accomplished via measurement. Given the 
output state, the measurement statistics for each bitstring obeys the probability distribution

And this distribution is plotted using the following function:

Again, using the relation , we are able to obtain a classical answer from the 
quantum state. Specifically, assume that  for  and  for . Thus, one 
bistring sampled from the output state of QAOA corresponds to one feasible cut to the given 
graph. And it is highly possible that the higher probability the bitstring is, the more likely it gives 
rise to the max cut protocol.

The bistring with the largest probability is picked up, and then mapped back to solution to the 
Max-Cut problem ：

with fluid.dygraph.guard():
    # Measure the output state of the QAOA circuit 
    # for 1024 shots by default
    prob_measure = opt_cir.measure(plot=True)
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the node set  is in blue color
the node set  is in red color
the dashed lines represent the cut edges 

# Find the max value in measured probability of bitstrings
max_prob = max(prob_measure.values())
# Find the bitstring with max probability
solution_list = [result[0] for result in prob_measure.items() if 
result[1] == max_prob]
print("The output bitstring:", solution_list)
 
# Draw the graph representing the first bitstring in the 
solution_list to the MaxCut-like problem
head_bitstring = solution_list[0]
 
node_cut = ["blue" if head_bitstring[node] == "1" else "red" for 
node in classical_graph]
 
edge_cut = [
    "solid" if head_bitstring[node_row] == head_bitstring[node_col] 
else "dashed"
    for node_row, node_col in classical_graph.edges()
    ]
nx.draw(
        classical_graph,
        pos,
        node_color=node_cut,
        style=edge_cut,
        width=4,
        with_labels=True,
        font_weight="bold",
)
plt.show()
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The output bitstring: ['1010']1
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