
ptg7913109

ptg7913109

Programming in Go

ptg7913109

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

ptg7913109

Programming in Go

Creating Applications for the 21st Century

Mark Summerfield

Upper Saddle River, NJ · Boston · Indianapolis · San Francisco

p New York · Toronto ·Montreal · London ·Munich · Paris ·Madrid p

Capetown · Sydney · Tokyo · Singapore ·Mexico City

ptg7913109

Many of the designations used by manufacturersand sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Summerfield, Mark.
 Programming in Go : creating applications for the 21st century / Mark Summerfield.
 p.mcm.
 Includes bibliographical references and index.
 ISBN 978-0-321-77463-7 (pbk. : alk. paper)
1. Go (Computer program language) 2. Computer programming 3. Application software—
Development I. Title.

 QA76.73.G63S86 2012
 005.13’3—dc23

2012001914

Copyright © 2012 Qtrac Ltd.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper
Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-77463-7
ISBN-10: 0-321-77463-9

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, April 2012

ptg7913109

This book is dedicated to
Jasmin Blanchette and Trenton Schulz

ptg7913109

This page intentionally left blank

ptg7913109

Contents at a Glance

Tables . xv

Introduction . 1

Chapter 1. An Overview in Five Examples . 7

Chapter 2. Booleans and Numbers . 51

Chapter 3. Strings . 81

Chapter 4. Collection Types . 139

Chapter 5. Procedural Programming . 185

Chapter 6. Object-Oriented Programming . 253

Chapter 7. Concurrent Programming . 315

Chapter 8. File Handling . 361

Chapter 9. Packages . 407

Appendix A. Epilogue . 435

Appendix B. The Dangers of Software Patents 437

Appendix C. Selected Bibliography . 441

Index . 443

www.qtrac.eu/gobook.html

www.qtrac.eu/gobook.html

ptg7913109

This page intentionally left blank

ptg7913109

Contents

Tables . xv

Introduction . 1
Why Go? . 1
The Structure of the Book . 4
Acknowledgments . 5

Chapter 1. An Overview in Five Examples . 7
1.1. Getting Going . 7
1.2. Editing, Compiling, and Running . 9
1.3. Hello Who? . 14
1.4. Big Digits—Two-Dimensional Slices . 16
1.5. Stack—Custom Types with Methods . 21
1.6. Americanise—Files,Maps, and Closures . 29
1.7. Polar to Cartesian—Concurrency . 40
1.8. Exercise . 48

Chapter 2. Booleans and Numbers . 51
2.1. Preliminaries . 51

2.1.1. Constants and Variables . 53
2.1.1.1. Enumerations . 54

2.2. Boolean Values and Expressions . 56
2.3. Numeric Types . 57

2.3.1. Integer Types . 59
2.3.1.1. Big Integers . 61

2.3.2. Floating-Point Types . 64
2.3.2.1. Complex Types . 70

2.4. Example: Statistics . 72
2.4.1. Implementing Simple Statistics Functions 73
2.4.2. Implementing a Basic HTTP Server . 75

2.5. Exercises . 78

ix

ptg7913109

Chapter 3. Strings . 81
3.1. Literals, Operators, and Escapes . 83
3.2. Comparing Strings . 86
3.3. Characters and Strings . 87
3.4. Indexing and Slicing Strings . 90
3.5. String Formatting with the Fmt Package . 93

3.5.1. Formatting Booleans . 97
3.5.2. Formatting Integers . 98
3.5.3. Formatting Characters . 99
3.5.4. Formatting Floating-Point Numbers . 100
3.5.5. Formatting Strings and Slices . 101
3.5.6. Formatting for Debugging . 103

3.6. Other String-Related Packages . 106
3.6.1. The Strings Package . 107
3.6.2. The Strconv Package . 113
3.6.3. The Utf8 Package . 117
3.6.4. The Unicode Package . 118
3.6.5. The Regexp Package . 120

3.7. Example:M3u2pls . 130
3.8. Exercises . 135

Chapter 4. Collection Types . 139
4.1. Values, Pointers, and Reference Types . 140
4.2. Arrays and Slices . 148

4.2.1. Indexing and Slicing Slices . 153
4.2.2. Iterating Slices . 154
4.2.3. Modifying Slices . 156
4.2.4. Sorting and Searching Slices . 160

4.3. Maps . 164
4.3.1. Creating and Populating Maps . 166
4.3.2. Map Lookups . 168
4.3.3. Modifying Maps . 169
4.3.4. Key-Ordered Map Iteration . 170
4.3.5. Map Inversion . 170

4.4. Examples . 171
4.4.1. Example: Guess Separator . 171
4.4.2. Example:Word Frequencies . 174

4.5. Exercises . 180

x

ptg7913109

Chapter 5. Procedural Programming . 185
5.1. Statement Basics . 186

5.1.1. Type Conversions . 190
5.1.2. Type Assertions . 191

5.2. Branching . 192
5.2.1. If Statements . 192
5.2.2. Switch Statements . 195

5.2.2.1. Expression Switches . 195
5.2.2.2. Type Switches . 197

5.3. Looping with For Statements . 203
5.4. Communication and Concurrency Statements 205

5.4.1. Select Statements . 209
5.5. Defer, Panic, and Recover . 212

5.5.1. Panic and Recover . 213
5.6. Custom Functions . 219

5.6.1. Function Arguments . 220
5.6.1.1. Function Calls as Function Arguments 220
5.6.1.2. Variadic Functions . 221
5.6.1.3. Functions with Multiple Optional Arguments 222

5.6.2. The init() and main() Functions . 224
5.6.3. Closures . 225
5.6.4. Recursive Functions . 227
5.6.5. Choosing Functions at Runtime . 230

5.6.5.1. Branching Using Maps and Function References 230
5.6.5.2. Dynamic Function Creation . 231

5.6.6. Generic Functions . 232
5.6.7. Higher Order Functions . 238

5.6.7.1. Memoizing Pure Functions . 241
5.7. Example: Indent Sort . 244
5.8. Exercises . 250

Chapter 6. Object-Oriented Programming . 253
6.1. Key Concepts . 254
6.2. Custom Types . 256

6.2.1. Adding Methods . 258
6.2.1.1. Overriding Methods . 261
6.2.1.2. Method Expressions . 263

6.2.2. Validated Types . 263

xi

ptg7913109

6.3. Interfaces . 265
6.3.1. Interface Embedding . 270

6.4. Structs . 275
6.4.1. Struct Aggregation and Embedding . 275

6.4.1.1. Embedding Values . 276
6.4.1.2. Embedding Anonymous Values That Have Methods . . 277
6.4.1.3. Embedding Interfaces . 279

6.5. Examples . 282
6.5.1. Example: FuzzyBool—A Single-Valued Custom Type 282
6.5.2. Example: Shapes—A Family of Custom Types 289

6.5.2.1. Package-Level Convenience Functions 289
6.5.2.2. A Hierarchy of Embedded Interfaces 294
6.5.2.3. Freely Composable Independent Interfaces 294
6.5.2.4. Concrete Types and Methods . 295

6.5.3. Example: Ordered Map—A Generic Collection Type 302
6.6. Exercises . 311

Chapter 7. Concurrent Programming . 315
7.1. Key Concepts . 317
7.2. Examples . 322

7.2.1. Example: Filter . 322
7.2.2. Example: Concurrent Grep . 326
7.2.3. Example: Thread-Safe Map . 334
7.2.4. Example: Apache Report . 341

7.2.4.1. Synchronizing with a Shared Thread-Safe Map 341
7.2.4.2. Synchronizing with a Mutex-ProtectedMap 345
7.2.4.3. Synchronizing by Merging Local Maps via Channels 347

7.2.5. Example: Find Duplicates . 349
7.3. Exercises . 357

Chapter 8. File Handling . 361
8.1. Custom Data Files . 362

8.1.1. Handling JSON Files . 365
8.1.1.1. Writing JSON Files . 366
8.1.1.2. Reading JSON Files . 368

8.1.2. Handling XML Files . 371
8.1.2.1. Writing XML Files . 371
8.1.2.2. Reading XML Files . 375

8.1.3. Handling Plain Text Files . 377

xii

ptg7913109

8.1.3.1. Writing Plain Text Files . 378
8.1.3.2. Reading Plain Text Files . 380

8.1.4. Handling Go Binary Files . 385
8.1.4.1. Writing Go Binary Files . 385
8.1.4.2. Reading Go Binary Files . 386

8.1.5. Handling Custom Binary Files . 387
8.1.5.1. Writing Custom Binary Files . 388
8.1.5.2. Reading Custom Binary Files . 392

8.2. Archive Files . 397
8.2.1. Creating Zip Archives . 397
8.2.2. Creating Optionally Compressed Tarballs 399
8.2.3. Unpacking Zip Archives . 401
8.2.4. Unpacking Optionally Compressed Tarballs 403

8.3. Exercises . 405

Chapter 9. Packages . 407
9.1. Custom Packages . 408

9.1.1. Creating Custom Packages . 408
9.1.1.1. Platform-Specific Code . 410
9.1.1.2. Documenting Packages . 411
9.1.1.3. Unit Testing and Benchmarking Packages 414

9.1.2. Importing Packages . 416
9.2. Third-Party Packages . 417
9.3. A Brief Survey of Go’s Commands . 418
9.4. A Brief Survey of the Go Standard Library . 419

9.4.1. Archive and Compression Packages . 419
9.4.2. Bytes and String-Related Packages . 419
9.4.3. Collection Packages . 421
9.4.4. File, Operating System, and Related Packages 423

9.4.4.1. File Format-Related Packages . 424
9.4.5. Graphics-Related Packages . 425
9.4.6. Mathematics Packages . 425
9.4.7. Miscellaneous Packages . 425
9.4.8. Networking Packages . 427
9.4.9. The Reflect Package . 427

9.5. Exercises . 431

xiii

ptg7913109

Appendix A. Epilogue . 435

Appendix B. The Dangers of Software Patents 437

Appendix C. Selected Bibliography . 441

Index . 443

xiv

ptg7913109

Tables

2.1. Go’s Keywords . 52
2.2. Go’s Predefined Identifiers . 52
2.3. Boolean and Comparison Operators . 57
2.4. Arithmetic Operators Applicable to All Built-In Numbers 59
2.5. Go’s Integer Types and Ranges . 60
2.6. Arithmetic Operators Applicable Only to Built-In Integer Types 60
2.7. Go’s Floating-Point Types . 64
2.8. The Math Package’s Constants and Functions #1 65
2.9. The Math Package’s Constants and Functions #2 66

2.10. The Math Package’s Constants and Functions #3 67
2.11. The Complex Math Package’s Functions . 71
3.1. Go’s String and Character Escapes . 84
3.2. String Operations . 85
3.3. The Fmt Package’s Print Functions . 94
3.4. The Fmt Package’s Verbs . 95
3.5. The Fmt Package’s Verb Modifiers . 96
3.6. The Strings Package’s Functions #1 . 108
3.7. The Strings Package’s Functions #2 . 109
3.8. The Strconv Package’s Functions #1 . 114
3.9. The Strconv Package’s Functions #2 . 115

3.10. The Utf8 Package’s Functions . 118
3.11. The Unicode Package’s Functions . 119
3.12. The Regexp Package’s Functions . 121
3.13. The Regexp Package’s Escape Sequences . 121
3.14. The Regexp Package’s Character Classes . 122
3.15. The Regexp Package’s Zero-Width Assertions 122
3.16. The Regexp Package’s Quantifiers . 123
3.17. The Regexp Package’s Flags and Groups . 123
3.18. The *regexp.Regexp Type’s Methods #1 . 124
3.19. The *regexp.Regexp Type’s Methods #2 . 125
4.1. Slice Operations . 151

xv

ptg7913109

4.2. The Sort Package’s Functions . 161
4.3. Map Operations . 165
5.1. Built-In Functions . 187
8.1. Format Speed and Size Comparisons . 363
8.2. The Fmt Package’s Scan Functions . 383

xvi

ptg7913109

Introduction

The purpose of this book is to teach solid idiomatic Go programming using
all the features the language provides, as well as the most commonly used Go
packages from Go’s standard library. The book is also designed to serve as a
useful reference once the language is learned. To meet both of these goals the
book is quite comprehensive and tries to cover every topic in just one place—and
with forward and backward cross-references throughout.

Go is quite C-like in spirit, being a small and efficient language with convenient
low-level facilities such as pointers. Yet Go also offersmany features associated
with high- or very high-level languages, such asUnicode strings, powerful built-
in data structures, duck typing, garbage collection, and high-level concurrency
support that uses communication rather than shared data and locks. Go also
has a large and wide-ranging standard library.

The reader is assumed to have programming experience in a mainstream pro-
gramming language such asC,C++,Java,Python,or similar,although all of Go’s
unique features and idioms are illustrated with complete runnable examples
that are fully explained in the text.

