
Copyright (c) 2020 Institute for Quantum Computing, Baidu Inc. All Rights Reserved.

QUANTUM APPROXIMATE OPTIMIZATION

ALGORITHM (QAOA)

PREPARATION

This document provides an interactive experience to show how the quantum approximate
optimization algorithm (QAOA) [1] works in the Paddle Quantum.

To get started, let us import some necessary libraries and functions：

BACKGROUND

QAOA is one of quantum algorithms which can be implemented on near-term quantum
processors, also called as noisy intermediate-scale quantum (NISQ) processors, and may
have wide applications in solving hard computational problems. For example, it could be
applied to tackle a large family of optimization problems, named as the quadratic
unconstrained binary optimization (QUBO) which is ubiquitous in the computer science and
operation research. Basically, this class can be modeled with the form of

import os
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx

from paddle import fluid
from paddle_quantum.circuit import UAnsatz
from paddle_quantum.utils import pauli_str_to_matrix

1
2
3
4
5
6
7
8

where s are binary parameters and coefficients refer to the weight associated to .
Indeed, it is usually extremely difficult for classical computers to give the exact optimal
solution, while QAOA provides an alternative approach which may have a speedup
advantage over classical ones to solve these hard problems.

QAOA works as follows: The above optimization problem is first mapped to another problem
of finding the ground energy or/and the corresponding ground state for a complex many-
body Hamiltonian, e.g., the well-known Ising model or spin-glass model in many-body physics.
In this tutorial, we use the Max-Cut problem in graph theory to explain how QAOA works.
Essentially, the Max-cut problem is transformed into a problem of finding the smallest
eigenvalue and the corresponding eigenvector(s) for a real diagonal matrix . Then, QAOA
designates a specific routine with adjustable parameters to approximately find the best
solution. Moreover, to accomplish the task, these parameters could be updated via some
rules set by fast classical algorithms, such as gradient-free or gradient-based methods. Thus, it
is also a quantum-classical hybrid algorithm just as the variational quantum eigensolver
(VQE).

EXAMPLE

1. Max-Cut problem
Given a graph composed of nodes and edges, the problem is to find a cut protocol
which divides the node set into two complementary subsets and such that the number
of edges between these sets is as large as possible. For example, consider the ring case with
four nodes as shown in the figure.

Thus, given a cut protocol, if the node belongs to the set , then it is assigned to ,
while for . Then, for any edge connecting nodes and , if both nodes are in
the same set or , then there is ; otherwise, . Hence, the cut problem
can be formulated as the optimization problem

Here, the weight are set to for all edges. Indeed, any feasible solution to the above
problem can be described by a bitstring . Moreover, we need to
search over all possible bitstrings of to find its optimal solution, which becomes
computionally hard for classical algorithms.

Two methods are provided to pre-process this optimization problem, i.e., to input the given
graph with/without weights:

Method 1 generates the graph via its full description of nodes and edges,
Method 2 specifies the graph via its adjacency matrix.

def generate_graph(N, GRAPHMETHOD):
 """
 It plots an N-node graph which is specified by Method 1 or 2.

 Args:
 N: number of nodes (vertices) in the graph
 METHOD: choose which method to generate a graph
 Returns:
 the specific graph and its adjacency matrix
 """
 # Method 1 generates a graph by self-definition
 if GRAPHMETHOD == 1:
 print("Method 1 generates the graph from self-definition\
 using EDGE description")
 graph = nx.Graph()
 graph_nodelist=range(N)
 graph.add_edges_from([(0, 1), (1, 2), (2, 3), (3, 0)])
 graph_adjacency = nx.to_numpy_matrix(
 graph, nodelist=graph_nodelist)
 # Method 2 generates a graph by using its
 # adjacency matrix directly
 elif GRAPHMETHOD == 2:
 print("Method 2 generates the graph from networks\
 using adjacency matrix")
 graph_adjacency = np.array([[0, 1, 0, 1], [1, 0, 1, 0],
 [0, 1, 0, 1], [1, 0, 1, 0]])
 graph = nx.Graph(graph_adjacency)
 else:
 print("Method doesn't exist ")

 return graph, graph_adjacency

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

In this notebook, Method 1 is used to process and then visualize the given graph. Note that
the node label starts from to in both methods for an -node graph.