To successfully learn any programming language it is necessary to write pro-
grams in that language. To this end the book’s approach is wholly practical, and
readers are encouraged to experiment with the examples, try the exercises, and
write their own programs to get hands-on experience. As with all my previous
books, the quoted code snippets are of “live code”; that is, the code was auto-
matically extracted from .go source files and directly embedded in the PDF that
went to the publisher—so there are no cut and paste errors, and the code works.
Wherever possible, small but complete programs and packages are used as ex-
amples to provide realistic use cases. The examples, exercises, and solutions are
available online at www.qtrac.eu/gobook.html.

The book’s key aim is to teach the Go language, and although many of the
standard Go packages are used, not all of them are. This is not a problem, since
reading the book will provide enough Go knowledge for readers to be able to
make use of any of the standard packages, or any third-party Go package, and
of course, be able to create their own packages.

Why Go?

TheGo programming language began as an internal Google project in 2007.The
original designwasby RobertGriesemer andUnix luminariesRobPike andKen
Thompson. On November 10, 2009, Go was publicly unveiled under a liberal

1

www.qtrac.eu/gobook.html

ptg7913109

2 Introduction

open source license. Go is being developed by a team at Google which includes
the original designers plus Russ Cox, Andrew Gerrand, Ian Lance Taylor, and
many others. Go has an open development model and many developers from
around the world contribute to it, with some so trusted and respected that they
have the same commit privileges as the Googlers. In addition,many third-party
Go packages are available from the Go Dashboard (godashboard.appspot.com/
project).

Go is the most exciting new mainstream language to appear in at least 15
years and is the first such language that is aimed squarely at 21st century
computers—and their programmers.

Go is designed to scale efficiently so that it can be used to build very big appli-
cations—and to compile even a large program in mere seconds on a single com-
puter. The lightning-fast compilation speed is made possible to a small extent
because the language is easy to parse, but mostly because of its dependency
management. If file app.go depends on file pkg1.go, which in turn depends on
pkg2.go, in a conventional compiled language app.go would need both pkg1.go’s
and pkg2.go’s object files. But in Go, everything that pkg2.go exports is cached
in pkg1.go’s object file, so pkg1.go’s object file alone is sufficient to build app.go.
For just three files this hardly matters, but it results in huge speedups for large
applications with lots of dependencies.

Since Go programs are so fast to build, it is practical to use them in situations
where scripting languages are normally used (see the sidebar “Go Shebang
Scripts”, ➤ 10). Furthermore, Go can be used to build web applications using
Google’s App Engine.

Go uses a very clean and easy-to-understand syntax that avoids the complexity
and verbosity of older languages like C++ (first released in 1983) or Java (first
released in 1995). And Go is a strongly statically typed language, something
which many programmers regard as essential for writing large programs. Yet
Go’s typing is not burdensome due to Go’s short “declare and initialize” variable
declaration syntax (where the compiler deduces the type so it doesn’t have to be
written explicitly), and because Go supports a powerful and convenient version
of duck typing.

Languages like C and C++ require programmers to do a vast amount of book-
keeping when it comes to memory management—bookkeeping that could be
done by the computer itself, especially for concurrent programs where keeping
track can be fiendishly complicated. In recent years C++ has greatly improved
in this area with various “smart” pointers, but is only just catching upwith Java
with regard to its threading library. Java relieves the programmer from the
burden of memory management by using a garbage collector. C has only third-
party threading libraries, although C++ now has a standard threading library.
However, writing concurrent programs in C, C++, or Java requires considerable

ptg7913109

Introduction 3

bookkeeping by programmers to make sure they lock and unlock resources at
the right times.

TheGo compiler and runtime system takes care of the tedious bookkeeping. For
memory management Go has a garbage collector, so there’s no need for smart
pointers or for manually freeing memory. And for concurrency, Go provides a
form of CSP (Communicating Sequential Processes) based on the ideas of com-
puter scientist C. A. R. Hoare, that means that many concurrent Go programs
don’t need to do any locking at all. Furthermore, Go uses goroutines—very
lightweight processes which can be created in vast numbers that are automati-
cally load-balanced across the available processors and cores—to provide much
more fine-grained concurrency than older languages’ thread-based approach-
es. In fact, Go’s concurrency support is so simple and natural to use that when
porting single-threaded programs to Go it often happens that opportunities for
using concurrency arise that lead to improved runtimesand better utilization of
machine resources.

Go is a pragmatic language that favors efficiency and programmer convenience
over purity. For example, Go’s built-in types and user-defined types are not the
same, since the former can be highly optimized in ways the latter can’t be. Go
also provides two fundamental built-in collection types: slices (for all practical
purposes these are references to variable-length arrays) and maps (key–value
dictionaries or hashes). These collection types are highly efficient and serve
most purposes extremely well. However, Go supports pointers (it is a fully com-
piled language—there’s no virtual machine getting in the way of performance),
so it is possible to create sophisticated custom types, such as balanced binary
trees, with ease.

While C supports only procedural programming and Java forces programmers
to program everything in an object-oriented way, Go allows programmers to use
the paradigm best suited to the problem. Go can be used as a purely procedural
language, but also has excellent support for object-oriented programming. As
we will see, though, Go’s approach to object orientation is radically different
from, say, C++, Java, or Python—and is easier to use and much more flexible
than earlier forms.

Like C, Go lacks generics (templates in C++-speak); however, in practice the
other facilities that Go provides in many cases obviate the need for generics.
Go does not use a preprocessor or include files (which is another reason why it
compiles so fast), so there is no need to duplicate function signatures as there is
in C and C++. And with no preprocessor, a program’s semantics cannot change
behind a Go programmer’s back as it can with careless #defines in C and C++.

Arguably, C++, Objective-C, and Java have all attempted to be better Cs (the
latter indirectly as a better C++).Go can also be seen as an attempt to be a better
C, even thoughGo’s clean, light syntax is reminiscent of Python—andGo’s slices
and maps are very similar to Python’s lists and dicts. However, Go is closer in

ptg7913109

4 Introduction

spirit to C than to any other language, and can be seen as an attempt to avoid C’s
drawbackswhile providing all that’s best in C, as well as adding many powerful
and useful features that are unique to Go.

Originally Gowas conceived as a systemsprogramming language for developing
large-scale programs with fast compilation that could take advantage of dis-
tributed systems and multicore networked computers. Go’s reach has already
gone far beyond the original conception and it is now being used as a highly
productive general-purpose programming language that’s a pleasure to use and
maintain.

The Structure of the Book

Chapter 1 begins by explaining how to build and run Go programs. The chapter
then provides a brief overview of Go’s syntax and features, as well as introduc-
ing some of its standard library. This is done by presenting and explaining a se-
ries of five very short examples, each illustrating a variety of Go features. This
chapter is designed to provide just a flavor of the language and to give readers a
feel for the scope of what is required to learn Go. (How to obtain and install Go
is also explained in this chapter.)

Chapters 2 to 7 cover the Go language in depth. Three chapters are devoted
to built-in data types: Chapter 2 covers identifiers, Booleans, and numbers;
Chapter 3 covers strings; and Chapter 4 covers Go’s collection types.

Chapter 5 describes and illustrates Go’s statements and control structures.
It also explains how to create and use custom functions, and completes the
chapters that show how to create procedural nonconcurrent programs in Go.

Chapter 6 shows how to do object-oriented programming in Go. This chapter
includes coverage of Go structs used for aggregating and embedding (delegat-
ing) values, and Go interfaces for specifying abstract types, as well as how to
produce an inheritance-like effect in some situations. The chapter presents
several complete fully explained examples to help ensure understanding, since
Go’s approach to object orientation may well be different frommost readers’ ex-
perience.

Chapter 7 covers Go’s concurrency features and has even more examples than
the chapter on object orientation, again to ensure a thorough understanding of
these novel aspects of the Go language.

Chapter 8 shows how to read and write custom binary, Go binary, text, JSON,
and XML files. (Reading and writing text files is very briefly covered in Chap-
ter 1 and several subsequent chapters since this makes it easier to have useful
examples and exercises.)

The book’s final chapter is Chapter 9. This chapter begins by showing how to
import and use standard library packages, custom packages, and third-party

ptg7913109

Introduction 5

packages. It also shows how to document, unit test, and benchmark custom
packages. The chapter’s last sections provide brief overviews of the tools
provided with the gc compiler, and of Go’s standard library.

Although Go is quite a small language, it is a very rich and expressive language
(asmeasured in syntactic constructs, concepts,and idioms), so there is a surpris-
ing amount to learn. This book shows examples in good idiomatic Go style right
from the start.★ This approach, of course,means that some things are shown be-
fore being fully explained. We ask the reader to take it on trust that everything
will be explained over the course of the book (and, of course, cross-referencesare
provided for everything that is not explained on the spot).

Go is a fascinating language, and one that is really nice to use. It isn’t hard to
learnGo’s syntax and idioms,but it does introduce somenovel concepts thatmay
be unfamiliar to many readers. This book tries to give readers the conceptual
breakthroughs—especially in object-oriented Go programming and in concur-
rent Go programming—that might take weeks or even months for those whose
only guide is the good but rather terse documentation.

Acknowledgments

Every technical book I have ever written has benefited from the help and advice
of others, and this one is no different in this regard.

I want to give particular thanks to two friends who are programmers with
no prior Go experience: Jasmin Blanchette and Trenton Schulz. Both have
contributed to my books for many years, and in this case their feedback has
helped to ensure that this book will meet the needs of other programmers new
to Go.

The book was also greatly enhanced by the feedback I received from core Go
developer Nigel Tao. I didn’t always take his advice, but his feedback was
always illuminating and resulted in great improvements both to the code and to
the text.

I had additional help from others, including David Boddie, a programmer new
to Go, who gave some valuable feedback. And Go developers Ian Lance Taylor,
and especially Russ Cox, between them solved many problems both of code and
concepts, and provided clear and precise explanations that contributed greatly
to the book’s accuracy.

During the writing of the book I asked many questions on the golang-nuts mail-
ing list and always received thoughtful and useful replies from many different

★ The one exception is that in the early chapters we always declare channels to be bidirectional,
even when they are used only unidirectionally. Channels are declared to have a particular direction
wherever this makes sense, starting from Chapter 7.

ptg7913109

6 Introduction

posters. I also received feedback from readers of the Safari “rough cut” preview
edition that led to some important clarifications.

The Italian software company www.develer.com, in the person of Giovanni Bajo,
was kind enough to provide me with free Mercurial repository hosting to aid
my peace of mind over the long process of writing this book. Thanks to Lorenzo
Mancini for setting it all up and looking after it for me. I’m also very grateful
to Anton Bowers and Ben Thompson who have been hosting my web site,
www.qtrac.eu, on their web server since early 2011.

Thanks to Russel Winder for his coverage of software patents in his blog, www
.russel.org.uk. Appendix B borrows a number of his ideas.

And as always, thanks to Jeff Kingston, creator of the lout typesetting sys-
tem that I have used for all my books and many other writing projects over
many years.

Particular thanks to my commissioning editor, Debra Williams Cauley, who so
successfully made the case for this book with the publisher, and who provided
support and practical help as the work progressed.

Thanks also to production manager Anna Popick, who once again managed the
production process so well, and to the proofreader, Audrey Doyle, who did such
excellent work.

As ever, I want to thank my wife, Andrea, for her love and support.

www.develer.com
www.qtrac.eu
www.russel.org.uk
www.russel.org.uk

ptg7913109

1 An Overview in Five
Examples

§1.1. Getting Going ➤ 7

§1.2. Editing, Compiling, and Running ➤ 9

§1.3. Hello Who? ➤ 14

§1.4. Big Digits—Two-Dimensional Slices ➤ 16

§1.5. Stack—Custom Types with Methods ➤ 21

§1.6. Americanise—Files,Maps, and Closures ➤ 29

§1.7. Polar to Cartesian—Concurrency ➤ 40

This chapter provides a series of five explained examples. Although the exam-
ples are tiny, each of them (apart from “Hello Who?”) does something useful,
and between them they provide a rapid overview of Go’s key features and some
of its key packages. (What other languages often call “modules” or “libraries”
are called packages in Go terminology, and all the packages supplied with Go as
standard are collectively known as the Go standard library.) The chapter’s pur-
pose is to provide a flavor of Go and to give a feel for the scope of what needs to
be learned to program successfully in Go. Don’t worry if some of the syntax or
idiomsare not immediately understandable;everything shown in this chapter is
covered thoroughly in subsequent chapters.

Learning to program Go the Go way will take a certain amount of time and
practice. For those wanting to port substantial C, C++, Java, Python, and other
programs to Go, taking the time to learn Go—and in particular how its object-
orientation and concurrency featureswork—will save time and effort in the long
run. And for those wanting to create Go applications from scratch it is best to
do so making the most of all that Go offers, so again the upfront investment in
learning time is important—and will pay back later.

1.1. Getting Going

Goprogramsare compiled rather than interpreted so as to have the best possible
performance. Compilation is very fast—dramatically faster than can be the
case with some other languages, most notably compared with C and C++.

7

ptg7913109

8 Chapter 1. An Overview in Five Examples

The Go Documentation i
Go’s official web site is golang.org which hosts the most up-to-date Go docu-
mentation. The “Packages” link provides access to the documentation on all
the Go standard library’s packages—and to their source code, which can be
very helpful when the documentation itself is sparse. The “Commands” link
leads to the documentation for the programs distributed with Go (e.g., the
compilers, build tools, etc.). The “Specification” link leads to an accessible, in-
formal, and quite thorough Go language specification. And the “EffectiveGo”
link leads to a document that explains many best practices.

The web site also features a sandbox in which small (somewhat limited) Go
programs can be written, compiled, and run, all online. This is useful for be-
ginners for checking odd bits of syntax and for learning the Go fmt package’s
sophisticated text formatting facilities or the regexp package’s regular expres-
sion engine. The Go web site’s search box searches only the Go documenta-
tion; to search for Go resources generally, visit go-lang.cat-v.org/go-search.

The Go documentation can also be viewed locally, for example, in a web
browser. To do this, run Go’s godoc tool with a command-line argument that
tells it to operate as a web server. Here’s how to do this in a Unix console
(xterm, gnome-terminal, konsole, Terminal.app, or similar):

$ godoc -http=:8000

Or in a Windows console (i.e., a Command Prompt or MS-DOS Prompt window):

C:\>godoc -http=:8000

The port number used here is arbitrary—simply use a different one if it
conflicts with an existing server. This assumes that godoc is in your PATH.

To view the served documentation, open a web browser and give it a location
of http://localhost:8000. This will present a page that looks very similar to
the golang.org web site’s front page. The “Packages” link will show the docu-
mentation for Go’s standard library, plus any third-party packages that have
been installed under GOROOT. If GOPATH is defined (e.g., for local programs and
packages), a link will appear beside the “Packages” link through which the
relevant documentation can be accessed. (The GOROOT and GOPATH environment
variables are discussed later in this chapter and in Chapter 9.)

It is also possible to view the documentation for a whole package or a single
item in a package in the console using godoc on the command line. For ex-
ample, executing godoc image NewRGBA will output the documentation for the
image.NewRGBA() function, and executing godoc image/png will output the docu-
mentation for the entire image/png package.

ptg7913109

1.1. Getting Going 9

The standard Go compiler is called gc and its toolchain includes programs such
as 5g, 6g, and 8g for compiling, 5l, 6l, and 8l for linking, and godoc for viewing the
Go documentation. (These are 5g.exe, 6l.exe, etc., on Windows.) The strange
names follow the Plan 9 operating system’s compiler naming conventionswhere
the digit identifies the processor architecture (e.g., “5” for ARM, “6” for AMD-
64—including Intel 64-bit processors—and “8” for Intel 386.) Fortunately, we
don’t need to concern ourselveswith these tools, since Go provides the high-level
go build tool that handles the compiling and linking for us.

All the examples in this book—available from www.qtrac.eu/gobook.html—have
been tested using gc on Linux, Mac OS X, and Windows using Go 1. The Go
developers intend to make all subsequent Go 1.x versions backward compatible
with Go 1, so the book’s text and examples should be valid for the entire 1.x
series. (If incompatible changes occur, the book’s examples will be updated to
the latest Go release, so as time goes by, they may differ from the code shown in
the book.)

To download and install Go, visit golang.org/doc/install.html which provides
instructions and download links. At the time of thiswriting,Go 1 is available in
source and binary form for FreeBSD 7+, Linux 2.6+, Mac OS X (Snow Leopard
and Lion), and Windows 2000+, in all cases for Intel 32-bit and AMD 64-bit
processor architectures. There is also support for Linux on ARMprocessors. Go
prebuilt packages are available for the Ubuntu Linux distribution, and may be
available for other Linuxes by the time you read this. For learning to program
in Go it is easier to install a binary version than to build Go from scratch.

Programs built with gc use a particular calling convention. This means that
programs compiled with gc can be linked only to external libraries that use the
same calling convention—unless a suitable tool is used to bridge the difference.
Go comeswith support for using externalC code fromGoprograms in the formof
the cgo tool (golang.org/cmd/cgo), and at least on Linux and BSD systems, both C
and C++ code can be used in Go programs using the SWIG tool (www.swig.org).

In addition to gc there is also the gccgo compiler. This is a Go-specific front end
to gcc (the GNU Compiler Collection) available for gcc from version 4.6. Like gc,
gccgo may be available prebuilt for some Linux distributions. Instructions for
building and installing gccgo are given at golang.org/doc/gccgo_install.html.

1.2. Editing, Compiling, and Running

Go programs are written as plain text Unicode using the UTF-8 encoding.★

Most modern text editors can handle this automatically, and some of the most
popular may even have support for Go color syntax highlighting and automatic

★ Some Windows editors (e.g., Notepad) go against the Unicode standard’s recommendation and
insert the bytes 0xEF, 0xBB, 0xBF, at the start of UTF-8 files. This book’s examples assume that UTF-8
files do not have these bytes.

www.qtrac.eu/gobook.html
www.swig.org

ptg7913109

10 Chapter 1. An Overview in Five Examples

Go Shebang Scripts i
One side effect of Go’s fast compilation is that it makes it realistic to write
Go programs that can be treated as shebang #! scripts on Unix-like systems.
This requires a one-off step of installing a suitable tool. At the time of this
writing, two rival tools provide the necessary functionality:gonow (github.com/
kless/gonow), and gorun (wiki.ubuntu.com/gorun).

Once gonow or gorun is available, we can make any Go program into a
shebang script. This is done with two simple steps. First, add either
#!/usr/bin/env gonow or #!/usr/bin/env gorun, as the very first line of the .go
file that contains the main() function (in package main). Second, make the file
executable (e.g., with chmod +x). Such files can only be compiled by gonow or
gorun rather than in the normal way since the #! line is not legal in Go.

When gonow or gorun executes a .go file for the first time, it will compile the
file (extremely fast, of course), and then run it. On subsequent uses, the
programwill only be recompiled if the .go source file has been modified since
the previous compilation. This makes it possible to use Go to quickly and
conveniently create various small utility programs, for example, for system
administration tasks.

indentation. If your editor doesn’t have Go support, try entering the editor’s
name in the Go search engine to see if there are suitable add-ons. For editing
convenience, all of Go’s keywords and operators use ASCII characters; however,
Go identifiers can start with any Unicode letter followed by any Unicode letters
or digits, so Go programmers can freely use their native language.

To get a feel for how we edit, compile, and run a Go program we’ll start with
the classic “Hello World” program—although we’ll make it a tiny bit more
sophisticated than usual. First we will discuss compiling and running, then in
the next section we will go through the source code—in file hello/hello.go—in
detail, since it incorporates some basic Go ideas and features.

All of the book’s examples are available from www.qtrac.eu/gobook.html and
unpack to directory goeg. So file hello.go’s full path (assuming the exam-
ples were unpacked in the home directory—although anywhere will do) is
$HOME/goeg/src/hello/hello.go.When referring to files the book always assumes
the first three components of the path, which is why in this case the path is giv-
en only as hello/hello.go. (Windows users must, of course, read “/”s as “\”s and
use the directory they unpacked the examples into, such as C:\goeg or %HOME-
PATH%\goeg.)

If you have installed Go from a binary package or built it from source and in-
stalled it as root or Administrator, you should have at least one environment
variable, GOROOT, which contains the path to the Go installation, and your PATH
should now include $GOROOT/bin or %GOROOT%\bin. To check that Go is installed

www.qtrac.eu/gobook.html

ptg7913109

1.2. Editing,Compiling,and Running 11

correctly, enter the following in a console (xterm, gnome-terminal, konsole, Termi-
nal.app, or similar):

$ go version

Or on Windows in an MS-DOS Prompt or Command Prompt window:

C:\>go version

If you get a “command not found” or “ ‘go’ is not recognized…” error message
then it means that Go isn’t in the PATH. The easiest way to solve this on Unix-like
systems (including Mac OS X) is to set the environment variables in .bashrc
(or the equivalent file for other shells). For example, the author’s .bashrc file
contains these lines:

export GOROOT=$HOME/opt/go
export PATH=$PATH:$GOROOT/bin

Naturally, you must adjust the values to match your own system. (And, of
course, this is only necessary if the go version command fails.)

On Windows, one solution is to create a batch file that sets up the environment
for Go, and to execute this every time you start a console for Go programming.
However, it is much more convenient to set the environment variables once and
for all through the Control Panel. To do this, click Start (the Windows logo), then
Control Panel, then System and Security, then System, then Advanced system settings,
and in the System Properties dialog click the Environment Variables button, then the
New… button, and add a variable with the name GOROOT and a suitable value,
such as C:\Go. In the same dialog, edit the PATH environment variable by adding
the text ;C:\Go\bin at the end—the leading semicolon is vital! In both cases
replace the C:\Go path component with the actual path where Go is installed if
it isn’t C:\Go. (Again, this is only necessary if the go version command failed.)

From now on we will assume that Go is installed and the Go bin directory
containing all the Go tools is in the PATH. (It may be necessary—once only—to
open a new console window for the new settings to take effect.)

Two steps are required to build Go programs: compiling and linking.★ Both of
these steps are handled by the go tool which can not only build local programs
and packages, but can also fetch, build, and install third-party programs
and packages.

★ Since the book assumes the use of the gc compiler, readers using gccgo will need to follow the
compile and link process described in golang.org/doc/gccgo_install.html. Similarly, readers using
other compilers will need to compile and link as per their compiler’s instructions.

ptg7913109

12 Chapter 1. An Overview in Five Examples

For the go tool to be able to build local programs and packages, there are three
requirements. First, the Go bin directory ($GOROOT/bin or %GOROOT%\bin) must be
in the path. Second, there must be a directory tree that has an src directory
and under which the source code for the local programs and packages resides.
For example, the book’s examples unpack to goeg/src/hello, goeg/src/bigdigits,
and so on. Third, the directory above the src directory must be in the GOPATH
environment variable. For example, to build the book’s hello example using the
go tool, we must do this:

$ export GOPATH=$HOME/goeg

$ cd $GOPATH/src/hello

$ go build

We can do almost exactly the same on Windows:

C:\>set GOPATH=C:\goeg

C:\>cd %gopath%\src\hello

C:\goeg\src\hello>go build

In both caseswe assume that the PATH includes $GOROOT/bin or %GOROOT%\bin.Once
the go tool has built the program we can run it. By default the executable is
given the samenameas the directory it is in (e.g.,hello onUnix-like systemsand
hello.exe on Windows). Once built, we can run the program in the usual way.

$./hello

Hello World!

Or:

$./hello Go Programmers!

Hello Go Programmers!

On Windows it is very similar:

C:\goeg\src\hello>hello Windows Go Programmers!

Hello Windows Go Programmers!

We have shown what must be typed in bold and the console’s text in roman. We
have also assumed a $ prompt, but it doesn’t matter what it is (e.g., C:\>).

Note that we do not need to compile—or even explicitly link—any other pack-
ages (even though aswewill see, hello.go uses three standard library packages).
This is another reason why Go programs build so quickly.

ptg7913109

1.2. Editing,Compiling,and Running 13

If we have several Go programs, it would be convenient if all their executables
could be in a single directory that we could add to our PATH. Fortunately, the go
tool supports this as follows:

$ export GOPATH=$HOME/goeg

$ cd $GOPATH/src/hello

$ go install

Again, we can do the same on Windows:

C:\>set GOPATH=C:\goeg

C:\>cd %gopath%\src\hello

C:\goeg\src\hello>go install

The go install command does the same as go build only it puts the executable
in a standard location ($GOPATH/bin or %GOPATH%\bin). This means that by adding
a single path ($GOPATH/bin or %GOPATH%\bin) to our PATH, all the Go programs that
we install will conveniently be in the PATH.

In addition to the book’s examples, we are likely to want to develop our own
Go programs and packages in our own directory. This can easily be accom-
modated by setting the GOPATH environment variable to two (or more) colon-
separated paths (semicolon-separated on Windows); for example, export
GOPATH=$HOME/app/go:$HOME/goeg or SET GOPATH=C:\app\go;C:\goeg.★ In this case
we must put all our program and package’s source code in $HOME/app/go/src or
C:\app\go\src. So, if we develop a program called myapp, its .go source files would
go in $HOME/app/go/src/myapp or C:\app\go\src\myapp. And if we use go install to
build a program in a GOPATH directory where the GOPATH has two or more directo-
ries, the executable will be put in the corresponding directory’s bin directory.

Naturally, it would be tedious to export or set the GOPATH every time we wanted
to build a Go program,so it is best to set this environment variable permanently.
This can be done by setting GOPATH in the .bashrc file (or similar) on Unix-like
systems (see the book’s example’s gopath.sh file). On Windows it can be done
either by writing a batch file (see the book’s example’s gopath.bat file), or by
adding it to the system’s environment variables: Click Start (the Windows logo),
then Control Panel, then System and Security, then System, then Advanced system
settings, and in the System Properties dialog click the Environment Variables button,
then the New… button, and add a variable with the name GOPATH and a suitable
value, such as C:\goeg or C:\app\go;C:\goeg.

Although Go uses the go tool as its standard build tool, it is perfectly possible to
use make or some of themodern build tools, or to use alternativeGo-specific build

★ From now on we will almost always show Unix-style command lines only, and assume that
Windows programmers can mentally translate.

ptg7913109

14 Chapter 1. An Overview in Five Examples

tools, or add-ons for popular IDEs (Integrated Development Environments)
such as Eclipse and Visual Studio.