Here, we need to specify:

number of nodes:
which method to preprocess the graph: GRAPHMETHOD = 1

number of qubits or number of nodes in the graph
N=4
classical_graph, classical_graph_adjacency= generate_graph(N,
GRAPHMETHOD=1)
print(classical_graph_adjacency)

pos = nx.circular_layout(classical_graph)
nx.draw(classical_graph, pos, width=4, with_labels=True,
font_weight='bold')
plt.show()

1
2
3

4
5
6
7

8

Method 1 generates the graph from self-definition using EDGE
description
[[0. 1. 0. 1.]
 [1. 0. 1. 0.]
 [0. 1. 0. 1.]
 [1. 0. 1. 0.]]

1

2
3
4
5

2. Encoding
This step encodes the classical optimization problem to its quantum version. Using the

transformation and , the binary parameter is

encoded as the eigenvalues of the Pauli-Z operator acting on the single qubit, i.e.,

. It yields that the objective function in the classical optimization problem

is transformed to the Hamiltonian

Here, for simplicity stands for the tensor product which represents that Pauli-Z
operator acts on each qubit and the identity operation is imposed on the rest. And the
Max-Cut problem is mapped to the following quantum optimization problem

where the state vector describes a -dimensional complex vector which is normalized to
, and is its conjugate transpose form. It is equivalent to find the smallest eigenvalue

and the corresponding eigenstate(s) for the matrix .

def H_generator(N, adjacency_matrix):
 """
 This function maps the given graph via its adjacency matrix to
the corresponding Hamiltiona H_c.

 Args:
 N: number of qubits, or number of nodes in the graph,
 or number of parameters in the classical problem
 adjacency_matrix: the adjacency matrix generated from
 the graph encoding the classical problem
 Returns:
 the problem-based Hmiltonian H's list form generated
 from the graph_adjacency matrix for the given graph
 """
 H_list = []
 # Generate the Hamiltonian H_c from the graph
 # via its adjacency matrix
 for row in range(N):
 for col in range(N):
 if adjacency_matrix[row, col] and row < col:
 # Construct the Hamiltonian in the list
 # form for the calculation of expectation value
 H_list.append([1.0, 'z'+str(row)
 + ',z' + str(col)])

 return H_list

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

The explicit form of the matrix , including its maximal and minimal eigenvalues, can be
imported, which later could be used to benchmark the performance of QAOA.

3. Building
This part is to build up the parameterized quantum circuit of QAOA to perform the
computation process. Particularly, the QAOA circuit is constructed by alternatively placing
two parameterized modules

where is the number of layers to place these two modules. Particularly, one is governed by
the encoding matrix via the unitary transformation

where is the imaginary unit, and is to be optimized. The other one is

where and the driving Hamiltonian or matrix adimits an explicit form of

where the operator defines the Pauli-X operation acting on the qubit.

Further, each module in the QAOA circuit can be decomposed into a series of operations
acting on single qubits and two qubits. In particular, the first has the decomposition of

 while there is for the second. This is illustrated in

the following figure.

Convert the Hamiltonian's list form to matrix form
H_matrix = pauli_str_to_matrix(H_generator(
 N, classical_graph_adjacency), N)

H_diag = np.diag(H_matrix).real
H_max = np.max(H_diag)
H_min = np.min(H_diag)

print(H_diag)
print('H_max:', H_max, ' H_min:', H_min)

1
2
3
4
5
6
7
8
9

10

[4. 0. 0. 0. 0. -4. 0. 0. 0. 0. -4. 0. 0. 0. 0. 4.]
H_max: 4.0 H_min: -4.0

1
2

Then, based on

initial state of QAOA circuits
adjacency matrix describing the graph
number of qubits
number of layers

we are able to construct the standard QAOA circuit:

def circuit_QAOA(theta, adjacency_matrix, N, P):
 """
 This function constructs the parameterized QAOA circuit which
is composed of P layers of two blocks: one block is based on the
problem Hamiltonian H which encodes the classical problem, and the
other is constructed from the driving Hamiltonian describing the
rotation around Pauli X acting on each qubit. It outputs the final
state of the QAOA circuit.