1.3. Hello Who?
Now that we have seen how to build the hello programwe will look at its source
code. Don’t worry about understanding all the details—everything shown
in this chapter (and much more!) is covered thoroughly in the subsequent
chapters. Here is the complete hello program (in file hello/hello.go):

// hello.go
package main

import (➊

"fmt"
"os"
"strings"

)

func main() {
 who := "World!" ➋

if len(os.Args) > 1 { /* os.Args[0] is "hello" or "hello.exe" */ ➌

 who = strings.Join(os.Args[1:], " ") ➍

 }
 fmt.Println("Hello", who) ➎

}

Go uses C++-style comments: // for single-line comments that finish at the end
of the line and /* … */ for comments that can span multiple lines. It is conven-
tional in Go to mostly use single-line comments, with spanning comments often
used for commenting out chunks of code during development.★

Every piece of Go code exists inside a package, and every Go programmust have
a main packagewith a main() function which serves as the program’s entry point,
that is, the function that is executed first. In fact, Go packages may also have
init() functions that are executed before main(), as we will see (§1.7, ➤ 40); full
details are given later (§5.6.2, ➤ 224). Notice that there is no conflict between
the name of the package and the name of the function.

Go operates in termsof packages rather than files. Thismeans that we can split
a package across asmany files as we like, and from Go’s point of view if they all
have the same package declaration, they are all part of the same package and
no different than if all their contentswere in a single file. Naturally,we can also

★ We use some simple syntax highlighting and sometimes highlight lines or annotate them with
numbers (➊, ➋, …), for ease of reference in the text. None of this is part of the Go language.

ptg7913109

1.3. Hello Who? 15

break our applications’ functionality into as many local packages as we like, to
keep everything neatly modularized, something we will see in Chapter 9.

The import statement (14 ➤, ➊) imports three packages from the standard li-
brary. The fmt package provides functions for formatting text and for read-
ing formatted text (§3.5, ➤ 93), the os package provides platform-independent
operating-system variables and functions, and the strings package provides
functions for manipulating strings (§3.6.1, ➤ 107).

Go’s fundamental types support the usual operators (e.g., + for numeric addition
and for string concatenation),and theGo standard library supplements these by
providing packages of functions for working with the fundamental types, such
as the strings package importedhere. It isalso possible to create our own custom
types based on the fundamental types and to provide our own methods—that
is, custom type-specific functions—for them. (We will get a taste of this in §1.5,
➤ 21, with full coverage in Chapter 6.)

The reader may have noticed that the program has no semicolons, that the im-
ports are not comma-separated, and that the if statement’s condition does not
require parentheses. In Go, blocks, including function bodies and control struc-
ture bodies (e.g., for if statements and for for loops), are delimited using braces.
Indentation is used purely to improve human readability. Technically,Go state-
ments are separated by semicolons, but these are put in by the compiler, so we
don’t have to use them ourselves unless we want to put multiple statements on
the same line. No semicolons and fewer commas and parentheses give Go pro-
grams a lighter look and require less typing.

Go functions and methods are defined using the func keyword. The main pack-
age’s main() function always has the same signature—it takes no arguments
and returnsnothing. When main.main() finishes the programwill terminate and
return 0 to the operating system. Naturally, we can exit whenever we like and
return our own choice of value, as we will see (§1.4, ➤ 16).

The first statement in the main() function (14 ➤, ➋; using the := operator) is
called a short variable declaration in Go terminology. Such a statement both
declares and initializes a variable at the same time. Furthermore,we don’t need
to specify the variable’s type because Go can deduce that from the initializing
value. So in this case we have declared a variable called who of type string, and
thanks to Go’s strong typing we may only assign strings to who.

As with most languages the if statement tests a condition—in this case, how
many strings were entered on the command-line—which if satisfied executes
the corresponding brace-delimited block. We will see a more sophisticated
if statement syntax later in this chapter (§1.6, ➤ 29), and further on (§5.2.1,
➤ 192).

The os.Args variable is a slice of strings (14 ➤, ➌). Arrays, slices, and other col-
lection data types are covered in Chapter 4 (§4.2,➤ 148). For now it is sufficient

ptg7913109

16 Chapter 1. An Overview in Five Examples

to know that a slice’s length can be determined using the built-in len() function
and its elements can be accessed using the [] index operator using a subset of
the Python syntax. In particular,slice[n] returns the slice’s nth element (count-
ing from zero), and slice[n:] returns another slice which has the elements from
the nth element to the last element. In the collections chapter we will see the
full generality of Go’s syntax in this area. In the case of os.Args, the slice should
always have at least one string (the program’sname), at index position 0. (All Go
indexing is 0-based.)

If the user has entered one or more command line arguments the if condition
is satisfied and we set the who string to contain all the arguments joined up as a
single string (14 ➤, ➍). In this case we use the assignment operator (=), since if
we used the short variable declaration operator (:=) we would end up declaring
and initializing a new who variable whose scopewas limited to the if statement’s
block. The strings.Join() function takes a slice of strings and a separator
(which could be empty, i.e., ""), and returns a single string consisting of all the
slice’s strings with the separator between each one. Here we have joined them
using a single space between each.

Finally, in the last statement (14 ➤, ➎), we print Hello, a space, the string held
in the who variable, and a newline. The fmt package has many different print
variants, some like fmt.Println() which will neatly print whatever they are
given, and others like fmt.Printf() that use placeholders to provide very fine
control over formatting. The print functions are covered in Chapter 3 (§3.5,
➤ 93).

The hello programpresentedherehas shown farmore of the language’s features
than such programs conventionally do. The subsequent examples continue in
this vein, covering more advanced featureswhile keeping the examples as short
as possible. The idea here is to simply acquire some basic familiarity with the
language and to get to grips with building, running, and experimenting with
simpleGo programs,while at the same time getting a flavor of Go’s powerful and
novel features. And, of course, everything presented in this chapter is explained
in detail in the subsequent chapters.

1.4. Big Digits—Two-Dimensional Slices

The bigdigits program (in file bigdigits/bigdigits.go) reads a number entered
on the command line (as a string), and outputs the same number onto the
console using “big” digits. Back in the twentieth century, at sites where lots of
users shared a high-speed line printer, it used to be common practice for each
user’s print job to be preceded by a cover page that showed some identifying
details such as their username and the name of the file being printed,using this
kind of technique.

ptg7913109

1.4. Big Digits—Two-Dimensional Slices 17

Wewill review the code in three parts:first the imports, then the static data, and
then the processing. But right now, let’s look at a sample run to get a feel for
how it works:

$./bigdigits 290175493

222 9999 000 1 77777 55555 4 9999 333
2 2 9 9 0 0 11 7 5 44 9 9 3 3
 2 9 9 0 0 1 7 5 4 4 9 9 3
 2 9999 0 0 1 7 555 4 4 9999 33
2 9 0 0 1 7 5 444444 9 3
2 9 0 0 1 7 5 5 4 9 3 3
22222 9 000 111 7 555 4 9 333

Each digit is represented by a slice of strings, with all the digits together repre-
sented by a slice of slices of strings. Before looking at the data, here is how we
could declare and initialize single-dimensional slices of strings and numbers:

longWeekend := []string{"Friday", "Saturday", "Sunday", "Monday"}
var lowPrimes = []int{2, 3, 5, 7, 11, 13, 17, 19}

Slices have the form []Type, and if we want to initialize them we can immedi-
ately follow with a brace-delimited comma-separated list of elements of the cor-
responding type. We could have used the same variable declaration syntax for
both, but have used a longer form for the lowPrimes slice to show the syntactic
difference and for a reason that will be explained in a moment. Since a slice’s
Type can itself be a slice type we can easily create multidimensional collections
(slices of slices, etc.).

The bigdigits program needs to import only four packages.

import (
"fmt"
"log"
"os"
"path/filepath"

)

The fmt package provides functions for formatting text and for reading format-
ted text (§3.5, ➤ 93). The log package provides logging functions. The os pack-
age provides platform-independent operating-system variables and functions
including the os.Args variable of type []string (slice of strings) that holds the
command-line arguments. And the path package’s filepath package provides
functions for manipulating filenames and paths that work across platforms.
Note that for packages that are logically inside other packages, we only specify
the last component of their name (in this case filepath) when accessing them in
our code.

ptg7913109

18 Chapter 1. An Overview in Five Examples

For the bigdigits program we need two-dimensional data (a slice of slices of
strings). Here is how we have created it, with the strings for digit 0 laid out to
illustrate how a digit’s strings correspond to rows in the output, and with the
strings for digits 3 to 8 elided.

var bigDigits = [][]string{
 {" 000 ",

" 0 0 ",
"0 0",
"0 0",
"0 0",
" 0 0 ",
" 000 "},

 {" 1 ", "11 ", " 1 ", " 1 ", " 1 ", " 1 ", "111"},
 {" 222 ", "2 2", " 2 ", " 2 ", " 2 ", "2 ", "22222"},

// ... 3 to 8 ...
 {" 9999", "9 9", "9 9", " 9999", " 9", " 9", " 9"},
}

Variables declared outside of any function or method may not use the := oper-
ator, but we can get the same effect using the long declaration form (with key-
word var) and the assignment operator (=) aswe have done here for the bigDigits
variable (and did earlier for the lowPrimes variable).We still don’t need to specify
bigDigits’ type since Go can deduce that from the assignment.

We leave the bean counting to the Go compiler, so there is no need to specify the
dimensions of the slice of slices. One of Go’s many conveniences is its excellent
support for composite literals using braces, so we don’t have to declare a data
variable in one place and populate it with data in another—unless we want to,
of course.

The main() function that reads the command line and uses the data to produce
the output is only 20 lines.

func main() {
if len(os.Args) == 1 { ➊

 fmt.Printf("usage: %s <whole-number>\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 stringOfDigits := os.Args[1]
for row := range bigDigits[0] { ➋

 line := ""
for column := range stringOfDigits { ➌

 digit := stringOfDigits[column] - '0' ➍

if 0 <= digit && digit <= 9 { ➎

ptg7913109

1.4. Big Digits—Two-Dimensional Slices 19

 line += bigDigits[digit][row] + " " ➏

 } else {
 log.Fatal("invalid whole number")
 }
 }
 fmt.Println(line)
 }
}

The programbegins by checking to see if it was invoked with any command-line
arguments. If it wasn’t, len(os.Args) will be 1 (recall that os.Args[0] holds the
program’s name, so the slice’s length is normally at least 1), and the first if
statement (18 ➤, ➊) will be satisfied. In this case we output a suitable usage
message using the fmt.Printf() function that accepts % placeholders similar to
those supported by the C/C++ printf() function or by Python’s% operator. (See
§3.5, ➤ 93 for full details.)

The path/filepath package provides path manipulation functions—for example,
the filepath.Base() function returns the basename (i.e., the filename) of the
given path. After outputting the message the program terminates using the
os.Exit() function and returns 1 to the operating system. On Unix-like systems
a return value of 0 is used to indicate success, with nonzero values indicating a
usage error or a failure.

The use of the filepath.Base() function illustrates a nice feature of Go:When a
package is imported,nomatter whether it is top-level or logically inside another
package (e.g., path/filepath), we always refer to it using only the last component
of its name (e.g., filepath). It is also possible to give packages local names to
avoid name collisions; Chapter 9 provides the details.

If at least one command-line argument was given, we copy the first one into
the stringOfDigits variable (of type string). To convert the number that the
user entered into big digits we must iterate over each row in the bigDigits slice
to produce each line of output, that is, the first (top) string for each digit, then
the second, and so on. We assume that all the bigDigits’ slices have the same
number of rows and so take the row count from the first one. Go’s for loop has
various syntaxes for different purposes;here (18 ➤,➋ and 18 ➤,➌) we have used
for … range loops that return the index positions of each item in the slices they
are given.

The row and column loops part of the code could have been written like this:

for row := 0; row < len(bigDigits[0]); row++ {
 line := ""

for column := 0; column < len(stringOfDigits); column++ {
 ...

ptg7913109

20 Chapter 1. An Overview in Five Examples

This is a form familiar to C, C++, and Java programmers and is perfectly valid
in Go.★ However, the for … range syntax is shorter and more convenient. (Go’s
for loops are covered in §5.3, ➤ 203.)

At each row iteration we set that row’s line to be an empty string. Then we
iterate over the columns (i.e., the characters) in the stringOfDigits string we
received from the user. Go strings hold UTF-8 bytes, so potentially a character
might be represented by two or more bytes. This isn’t an issue here because we
are only concerned with the digits 0, 1, …, 9 each of which is represented by a
single byte in UTF-8 and with the same byte value as in 7-bit ASCII. (We will
see how to iterate over a string character by character—regardless of whether
the characters are single- or multibyte—in Chapter 3.)

When we index a particular position in a string we get the byte value at that
position. (InGo the byte type is a synonym for the uint8 type.) Sowe retrieve the
byte value of the command-line string at the given column and subtract the byte
value of digit 0 from it to get the number it represents (18 ➤, ➍). In UTF-8 (and
7-bit ASCII) the character '0' is code point (character) 48 decimal, the character
'1' is code point 49, and so on. So if, for example,we have the character '3' (code
point 51), we can get its integer value by doing the subtraction '3' - '0' (i.e., 51
− 48) which results in an integer (of type byte) of value 3.