 Args:
 theta: parameters to be optimized in the QAOA circuit
 adjacency_matrix: the adjacency matrix of the graph
 encoding the classical problem
 N: number of qubits, or equivalently, the number of
 parameters in the original classical problem
 P: number of layers of two blocks in the QAOA circuit
 Returns:
 the QAOA circuit
 """

 cir = UAnsatz(N)

 # prepare the input state in the uniform superposition of
 # 2^N bit-strings in the computational basis
 cir.superposition_layer()
 # This loop defines the QAOA circuit
 # with P layers of two blocks
 for layer in range(P):
 # The second and third loops construct
 # the first block which involves two-qubit operation
 # e^{-i\gamma Z_iZ_j} acting on a pair of qubits

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Indeed, the QAOA circuit could be extended to other structures by replacing the modules in
the above standard circuit to improve QAOA performance. Here, we provide one candidate
extension in which the Pauli-X rotation on each qubit in the driving matrix is
replaced by an arbitrary rotation described by .

 # or nodes i and j in the circuit in each layer.
 for row in range(N):
 for col in range(N):
 if adjacency_matrix[row, col] and row < col:
 cir.cnot([row, col])
 cir.rz(theta[layer][0], col)
 cir.cnot([row, col])
 # This loop constructs the second block only
 # involving the single-qubit operation e^{-i\beta X}.
 for i in range(N):
 cir.rx(theta[layer][1], i)

 return cir

27
28
29
30
31
32
33
34
35
36
37
38
39

def circuit_extend_QAOA(theta, adjacency_matrix, N, P):
 """
 This is an extended version of the QAOA circuit, and the main
difference is the block constructed from the driving Hamiltonian
describing the rotation around an arbitrary direction on each
qubit.

 Args:
 theta: parameters to be optimized in the QAOA circuit
 input_state: input state of the QAOA circuit which usually
 is the uniform superposition of 2^N bit-strings
 in the computational basis
 adjacency_matrix: the adjacency matrix of the problem
 graph encoding the original problem
 N: number of qubits, or equivalently, the number of
 parameters in the original classical problem
 P: number of layers of two blocks in the QAOA circuit
 Returns:
 the extended QAOA circuit

 Note:
 If this circuit_extend_QAOA function is used to construct
QAOA circuit, then we need to change the parameter layer in the Net
function defined below from the Net(shape=[D, 2]) for circuit_QAOA
function to Net(shape=[D, 4]) because the number of parameters
doubles in each layer in this QAOA circuit.
 """
 cir = UAnsatz(N)

 # prepare the input state in the uniform superposition of
 # 2^N bit-strings in the computational basis

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

Finally, the QAOA circuit outputs

where each qubit is initialized as the superposition state . And we are

able to obtain the loss function for the QAOA circuit

Additionally, we may tend to fast classical algorithms to update the parameter vectors
to achieve the optimal value for the above quantum optimization problem.

In Paddle Quantum, this process is accomplished in the Net function:

 cir.superposition_layer()
 for layer in range(P):
 for row in range(N):
 for col in range(N):
 if adjacency_matrix[row, col] and row < col:
 cir.cnot([row, col])
 cir.rz(theta[layer][0], col)
 cir.cnot([row, col])

 for i in range(N):
 cir.u3(*theta[layer][1:], i)

 return cir

25
26
27
28
29
30
31
32
33
34
35
36
37

class Net(fluid.dygraph.Layer):
 """
 It constructs the net for QAOA which combines the QAOA circuit
with the classical optimizer which sets rules to update parameters
described by theta introduced in the QAOA circuit.

 """
 def __init__(
 self,
 shape,
 param_attr=fluid.initializer.Uniform(
 low=0.0, high=np.pi, seed=1024),
 dtype="float64",
):
 super(Net, self).__init__()

 self.theta = self.create_parameter(shape=shape,
 attr=param_attr, dtype=dtype, is_bias=False)

 def forward(self, adjacency_matrix, N, P, METHOD):
 """
 This function constructs the loss function

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

4. Training
In this part, the QAOA circuit is trained to find the "optimal" solution to the optimization
problem.

First, let us specify some parameters:

number of qubits: N
number of layes: P
iteration steps: ITR
learning rate: LR

 for the QAOA circuit.

 Args:
 adjacency_matrix: the adjacency matrix generated
 from the graph encoding the classical problem
 N: number of qubits
 P: number of layers
 METHOD: which version of QAOA is chosen to solve
 the problem, i.e., standard version labeled by 1
 or extended version by 2.
 Returns:
 the loss function for the parameterized QAOA circuit
 and the circuit itself
 """

 # Generate the problem_based quantum Hamiltonian
 # H_problem based on the classical problem in paddle
 H_problem = H_generator(N, adjacency_matrix)

 # The standard QAOA circuit: the function
 # circuit_QAOA
 # is used to construct the circuit, indexed by METHOD 1.
 if METHOD == 1:
 cir = circuit_QAOA(self.theta, adjacency_matrix, N, P)
 # The extended QAOA circuit: the function
 # circuit_extend_QAOA
 # is used to construct the net, indexed by METHOD 2.
 elif METHOD == 2:
 cir = circuit_extend_QAOA(self.theta,
 adjacency_matrix, N, P)
 else:
 raise ValueError("Wrong method called!")

 cir.run_state_vector()
 loss = cir.expecval(H_problem)

 return loss, cir

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Then, with the following inputs

initial state: each qubit is initialized as by calling

cir.superposition_layer()

Standard QAOA circuit (METHOD = 1) or Extended QAOA (METHOD = 2)
Classical optimizer: Adam optimizer

we are able to train the whole net：

N = 4 # number of qubits, or number of nodes in the graph
P = 4 # number of layers
ITR = 120 # number of iteration steps
LR = 0.1 # learning rate

1
2
3
4

def Paddle_QAOA(classical_graph_adjacency, N, P, METHOD, ITR, LR):
 """
 This is the core function to run QAOA.

 Args:
 classical_graph_adjacency: adjacency matrix to describe
 the graph which encodes the classical problem
 N: number of qubits (default value N=4)
 P: number of layers of blocks in the QAOA circuit
 (default value P=4)
 METHOD: which version of the QAOA circuit is used:
 1, standard circuit (default);
 2, extended circuit
 ITR: number of iteration steps for QAOA
 (default value ITR=120)
 LR: learning rate for the gradient-based
 optimization method (default value LR=0.1)
 Returns:
 the optimized QAOA circuit
 """
 with fluid.dygraph.guard():
 # Construct the net or QAOA circuits based on
 # the standard modules
 if METHOD == 1:
 net = Net(shape=[P, 2])
 # Construct the net or QAOA circuits based on
 # the extended modules
 elif METHOD == 2:
 net = Net(shape=[P, 4])
 else:
 raise ValueError("Wrong method called!")

 # Classical optimizer
 opt = fluid.optimizer.AdamOptimizer(
 learning_rate=LR, parameter_list=net.parameters())

 # Gradient descent loop

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

After the completion of training, the QAOA outputs the results, including the optimal
parameters and . By contrast, its performance can be evaluated with the true value of
the optimization problem.

 summary_iter, summary_loss = [], []
 for itr in range(1, ITR + 1):
 loss, cir = net(
 classical_graph_adjacency, N, P, METHOD
)
 loss.backward()
 opt.minimize(loss)
 net.clear_gradients()

 if itr % 10 == 0:
 print("iter:", itr,
 "loss:", "%.4f" % loss.numpy())
 summary_loss.append(loss[0][0].numpy())
 summary_iter.append(itr)

 theta_opt = net.parameters()[0].numpy()
 print("Optmized parameters theta:\n", theta_opt)

 os.makedirs("output", exist_ok=True)
 np.savez("./output/summary_data",
 iter=summary_iter, energy=summary_loss)

 return cir

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

classical_graph, classical_graph_adjacency = generate_graph(N, 1)

opt_cir = Paddle_QAOA(classical_graph_adjacency, N =4, P=4,
METHOD=1, ITR=120, LR=0.1)