Go uses single quotes for character literals, and a character literal is an integer
that’s compatible with any of Go’s integer types. Go’s strong typing means
we cannot add, say, an int32 to an int16 without explicit conversion, but Go’s
numeric constants and literals adapt to their context, so in this context '0' is
considered to be a byte.

If the digit (of type byte) is in range (18 ➤,➎) we can add the appropriate string
to the line. (In the if statement the constants 0 and 9 are considered to be bytes
because that’s digit’s type, but if digit was of a different type, say, int, they
would be treated as that type instead.) Although Go strings are immutable (i.e.,
they cannot be changed), the += append operator is supported to provide a nice
easy-to-use syntax. (It works by replacing the original string under the hood.)
There is also support for the + concatenate operator which returns a new string
that is the concatenation of its left and right string operands. (The string type
is covered fully in Chapter 3.)

To retrieve the appropriate string (19 ➤, ➏) we access the bigDigits’s slice that
corresponds to the digit, and then within that to the row (string) we need.

If the digit is out of range (e.g., due to the stringOfDigits containing a nondigit),
we call the log.Fatal() function with an error message. This function logs the

★ Unlike C, C++, and Java, in Go the ++ and -- operators may only be used as statements, not
expressions. Furthermore, they may only be used as postfix operators, not prefix operators. This
means that certain order of evaluation problems cannot occur in Go—so thankfully,expressions like
f(i++) and a[i] = b[++i] cannot be written in Go.

ptg7913109

1.4. Big Digits—Two-Dimensional Slices 21

date, time, and error message—to os.Stderr if no other log destination is explic-
itly specified—and calls os.Exit(1) to terminate the program. There is also a
log.Fatalf() function that does the same thing and which accepts % placehold-
ers. We didn’t use log.Fatal() in the first if statement (18 ➤, ➊) because we
want to print the program’s usage message without the date and time that the
log.Fatal() function normally outputs.

Once all the number’s strings for the given row have been accumulated the
complete line is printed. In this example, seven lines are printed because each
digit in the bigDigits slice of strings is represented by seven strings.

One final point is that the order of declarationsand definitionsdoesn’t generally
matter. So in the bigdigits/bigdigits.go file we could declare the bigDigits
variable before or after the main() function. In this case we have put main() first
since for the book’s examples we usually prefer to order things top-down.

The first two examples have covered a fair amount of ground, but both of them
show material that is familiar from other mainstream languages even though
the syntax is slightly different. The following three examples take us beyond
the comfort zone to illustrate Go-specific features such as custom Go types, Go
file handling (including error handling) and functions as values, and concurrent
programming using goroutines and communication channels.

1.5. Stack—Custom Types with Methods

Although Go supports object-oriented programming it provides neither class-
es nor inheritance (is-a relationships). Go does support the creation of custom
types, and Go makes aggregation (has-a relationships) extremely easy. Go also
allows for the complete separation of a type’s data from its behavior, and sup-
portsduck typing.Duck typing is a powerful abstractionmechanism thatmeans
that values can be handled (e.g., passed to functions), based on themethods they
provide, regardless of their actual types. The terminology is derived from the
phrase, “If it walks like a duck, and quacks like a duck, it is a duck”. All of this
produces a more flexible and powerful alternative to the classes and inheritance
approach—but does require those of us used to themore traditional approach to
make some significant conceptual adjustments to really benefit fromGo’s object
orientation.

Go representsdata using the fundamental built-in types such as keyword!!struct
bool, int, and string, or by aggregations of types using structs.★ Go’s custom
types are based on the fundamental types, or on structs, or on other custom
types. (We will see some simple examples later in this chapter; §1.7, ➤ 40.)

★Unlike C++,Go’s structs are not classes in disguise. For example,Go’s structs support aggregation
and delegation, but not inheritance.

ptg7913109

22 Chapter 1. An Overview in Five Examples

Go supports both named and unnamed custom types. Unnamed types with
the same structure can be used interchangeably; however, they cannot have
any methods. (We will discuss this more fully in §6.4, ➤ 275.) Any named cus-
tom type can have methods and these methods together constitute the type’s
interface. Named custom types—even with the same structure—are not inter-
changeable. (Throughout the book any reference to a “custom type” means a
named custom type, unless stated otherwise.)

An interface is a type that can be formally defined by specifying a particular
set of methods. Interfaces are abstract and cannot be instantiated. A concrete
(i.e., noninterface) type that has the methods specified by an interface fulfills
the interface, that is, values of such a concrete type can be used as values of the
interface’s type as well as of their own actual type. Yet no formal connection
need be established between an interface and a concrete type that provides the
methods specified by the interface. It is sufficient for a custom type to have the
interface’s methods for it to satisfy that interface. And, of course, a type can
satisfy more than one interface simply by providing all the methods for all the
interfaces we want it to satisfy.

The empty interface (i.e., the interface that has no methods) is specified as
interface{}.★ Since the empty interface makes no demands at all (because it
doesn’t require any methods), it can stand for any value (in effect like a pointer
to any value),whether the value is of a built-in type or is of a custom type. (Go’s
pointers and references are explained later; §4.1, ➤ 140.) Incidentally, in Go
terminology we talk about types and values rather than classes and objects or
instances (since Go has no classes).

Function and method parameters can be of any built-in or custom type—or of
any interface type. In the latter case this means that a function can have a
parameter that says, for example, “pass a value that can read data”, regardless
of what that value’s type actually is. (We will see this in practice shortly; §1.6,
➤ 29.)

Chapter 6 covers all of these matters in detail and presents many examples to
ensure that the ideas are understood. For now, let’s just look at a very simple
custom type—a stack—starting with how values are created and used, and then
looking at the implementation of the custom type itself.

We will start with the output produced by a simple test program:

$./stacker

81.52
[pin clip needle]
-15
hay

★Go’s empty interface can serve the same role as a reference to a Java Object or as C/C++’s void*.

ptg7913109

1.5. Stack—CustomTypes with Methods 23

Each item was popped from the custom stack and printed on its own line.

The simple test program that produced this output is stacker/stacker.go. Here
are the imports it uses:

import (
"fmt"
"stacker/stack"

)

The fmt package is part of Go’s standard library, but the stack package is a local
package specific to the stacker application. A Go program or package’s imports
are first searched for under the GOPATH path or paths, and then under GOROOT.
In this particular case the program’s source code is in $HOME/goeg/src/stacker/
stacker.go and the stack package is in $HOME/goeg/src/stacker/stack/stack.go.
The go tool will build both of them so long as the GOPATH is (or includes) the path
$HOME/goeg/.

Import paths are specified using Unix-style “/”s, even on Windows. Every local
package should be stored in a directory with the same name as the package.
Local packages can have their own packages (e.g., like path/filepath), in exactly
the same way as the standard library. (Creating and using custom packages is
covered in Chapter 9.)

Here’s the simple test program’s main() function that produced the output:

func main() {
var haystack stack.Stack

 haystack.Push("hay")
 haystack.Push(-15)
 haystack.Push([]string{"pin", "clip", "needle"})
 haystack.Push(81.52)

for {
 item, err := haystack.Pop()

if err != nil {
break

 }
 fmt.Println(item)
 }
}

The function begins by declaring the haystack variable of type stack.Stack. It is
conventional in Go to always refer to types, functions, variables, and other items
in packages using the syntax pkg.item, where pkg is the last (or only) component
of the package’s name. This helps prevent name collisions. We then push some
items onto the stack and then pop them off and print each one until there are
no more left.

ptg7913109

24 Chapter 1. An Overview in Five Examples

One amazingly convenient aspect of our custom stack is that despiteGo’s strong
typing, we are not limited to storing homogeneous items (items all of the same
type), but can freely mix heterogeneous items (items of various types). This
is because the stack.Stack type simply stores interface{} items (i.e., values
of any type) and doesn’t care what their types actually are. Of course, when
those items are used,then their type doesmatter. Here, though,we only use the
fmt.Println() function and this uses Go’s introspection facilities (from the re-
flect package) to discover the types of the items it is asked to print. (Reflection
is covered in a later chapter; §9.4.9, ➤ 427.)

Another niceGo feature illustrated by the code is the for loopwith no conditions.
This is an infinite loop, so in most situations we will need to provide a means
of breaking out of the loop—for example, using a break statement as here, or
a return statement. We will see an additional for syntax in the next example
(§1.6, ➤ 29); the complete range of for syntaxes is covered in Chapter 5.

Go functions and methods can return a single value or multiple values. It is
conventional in Go to report errors by returning an error value (of type error)
as the last (or only) value returned by a function or method. The custom stack.
Stack type respects this convention.

Now that we have seen the custom stack.Stack type in use we are ready to
review its implementation (in file stacker/stack/stack.go).

package stack

import "errors"

type Stack []interface{}

The file starts conventionally by specifying its package name. Then it imports
other packages that it needs—in this case just one, errors.

When we define a named custom type in Go what we are doing is binding an
identifier (the type’s name) to a new type that has the same underlying rep-
resentation as an existing (built-in or custom) type—and which is treated by
Go as different from the underlying representation. Here, the Stack type is a
new name for a slice (i.e., a reference to a variable-length array) of interface{}
values—and is considered to be different from a plain []interface{}.

Because all Go types satisfy the empty interface, values of any type can be
stored in a Stack.

The built-in collection types (maps and slices), communication channels (which
can be buffered), and strings, can all return their length (or buffer size) using
the built-in len() function. Similarly, slices and channels can also report their
capacity (which may be greater than the length being used) using the built-in
cap() function. (All of Go’s built-in functions are listed in Table 5.1,➤ 187,with
cross-references to where they are covered; slices are covered in Chapter 4; §4.2,

ptg7913109

1.5. Stack—CustomTypes with Methods 25

➤ 148.) It is conventional for custom collection types—our own, and those in the
Go standard library—to support corresponding Len() and Cap() methods when
these make sense.

Since the Stack type uses a slice for its underlying representation it makes sense
to provide Stack.Len() and Stack.Cap() methods for it.

func (stack Stack) Len() int {
return len(stack)

}

Both functions andmethodsare defined using the func keyword.However, in the
case of methods the type of value to which the method applies is written after
the func keyword and before the method’s name, enclosed in parentheses. After
the function or method’s name comes a—possibly empty—parenthesized list of
comma-separatedparameters (eachwritten in the form variableName type).After
the parameters comes the function or method’s opening brace (if it has no return
value), or a single return value (e.g., as a type name such as the int returned by
the Stack.Len() method shown here), or a parenthesized list of return values,
followed by an opening brace.

In most cases a variable name for the value on which themethod is called is also
given—as here where we have used the name stack (and with no conflict with
the package’s name). The value on which the method is called is known in Go
terminology as the receiver.★

In this example the type of the receiver is Stack, so the receiver is passed by
value. This means that any changes made to the receiver would be made on a
copy of the original value and in effect lost. This is no problem for methods that
don’t modify the receiver, such as the Stack.Len() method shown here.

The Stack.Cap() method is almost identical to the Stack.Len() method (and so
is not shown). The only difference is that the Stack.Cap() method returns the
cap() rather than the len() of the receiver stack. The source code also includes
a Stack.IsEmpty() method, but this is so similar to Stack.Len()—it just returns a
bool indicating whether the stack’s len() equals 0—that again it isn’t shown.

func (stack *Stack) Push(x interface{}) {

*stack = append(*stack, x)
}

The Stack.Push() method is called on a pointer to a Stack (explained in a mo-
ment), and is passed a value (x) of any type. The built-in append() function takes
a slice and one or more values and returns a (possibly new) slice which has the

★ In other languages the receiver is typically called this or self ; using such names works fine in Go,
but is not considered to be good Go style.

ptg7913109

26 Chapter 1. An Overview in Five Examples

original slice’s contents, plus the given value or values as its last element or ele-
ments. (See §4.2.3, ➤ 156.)

If the stack has previously had items popped from it (➤ 28), the underlying
slice’s capacity is likely to be greater than its length, so the push could be very
cheap: simply a matter of putting the x item into the len(stack) position and
increasing the stack’s length by one.

The Stack.Push()method always works (unless the computer runs out of memo-
ry), so we don’t need to return an error value to indicate success or failure.

If we want to modify a value we must make its receiver a pointer.★ A pointer
is a variable that holds the memory address of another value. One reason that
pointers are used is for efficiency—for example, if we have a value of a large type
it is much cheaper to pass a pointer to the value as a parameter than to pass the
value itself. Another use is to make a value modifiable. For example, when a
variable is passed into a function the function gets a copy of the value (e.g., the
stack passed into the stack.Len() function; 25 ➤). This means that if we make
any changes to the variable inside the function, they will have no effect on the
original value. If we need to modify the original value—as here where we want
to append to the stack—we must pass a pointer to the original value, and then
inside the function we can modify the value that the pointer points to.

A pointer is declared by preceding the type namewith a star (i.e., an asterisk, *).
So here, in the Stack.Push() method, the stack variable is of type *Stack, that is,
the stack variable holds a pointer to a Stack value and not an actual Stack value.
We can access the actual Stack value that the pointer points to by dereferencing
the pointer—this simply means that we access the value the pointer points to.
Dereferencing is done by preceding the variable namewith a star. So here,when
wewrite stackwe are referring to a pointer to a Stack (i.e., to a *Stack), and when
we write *stack we are dereferencing the pointer, that is, referring to the actual
Stack that the pointer points to.

So, in Go (and C and C++ for that matter), the star is overloaded to mean multi-
plication (when between a pair of numbers or variables, e.g., x * y), pointer dec-
laration (when preceding a type name, e.g., z *MyType), and pointer dereference
(when preceding a pointer variable’s name, e.g., *z).Don’t worry toomuch about
these matters for now: Go’s pointers are fully explained in Chapter 4.

Note that Go’s channels, maps, and slices are all created using the make() func-
tion, and make() always returns a reference to the value it created. References
behave very much like pointers in that when they are passed to functions any
changes made to them inside the function affect the original channel, map, or
slice. However, references don’t need to be dereferenced, so in most cases there’s
no need to use stars with them. But if we want to modify a slice inside a func-

★Go pointers are essentially the same as in CandC++except that pointer arithmetic isn’t supported
—or necessary; see §4.1, ➤ 140.

ptg7913109

1.5. Stack—CustomTypes with Methods 27

tion or method using append() (as opposed to simply changing one of its existing
items), then wemust either pass the slice by pointer, or return the slice (and set
the original slice to the function or method’s return value), since append() some-
times returns a different slice reference than the one it was passed.

The Stack type uses a slice for its representation and therefore Stack values
can be used with functions that operate on a slice, such as append() and len().
Nonetheless, Stack values are values in their own right, distinct from their
representation, so they must be passed by pointer if we want to modify them.

func (stack Stack) Top() (interface{}, error) {
if len(stack) == 0 {

return nil, errors.New("can't Top() an empty stack")
 }

return stack[len(stack)-1], nil

}

The Stack.Top() method returns the item at the top of the stack (the item that
was added last) and a nil error value; or a nil item and a non-nil error value,
if the stack is empty. The stack receiver is passed by value since the stack
isn’t modified.

The error type is an interface type (§6.3,➤ 265)which specifies a singlemethod,
Error() string. In general, Go’s library functions return an error as their last (or
only) return value to indicate success (where error is nil) or failure. Here, we
have made our Stack type work like a standard library type by creating a new
error value using the errors package’s errors.New() function.

Go uses nil for zero pointers (and for zero references); that is, for pointers that
point to nothing and for references that refer to nothing.★ Such pointers should
be used only in conditions or assignments; methods should not normally be
called on them.

Constructorsarenever called implicitly inGo. InsteadGoguarantees thatwhen
a value is created it is always initialized to its zero value. For example, numbers
are initialized to 0, strings to the empty string, pointers to nil, and the fields
inside structs are similarly initialized. So there is no uninitialized data in Go,
thus eliminating a major source of errors that afflicts many other program-
ming languages. If the zero value isn’t suitable we can write a construction
function—and call it explicitly—as we do here to create a new error. It is also
possible to prevent values of a type being created without using a constructor
function, as we will see in Chapter 6.

★Go’s nil is in effect the same asNULL or 0 in C and C++, null in Java, and nil in Objective-C.

ptg7913109

28 Chapter 1. An Overview in Five Examples

If the stack isnonemptywe return its topmost value and a nil error value. Since
Go uses 0-based indexing the first element in a slice or array is at position 0 and
the last element is at position len(sliceOrArray) - 1.

There is no formality when returning more than one value from a function or
method;we simply list the typeswe are returning after the function or method’s
name and ensure that we have at least one return statement that has a corre-
sponding list of values.

func (stack *Stack) Pop() (interface{}, error) {
 theStack := *stack

if len(theStack) == 0 {
return nil, errors.New("can't Pop() an empty stack")

 }
 x := theStack[len(theStack)-1] ➊

*stack = theStack[:len(theStack)-1] ➋

return x, nil

}

The Stack.Pop() method is used to remove and return the top (last added) item
from the stack. Like the Stack.Top() method it returns the item and a nil error,
or if the stack is empty, a nil item and a non-nil error.

The method must have a receiver that is a pointer since it modifies the stack by
removing the returned item. For syntactic convenience, rather than referring
to *stack (the actual stack that the stack variable points to) throughout the
method, we assign the actual stack to a local variable (theStack), and work with
that variable instead. This is quite cheap, because *stack is pointing to a Stack,
which uses a slice for its representation, so we are really assigning little more
than a reference to a slice.

If the stack is empty we return a suitable error. Otherwise we retrieve the
stack’s top (last) item and store it in a local variable (x). Then we take a slice of
the stack (which itself is a slice). The new slice has one less element than the
original and is immediately set to be the value that the stack pointer points to.
And at the end,we return the retrieved value and a nil error. We can reasonably
expect any decent Go compiler to reuse the slice, simply reducing the slice’s
length by one, while leaving its capacity unchanged, rather than copying all the
data to a new slice.

The item to return is retrieved using the [] index operator with a single index
(➊); in this case the index of the slice’s last element.

The new slice is obtained by using the [] slice operator with an index range
(➋). An index range has the form first:end. If first is omitted—as here—0 is
assumed, and if end is omitted, the len() of the slice is assumed. The slice thus
obtained has elements with indexes from and including the first up to and

ptg7913109

1.5. Stack—CustomTypes with Methods 29

excluding the end. So in this case, by specifying the last index as one less than
the length, we slice up to the last but one element, effectively removing the last
element from the slice. (Slice indexing is covered in Chapter 4, §4.2.1, ➤ 153.)

In this examplewe used Stack receivers rather than pointers (i.e., of type *Stack)
for thosemethods that don’t modify the Stack.For custom typeswith lightweight
representations (say, a few ints or strings), this is perfectly reasonable. But for
heavyweight custom types it is usually best to alwaysuse pointer receivers since
a pointer is much cheaper to pass (typically a simple 32- or 64-bit value), than
a large value, even for methods where the value isn’t modified.

A subtle point to note regarding pointers andmethods is that if we call a method
on a value, and the method requires a pointer to the value it is called on, Go
is smart enough to pass the value’s address rather than a copy of the value
(providing the value is addressable; §6.2.1, ➤ 258). Correspondingly, if we call
a method on a pointer to a value, and the method requires a value, Go is smart
enough to dereference the pointer and give the method the pointed-to value.★

As this example illustrates, creating custom types in Go is generally straight-
forward, and doesn’t involve the cumbersome formalities that many other lan-
guages demand. Go’s object-oriented features are covered fully in Chapter 6.

1.6. Americanise—Files, Maps, and Closures

To have any practical use a programming language must provide some means
of reading and writing external data. In previous sections we had a glimpse of
Go’s versatile and powerful print functions from its fmt package; in this section
we will look at Go’s basic file handling facilities. We will also look at somemore
advanced features such asGo’s treatment of functionsandmethodsasfirst-class
values which makes it possible to pass them as parameters. And in addition we
will make use of Go’s map type (also known as a data dictionary or hash).

This section provides enough of the basics so that programs that read and write
text files can be written—thus making the examples and exercises more inter-
esting. Chapter 8 provides much more coverage of Go’s file handling facilities.

By about the middle of the twentieth century, American English surpassed
British English as the most widely used form of English. In this section’s
example we will review a program that reads a text file and writes out a copy of
the file into a new filewith any wordsusing British spellings replacedwith their
U.S. counterparts. (This doesn’t help with differences in semantics or idioms,
of course.) The program is in the file americanise/americanise.go, and we will
review it top-down, starting with its imports, then its main() function, then the
functions that main() calls, and so on.

★This is why Go does not have or need the -> indirection operator used by C and C++.

ptg7913109

30 Chapter 1. An Overview in Five Examples

import (
"bufio"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"path/filepath"
"regexp"
"strings"

)

All the americanise program’s imports are from Go’s standard library. Packages
can be nested inside one another without formality, as the io package’s ioutil
package and the path package’s filepath package illustrate.

The bufio package provides functions for buffered I/O, including ones for read-
ing and writing strings from and to UTF-8 encoded text files. The io package
provides low-level I/O functions—and the io.Reader and io.Writer interfaces we
need for the americanise() program. The io/ioutil package provides high-level
file handling functions. The regexp package provides powerful regular expres-
sion support. The other packages (fmt,log, filepath, and strings) have beenmen-
tioned in earlier sections.

func main() {
 inFilename, outFilename, err := filenamesFromCommandLine() ➊

if err != nil {
 fmt.Println(err) ➋

 os.Exit(1)
 }
 inFile, outFile := os.Stdin, os.Stdout ➌

if inFilename != "" {
if inFile, err = os.Open(inFilename); err != nil {

 log.Fatal(err)
 }

defer inFile.Close() ➍

 }
if outFilename != "" {

if outFile, err = os.Create(outFilename); err != nil {
 log.Fatal(err)
 }

defer outFile.Close() ➎

 }

if err = americanise(inFile, outFile); err != nil {
 log.Fatal(err)

ptg7913109

1.6. Americanise—Files,Maps,and Closures 31

 }
}

The main() function gets the input and output filenames from the command line,
creates corresponding file values, and then passes the files to the americanise()
function to do the work.

The function begins by retrieving the names of the files to read andwrite and an
error value. If therewas a problemparsing the command linewe print the error
(which contains the program’s usage message), and terminate the program.
Some of Go’s print functions use reflection (introspection) to print a value using
the value’s Error() stringmethod if it has one, or its String() stringmethod if it
has one, or as best they can otherwise. If we provide our own custom typeswith
one of these methods, Go’s print functions will automatically be able to print
values of our custom types, as we will see in Chapter 6.

If err is nil, we have inFilename and outFilename strings (which may be empty),
and we can continue. Files in Go are represented by pointers to values of
type os.File, and so we create two such variables initialized to the standard
input and output streams (which are both of type *os.File). Since Go functions
and methods can return multiple values it follows that Go supports multiple
assignments such as the ones we have used here (30 ➤, ➊, ➌).

Each filename is handled in essentially the same way. If the filename is empty
the file has already been correctly set to os.Stdin or os.Stdout (both of which are
of type *os.File, i.e., a pointer to an os.File value representing the file); but if
the filename is nonempty we create a new *os.File to read from or write to the
file as appropriate.

The os.Open() function takes a filename and returns an *os.File value that can
be used for reading the file. Correspondingly, the os.Create() function takes a
filename and returns an *os.File value that can be used for reading or writing
the file, creating the file if it doesn’t exist and truncating it to zero length if
it does exist. (Go also provides the os.OpenFile() function that can be used to
exercise complete control over the mode and permissions used to open a file.)

In fact, the os.Open(), os.Create(), and os.OpenFile() functions return two
values: an *os.File and nil if the file was opened successfully, or nil and an
error if an error occurred.

If err is nil we know that the file was successfully opened so we immediately
execute a defer statement to close the file. Any function that is the subject of a
defer statement (§5.5, ➤ 212) must be called—hence the parentheses after the
functions’ names (30 ➤, ➍, ➎)—but the calls only actually occur when the func-
tion in which the defer statements are written returns. So the defer statement
“captures” the function call and sets it aside for later. This means that the de-
fer statement itself takes almost no time at all and control immediately passes
to the following statement. Thus, the deferred os.File.Close() method won’t

ptg7913109

32 Chapter 1. An Overview in Five Examples

actually be called until the enclosing function—in this case, main()—returns
(whether normally or due to a panic,discussed in a moment), so the file is open
to be worked on and yet guaranteed to be closed when we are finished with it, or
if a panic occurs.

If we fail to open the file we call log.Fatal() with the error. As we noted in a
previous section, this function logs the date, time, and error (to os.Stderr un-
less another log destination is specified), and calls os.Exit() to terminate the
program. When os.Exit() is called (directly, or by log.Fatal()), the program is
terminated immediately—and any pending deferred statements are lost. This
is not a problem, though, since Go’s runtime systemwill close any open files, the
garbage collector will release the program’s memory, and any decent database
or network that the application might have been talking to will detect the ap-
plication’s demise and respond gracefully. Just the same as with the bigdigits
example,we don’t use log.Fatal() in the first if statement (30 ➤,➋), because the
err contains the program’s usagemessage and we want to print this without the
date and time that the log.Fatal() function normally outputs.

In Go a panic is a runtime error (rather like an exception in other languages).
We can cause panics ourselves using the built-in panic() function, and can stop
a panic in its tracks using the recover() function (§5.5, ➤ 212). In theory, Go’s
panic/recover functionality can be used to provide a general-purpose exception
handling mechanism—but doing so is considered to be poor Go practice. The
Go way to handle errors is for functions and methods to return an error value
as their sole or last return value—or nil if no error occurred—and for callers to
always check the error they receive. The purpose of panic/recover is to deal with
genuinely exceptional (i.e., unexpected) problems and not with normal errors.★

With both files successfully opened (the os.Stdin, os.Stdout, and os.Stderr files
are automatically opened by the Go runtime sytem), we call the americanise()
function to do the processing, passing it the files on which to work. If ameri-
canise() returns nil the main() function terminates normally and any deferred
statements—in this case, ones that close the inFile and outFile if they are not
os.Stdin and os.Stdout—are executed. And if err is not nil, the error is printed,
the program is exited, and Go’s runtime system closes any open files.