Load the data of QAOA
x1 = np.load('./output/summary_data.npz')

H_min = np.ones([len(x1['iter'])]) * H_min

Plot loss
loss_QAOA, = plt.plot(x1['iter'], x1['energy'], \
 alpha=0.7, marker='',
linestyle="--", linewidth=2, color='m')
benchmark, = plt.plot(x1['iter'], H_min, alpha=0.7, marker='',
linestyle=":", linewidth=2, color='b')
plt.xlabel('Number of iterations')
plt.ylabel('Loss function for QAOA')

plt.legend(handles=[
 loss_QAOA,
 benchmark
],

1
2
3

4
5
6
7
8
9

10
11
12

13

14
15
16
17
18
19
20

 labels=[
 r'Loss function $\left\langle {\psi \left({\bf{\theta
}} \right)} '
 r'\right|H\left| {\psi \left({\bf{\theta }} \right)}
\right\rangle $',
 'The benchmark result',
], loc='best')

Show the plot
plt.show()

21
22

23

24
25
26
27
28

Method 1 generates the graph from self-definition using EDGE
description
iter: 10 loss: -3.8531
iter: 20 loss: -3.9626
iter: 30 loss: -3.9845
iter: 40 loss: -3.9944
iter: 50 loss: -3.9984
iter: 60 loss: -3.9996
iter: 70 loss: -3.9999
iter: 80 loss: -4.0000
iter: 90 loss: -4.0000
iter: 100 loss: -4.0000
iter: 110 loss: -4.0000
iter: 120 loss: -4.0000
Optmized parameters theta:
 [[0.24726127 0.53087308]
 [0.94954664 1.9974811]
 [1.14545257 2.27267827]
 [2.98845718 2.84445401]]

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

5. Decoding
However, the output of optimized QAOA circuits

does not give us the answer to the Max-Cut problem directly. Instead, each bitstring
 in the state represents a possible classical solution.

Thus, we need to decode the ouptut of QAOA circuits.

The task of decoding quantum answer can be accomplished via measurement. Given the
output state, the measurement statistics for each bitstring obeys the probability distribution

And this distribution is plotted using the following function:

Again, using the relation , we are able to obtain a classical answer from the
quantum state. Specifically, assume that for and for . Thus, one
bistring sampled from the output state of QAOA corresponds to one feasible cut to the given
graph. And it is highly possible that the higher probability the bitstring is, the more likely it gives
rise to the max cut protocol.

The bistring with the largest probability is picked up, and then mapped back to solution to the
Max-Cut problem ：

with fluid.dygraph.guard():
 # Measure the output state of the QAOA circuit
 # for 1024 shots by default
 prob_measure = opt_cir.measure(plot=True)

1
2
3
4

the node set is in blue color
the node set is in red color
the dashed lines represent the cut edges

Find the max value in measured probability of bitstrings
max_prob = max(prob_measure.values())
Find the bitstring with max probability
solution_list = [result[0] for result in prob_measure.items() if
result[1] == max_prob]
print("The output bitstring:", solution_list)

Draw the graph representing the first bitstring in the
solution_list to the MaxCut-like problem
head_bitstring = solution_list[0]

node_cut = ["blue" if head_bitstring[node] == "1" else "red" for
node in classical_graph]

edge_cut = [
 "solid" if head_bitstring[node_row] == head_bitstring[node_col]
else "dashed"
 for node_row, node_col in classical_graph.edges()
]
nx.draw(
 classical_graph,
 pos,
 node_color=node_cut,
 style=edge_cut,
 width=4,
 with_labels=True,
 font_weight="bold",
)
plt.show()

1
2
3
4

5
6
7

8
9

10

11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

The output bitstring: ['1010']1

REFERENCES

[1] Farhi, E., Goldstone, J. & Gutmann, S. A Quantum Approximate Optimization Algorithm.
arXiv:1411.4028 (2014).

https://arxiv.org/abs/1411.4028

	Quantum Approximate Optimization Algorithm (QAOA)
	Preparation
	Background
	Example
	1. Max-Cut problem
	2. Encoding
	3. Building
	4. Training
	5. Decoding

	References