The americanise() function accepts an io.Reader and an io.Writer, not *os.Files,
but this doesn’t matter since the os.File type supports the io.ReadWriter inter-
face (which simply aggregates the io.Reader and io.Writer interfaces) and can
therefore be used wherever an io.Reader or an io.Writer is required. This is
an example of duck typing in action—the americanise() function’s parameters
are interfaces, so the function will accept any values—no matter what their
types—that satisfy the interfaces, that is, any values that have the methods the

★Go’s approach is very different fromC++, Java, and Python,where exception handling is often used
for both errors and exceptions. The discussion and rationale for Go’s panic/recover mechanism is at
https://groups.google.com/group/golang-nuts/browse_thread/thread/1ce5cd050bb973e4?pli=1.

https://groups.google.com/group/golang-nuts/browse_thread/thread/1ce5cd050bb973e4?pli=1

ptg7913109

1.6. Americanise—Files,Maps,and Closures 33

interfaces specify. The americanise() function returns nil, or an error if an error
occurred.

func filenamesFromCommandLine() (inFilename, outFilename string,
 err error) {

if len(os.Args) > 1 && (os.Args[1] == "-h" || os.Args[1] == "--help") {
 err = fmt.Errorf("usage: %s [<]infile.txt [>]outfile.txt",
 filepath.Base(os.Args[0]))

return "", "", err
 }

if len(os.Args) > 1 {
 inFilename = os.Args[1]

if len(os.Args) > 2 {
 outFilename = os.Args[2]
 }
 }

if inFilename != "" && inFilename == outFilename {
 log.Fatal("won't overwrite the infile")
 }

return inFilename, outFilename, nil

}

The filenamesFromCommandLine() function returns two strings and an error
value—and unlike the functions we have seen so far, here the return values are
given variable names, not just types. Return variables are set to their zero val-
ues (empty strings and nil for err in this case) when the function is entered, and
keep their zero values unless explicitly assigned to in the body of the function.
(We will say a bit more on this topic when we discuss the americanise() func-
tion, next.)

The function begins by seeing if the user has asked for usage help.★ If they have,
we create a new error value using the fmt.Errorf() function with a suitable
usage string, and return immediately. As usual with Go code, the caller is
expected to check the returned error and behave accordingly (and this is exactly
what main() does).The fmt.Errorf() function is like the fmt.Printf() function we
saw earlier, except that it returns an error value containing a string using the
given format string and arguments rather than writing a string to os.Stdout.
(The errors.New() function is used to create an error given a literal string.)

If the user did not request usage informationwe check to see if they entered any
command-line arguments, and if they did we set the inFilename return variable
to their first command-line argument and the outFilename return variable

★ The Go standard library includes a flag package for handling command-line arguments.
Third-party packages for GNU-compatible command-line handling are available from godashboard.
appspot.com/project. (Using third-party packages is covered in Chapter 9.)

ptg7913109

34 Chapter 1. An Overview in Five Examples

to their second command-line argument. Of course, they may have given no
command-line arguments, in which case both inFilename and outFilename remain
empty strings; or they may have entered just one, in which case inFilename will
have a filename and outFilename will be empty.

At the end we do a simple sanity check to make sure that the user doesn’t over-
write the input file with the output file, exiting if necessary—but if all is well,
we return.★ Functions or methods that return one or more valuesmust have at
least one return statement. It can be useful for clarity, and for godoc-generated
documentation, to give variable names for return types, as we have done in this
function. If a function or method has variable names as well as types listed for
its return values, then a bare return is legal (i.e., a return statement that doesnot
specify any variables). In such cases, the listed variables’ values are returned.
We do not use bare returns in this book because they are considered to be poor
Go style.

Go takes a consistent approach to reading and writing data that allows us to
read and write to files, to buffers (e.g., to slices of bytes or to strings), and to
the standard input, output, and error streams—or to our own custom types—so
long as they provide the methods necessary to satisfy the reading and writing
interfaces.

For a value to be readable it must satisfy the io.Reader interface. This interface
specifies a single method with signature, Read([]byte) (int, error). The Read()
method reads data from the value it is called on and puts the data read into the
given byte slice. It returns the number of bytes read and an error value which
will be nil if no error occurred, or io.EOF (“end of file”) if no error occurred
and the end of the input was reached, or some other non-nil value if an error
occurred. Similarly, for a value to be writable it must satisfy the io.Writer
interface. This interface specifies a singlemethod with signature, Write([]byte)
(int, error). The Write() method writes data from the given byte slice into the
value the method was called on, and returns the number of bytes written and
an error value (which will be nil if no error occurred).

The io package provides readers and writers but these are unbuffered and
operate in termsof rawbytes. The bufio packageprovidesbuffered input/output
where the inputwill work on any value that satisfies the io.Reader interface (i.e.,
provides a suitable Read() method), and the output will work on any value that
satisfies the io.Writer interface (i.e., provides a suitable Write() method). The
bufio package’s readers and writers provide buffering and can work in terms of
bytes or strings, and so are ideal for reading and writing UTF-8 encoded text
files.

★ In fact, the user could still overwrite the input file by using redirection—for example,
$./americanise infile > infile—but at least we have prevented an obvious accident.

ptg7913109

1.6. Americanise—Files,Maps,and Closures 35

var britishAmerican = "british-american.txt"

func americanise(inFile io.Reader, outFile io.Writer) (err error) {
 reader := bufio.NewReader(inFile)
 writer := bufio.NewWriter(outFile)

defer func() {
if err == nil {

 err = writer.Flush()
 }
 }()

var replacer func(string) string ➊

if replacer, err = makeReplacerFunction(britishAmerican); err != nil {
return err

 }
 wordRx := regexp.MustCompile("[A-Za-z]+")
 eof := false

for !eof {
var line string ➋

 line, err = reader.ReadString('\n')
if err == io.EOF {

 err = nil // io.EOF isn't really an error
 eof = true // this will end the loop at the next iteration
 } else if err != nil {

return err // finish immediately for real errors
 }
 line = wordRx.ReplaceAllStringFunc(line, replacer)

if _, err = writer.WriteString(line); err != nil { ➌

return err
 }
 }

return nil

}

The americanise() function buffers the inFile reader and the outFile writer.
Then it reads lines from the buffered reader and writes each line to the buffered
writer, having replaced any British English words with their U.S. equivalents.

The function begins by creating a buffered reader and a bufferedwriter through
which their contents can be accessedasbytes—ormore conveniently in this case,
as strings. The bufio.NewReader() construction function takes as argument any
value that satisfies the io.Reader interface (i.e., any value that has a suitable
Read() method) and returns a new buffered io.Reader that reads from the given
reader. The bufio.NewWriter() function is synonymous. Notice that the ameri-
canise() function doesn’t know or carewhat it is reading from or writing to—the
reader and writer could be compressed files, network connections, byte slices

ptg7913109

36 Chapter 1. An Overview in Five Examples

([]byte), or anything else that supports the io.Reader and io.Writer interfaces.
This way of working with interfaces is very flexible and makes it easy to com-
pose functionality in Go.

Next we create an anonymous deferred function that will flush the writer’s
buffer before the americanise() function returns control to its caller. The anony-
mous function will be called when americanise() returns normally—or abnor-
mally due to a panic. If no error has occurred and the writer’s buffer contains
unwritten bytes, the bytes will be written before americanise() returns. Since it
is possible that the flush will fail we set the err return value to the result of the
writer.Flush() call. A less defensive approach would be to have a much simpler
defer statement of defer writer.Flush() to ensure that the writer is flushed be-
fore the function returnsand ignoring any error thatmight have occurred before
the flush—or that occurs during the flush.

Go allows the use of named return values, and we have taken advantage of this
facility here (err error), just as we did previously in the filenamesFromCommand-
Line() function. Be aware, however, that there is a subtle scoping issue wemust
consider when using named return values. For example, if we have a named
return value of value, we can assign to it anywhere in the function using the as-
signment operator (=) aswe’d expect. However, if we have a statement such as if
value :=…,because the if statement starts a new block, the value in the if state-
ment will be a new variable, so the if statement’s value variable will shadow the
return value variable. In the americanise() function,err is a named return value,
so we have made sure that we never assign to it using the short variable decla-
ration operator (:=) to avoid the risk of accidentally creating a shadow variable.
One consequence of this is that we must declare the other variables we want to
assign to at the same time, such as the replacer function (35 ➤, ➊) and the line
we read in (35 ➤, ➋). An alternative approach is to avoid named return values
and return the required value or values explicitly, as we have done elsewhere.

One other small point to note is that we have used the blank identifier,_ (35 ➤,
➌). The blank identifier serves as a placeholder for where a variable is expected
in an assignment, and discards any value it is given. The blank identifier is
not considered to be a new variable, so if used with :=, at least one other (new)
variable must be assigned to.

The Go standard library contains a powerful regular expression package
called regexp (§3.6.5, ➤ 120). This package can be used to create pointers to
regexp.Regexp values (i.e., of type *regexp.Regexp). These values provide many
methods for searching and replacing. Here we have chosen to use the reg-
exp.Regexp.ReplaceAllStringFunc()methodwhich given a string and a “replacer”
function with signature func(string) string, calls the replacer function for every
match,passing in thematched text,and replacing thematched textwith the text
the replacer function returns.

ptg7913109

1.6. Americanise—Files,Maps,and Closures 37

If we had a very small replacer function, say, one that simply uppercased the
words it matched, we could have created it as an anonymous function when we
called the replacement function. For example:

line = wordRx.ReplaceAllStringFunc(line,
func(word string) string { return strings.ToUpper(word) })

However, the americanise program’s replacer function, although only a few lines
long, requires some preparation, so we have created another function, makeRe-
placerFunction(), that given the name of a file that contains lines of original and
replacement words, returns a replacer function that will perform the appropri-
ate replacements.

If the makeReplacerFunction() returns a non-nil error,we return and the caller is
expected to check the returned error and respond appropriately (as it does).

Regular expressions can be compiled using the regexp.Compile() function which
returns a *regexp.Regexp and nil, or nil and error if the regular expression is
invalid. This is ideal for when the regular expression is read from an external
source such as a file or received from the user. Here, though, we have used the
regexp.MustCompile() function—this simply returns a *regexp.Regexp, or panics
if the regular expression, or “regexp”, is invalid. The regular expression used
in the example matches the longest possible sequence of one or more English
alphabetic characters.

With the replacer function and the regular expression in place we start an infi-
nite loop that begins by reading a line from the reader. The bufio.Reader.Read-
String() method reads (or, strictly speaking, decodes) the underlying reader’s
raw bytes asUTF-8 encoded text (which also works for 7-bit ASCII) up to and in-
cluding the specified byte (or up to the end of the file).The function conveniently
returns the text as a string, along with an error (or nil).

If the error returned by the call to the bufio.Reader.ReadString() method is not
nil, either we have reached the end of the input or we have hit a problem. At the
end of the input err will be io.EOF which is perfectly okay, so in this case we set
err to nil (since there isn’t really an error), and set eof to true to ensure that the
loop finishes at the next iteration, so wewon’t attempt to read beyond the end of
the file. We don’t return immediately we get io.EOF, since it is possible that the
file’s last line doesn’t end with a newline, in which case we will have received a
line to be processed, in addition to the io.EOF error.

For each line we call the regexp.Regexp.ReplaceAllStringFunc()method, giving it
the line and the replacer function. We then try to write the (possibly modified)
line to thewriter using the bufio.Writer.WriteString()method—thismethod ac-
cepts a string and writes it out as a sequence of UTF-8 encoded bytes, returning
the number of byteswritten and an error (whichwill be nil if no error occurred).
We don’t care howmany bytes are written so we assign the number to the blank

ptg7913109

38 Chapter 1. An Overview in Five Examples

identifier, _. If err is not nil we return immediately, and the caller will receive
the error.

Using bufio’s reader and writer as we have done here means that we can work
with convenient high level string values, completely insulated from the raw
bytes which represent the text on disk. And, of course, thanks to our deferred
anonymous function, we know that any buffered bytes are written to the writer
when the americanise() function returns, providing that no error has occurred.

func makeReplacerFunction(file string) (func(string) string, error) {
 rawBytes, err := ioutil.ReadFile(file)

if err != nil {
return nil, err

 }
 text := string(rawBytes)

 usForBritish := make(map[string]string)
 lines := strings.Split(text, "\n")

for _, line := range lines {
 fields := strings.Fields(line)

if len(fields) == 2 {
 usForBritish[fields[0]] = fields[1]
 }
 }

return func(word string) string {
if usWord, found := usForBritish[word]; found {

return usWord
 }

return word
 }, nil

}

The makeReplacerFunction() takes the name of a file containing original and
replacement strings and returns a function that given an original string returns
its replacement, along with an error value. It expects the file to be a UTF-8
encoded text file with one whitespace-separated original and replacement word
per line.

In addition to the bufio package’s readers and writers, Go’s io/ioutil package
provides some high level convenience functions including the ioutil.ReadFile()
function used here. This function reads and returns the entire file’s contents as
raw bytes (in a []byte) and an error. As usual, if the error is not nil we immedi-
ately return it to the caller—along with a nil replacer function. If we read the
bytes okay,we convert them to a string using a Go conversion of form type(vari-
able).Converting UTF-8 bytes to a string is very cheap sinceGo’s stringsuse the
UTF-8 encoding internally. (Go’s string conversions are covered in Chapter 3.)

ptg7913109

1.6. Americanise—Files,Maps,and Closures 39

The replacer function we want to create must accept a string and return a
corresponding string, so what we need is a function that uses some kind of
lookup table. Go’s built-in map collection data type is ideal for this purpose (§4.3,
➤ 164). A map holds key–value pairs with very fast lookup by key. So here we will
store British words as keys and their U.S. counterparts as values.

Go’smap, slice, and channel types are created using the built-in make() function.
This creates a value of the specified type and returns a reference to it. The
reference can be passed around (e.g., to other functions) and any changes made
to the referred-to value are visible to all the code that accesses it. Here we have
created an empty map called usForBritish, with string keys and string values.

With themap in placewe then split the file’s text (which is in the form of a single
long string) into lines, using the strings.Split() function. This function takes a
string to split and a separator string to split on and does as many splits as pos-
sible. (If we want to limit the number of splits we can use the strings.SplitN()
function.)

The iteration over the lines uses a for loop syntax that we haven’t seen before,
this time using a range clause. This form can be conveniently used to iterate
over a map’s keys and values, over a communication channel’s elements, or—as
here—over a slice’s (or array’s) elements. When used on a slice (or array),
the slice index and the element at that index are returned on each iteration,
starting at index 0 (if the slice is nonempty). In this example we use the loop to
iterate over all the lines, but since we don’t care about the index of each line we
assign it to the blank identifier (_) which discards it.

We need to split each line into two: the original string and the replacement
string. We could use the strings.Split() function but that would require us to
specify an exact separator string, say, " ", which might fail on a hand-edited file
where sometimes users accidentally put in more than one space, or sometimes
use tabs. Fortunately, Go provides the strings.Fields() function which splits
the string it is given on whitespace and is therefore much more forgiving of
human-edited text.

If the fields variable (of type []string) has exactly two elements we insert the
corresponding key–value pair into the map. Once the map is populated we are
ready to create the replacer function that we will return to the caller.

We create the replacer function as an anonymous function given as an argument
to the return statement—along with a nil error value. (Of course, we could
have been less succinct and assigned the anonymous function to a variable and
returned the variable.) The function has the exact signature required by the
regexp.Regexp.ReplaceAllStringFunc() method that it will be passed to.

Inside the anonymous replacer function all we do is look up the given word. If
we access a map element with one variable on the left-hand side, that variable
is set to the corresponding value—or to the value type’s zero value if the given

ptg7913109

40 Chapter 1. An Overview in Five Examples

key isn’t in the map. If the map value type’s zero value is a legitimate value,
then how can we tell if a given key is in the map? Go provides a syntax for
this case—and that is generally useful if we simply want to know whether a
particular key is in themap—which is to put two variables on the left-hand side,
the first to accept the value and the second to accept a bool indicating if the key
was found. In this example we use this second form inside an if statement that
has a simple statement (a short variable declaration), and a condition (the found
Boolean). So we retrieve the usWord (which will be an empty string if the given
word isn’t a key in themap), and a found flag of type bool. If theBritishwordwas
found we return the U.S. equivalent; otherwise we simply return the original
word unchanged.

There is a subtlety in the makeReplacerFunction() function that may not be
immediately apparent. In the anonymous function created inside it we access
the usForBritishmap, yet thismapwas created outside the anonymous function.
This works because Go supports closures (§5.6.3, ➤ 225). A closure is a function
that “captures” some external state—for example, the state of the function it
is created inside, or at least any part of that state that the closure accesses. So
here, the anonymous function that is created inside the makeReplacerFunction()
is a closure that has captured the usForBritish map.

Another subtlety is that the usForBritish map is a local variable and yet we will
be accessing it outside the function in which it is declared. It is perfectly fine to
return local variables in Go. Even if they are references or pointers, Go won’t
delete them while they are in use and will garbage-collect them when they are
finished with (i.e., when every variable that holds, refers, or points to them has
gone out of scope).

This section has shown some basic low-level and high-level file handling func-
tionality using os.Open(), os.Create(), and ioutil.ReadFile(). In Chapter 8
there is much more file handling coverage, including the writing and reading
of text, binary, JSON, and XML files. Go’s built-in collection types—slices and
maps—largely obviate the need for custom collection types while providing ex-
tremely good performance and great convenience. Go’s collection types are cov-
ered in Chapter 4. Go’s treatment of functions as first-class values in their own
right and its suppport for closures makes it possible to use some advanced and
very useful programming idioms. And Go’s defer statement makes it straight-
forward to avoid resource leakage.

1.7. Polar to Cartesian—Concurrency

One key aspect of the Go language is its ability to take advantage of modern
computerswithmultiple processorsandmultiple cores,and to do sowithout bur-
dening programmers with lots of bookkeeping. Many concurrent Go programs
can bewrittenwithout any explicit locking at all (althoughGo does have locking

ptg7913109

1.7. Polar to Cartesian—Concurrency 41

primitives for when they’re needed in lower-level code, as we will see in Chap-
ter 7).

Two featuresmake concurrent programming in Go a pleasure. First,goroutines
(in effect very lightweight threads/coroutines) can easily be created at will with-
out the need to subclass some “thread” class (which isn’t possible in Go anyway).
Second,channelsprovide type-safe one-way or two-way communicationwith gor-
outines and which can be used to synchronize goroutines.

The Go way to do concurrency is to communicate data, not to share data. This
makes it much easier to write concurrent programs than using the traditional
threads and locks approach, since with no shared data we can’t get race condi-
tions (such as deadlocks), and we don’t have to remember to lock or unlock since
there is no shared data to protect.

In this section we will look at the fifth and last of the chapter’s “overview”
examples. This section’s example program uses two communication channels
and does its processing in a separate Go routine. For such a small program this
is complete overkill, but the point is to illustrate a basic use of these Go features
in as clear and short a way as possible. More realistic concurrency examples
that showmany of the different techniques that can be used with Go’s channels
and goroutines are presented in Chapter 7.

The programwewill review is called polar2cartesian; it is an interactive console
program that prompts the user to enter two whitespace-separated numbers—a
radius and an angle—which the program then uses to compute the equivalent
cartesian coordinates. In addition to illustrating one particular approach to con-
currency, it also shows some simple structs and how to determine if the program
is running on aUnix-like systemor onWindows for when the differencematters.
Here is an example of the program running in a Linux console:

$./polar2cartesian

Enter a radius and an angle (in degrees), e.g., 12.5 90, or Ctrl+D to quit.
Radius and angle: 5 30.5

Polar radius=5.00 θ=30.50° → Cartesian x=4.31 y=2.54
Radius and angle: 5 -30.25

Polar radius=5.00 θ=-30.25° → Cartesian x=4.32 y=-2.52
Radius and angle: 1.0 90

Polar radius=1.00 θ=90.00° → Cartesian x=-0.00 y=1.00
Radius and angle: ^D

$

The program is in file polar2cartesian/polar2cartesian.go, and we will review
it top-down, starting with the imports, then the structs it uses, then its init()
function, then its main() function, and then the functions called by main(), and so
on.

ptg7913109

42 Chapter 1. An Overview in Five Examples

import (
"bufio"
"fmt"
"math"
"os"
"runtime"

)

The polar2cartesian program imports several packages, some of which have
been mentioned in earlier sections, so we will only mention the new ones here.
The math package provides mathematical functions for operating on floating-
point numbers (§2.3.2, ➤ 64) and the runtime package provides functions that
access the program’s runtime properties, such as which platform the program is
running on.

type polar struct {
 radius float64

θ float64
}

type cartesian struct {
 x float64
 y float64
}

InGo a struct is a type that holds (aggregatesor embeds) one ormore data fields.
These fields can be built-in types as here (float64), or structs, or interfaces, or
any combination of these. (An interface data field is in effect a pointer to an
item—of any kind—that satisfies the interface, i.e., that has the methods the
interface specifies.)

It seems natural to use the Greek lowercase letter theta (θ) to represent the
polar coordinate’s angle, and thanks to Go’s use of UTF-8 we are free to do so.
This is because Go allows us to use any Unicode letters in our identifiers, not
just English letters.

Although the two structs happen to have the same data field types they are dis-
tinct typesandno automatic conversion between them ispossible. This supports
defensive programming; after all, it wouldn’t make sense to simply substitute a
cartesian’s positional coordinates for polar coordinates. In some cases such con-
versions do make sense, in which case we can easily create a conversionmethod
(i.e., a method of one type that returned a value of another type) that made use
of Go’s composite literal syntax to create a value of the target type populated by
the fields from the source type. (Numeric data type conversions are covered in
Chapter 2; string conversions are covered in Chapter 3.)

ptg7913109

1.7. Polar to Cartesian—Concurrency 43

var prompt = "Enter a radius and an angle (in degrees), e.g., 12.5 90, " +
"or %s to quit."

func init() {
if runtime.GOOS == "windows" {

 prompt = fmt.Sprintf(prompt, "Ctrl+Z, Enter")
 } else { // Unix-like
 prompt = fmt.Sprintf(prompt, "Ctrl+D")
 }
}

If a package has one or more init() functions they are automatically executed
before the main package’s main() function is called. (In fact,init() functionsmust
never be called explicitly.) So when our polar2cartesian program is invoked
this init() function is the first function that is called. We use init() to set the
prompt to account for platform differences in how end of file is signified—for
example, on Windows end of file is given by pressing Ctrl+Z then Enter. Go’s run-
time package provides the GOOS (GoOperating System) constantwhich is a string
identifying the operating system the program is running on. Typical values are
darwin (Mac OS X), freebsd, linux, and windows.

Before diving into the main() function and the rest of the program we will
briefly discuss channels and show some toy examples before seeing them in
proper use.

Channels are modeled on Unix pipes and provide two-way (or at our option,
one-way) communication of data items. Channels behave like FIFO (first in,
first out) queues, hence they preserve the order of the items that are sent into
them. Items cannot be dropped from a channel, but we are free to ignore any or
all of the items we receive. Let’s look at a very simple example. First we will
make a channel:

messages := make(chan string, 10)

Channels are created with the make() function (Chapter 7) and are declared us-
ing the syntax, chan Type.Here we have created the messages channel to send and
receive strings. The second argument to make() is the buffer size (which defaults
to 0); herewe havemade it big enough to accept ten strings. If a channel’s buffer
is filled it blocks until at least one item is received from it. This means that any
number of items can pass through a channel, providing the items are retrieved
to make room for subsequent items. A channel with a buffer size of 0 can only
send an item if the other end is waiting for an item. (It is also possible to get
the effect of nonblocking channels using Go’s select statement, as we will see in
Chapter 7.)

Now we will send a couple of strings into the channel:

ptg7913109

44 Chapter 1. An Overview in Five Examples

messages <- "Leader"
messages <- "Follower"

When the <- communication operator is used as a binary operator its left-hand
operand must be a channel and its right-hand operand must be a value to send
to the channel of the type the channel was declaredwith. Here,we first send the
string Leader to the messages channel, and then we send the string Follower.

message1 := <-messages
message2 := <-messages

When the <- communication operator is used as a unary operator with just a
right-hand operand (which must be a channel), it acts as a receiver, blocking
until it has a value to return. Here, we retrieve two messages from the messages
channel. The message1 variable is assigned the string Leader and the message2
variable is assigned the string Follower; both variables are of type string.

Normally channels are created to provide communication between goroutines.
Channel sends and receives don’t need locks, and the channel blocking behavior
can be used to achieve synchronization.

Now that we have seen some channel basics, let’s see channels—and goroutines
—in practical use.

func main() {
 questions := make(chan polar)

defer close(questions)
 answers := createSolver(questions)

defer close(answers)
 interact(questions, answers)
}

Once any init() functions have returned, Go’s runtime system then calls the
main package’s main() function.

Here, the main() function begins by creating a channel (of type chan polar) for
passing polar structs, and assigns it to the questions variable. Once the channel
has been created we use a defer statement to call the built-in close() function
(➤ 187) to ensure that it is closed when it is no longer needed. Next we call the
createSolver() function, passing it the questions channel and receiving from it
an answers channel (of type chan cartesian). We use another defer statement to
ensure that the answers channel is closed when it is finished with. And finally,
we call the interact() function with the two channels, and in which the user
interaction takes place.

ptg7913109

1.7. Polar to Cartesian—Concurrency 45

func createSolver(questions chan polar) chan cartesian {
 answers := make(chan cartesian)

go func() {
for {

 polarCoord := <-questions ➊

θ := polarCoord.θ * math.Pi / 180.0 // degrees to radians
 x := polarCoord.radius * math.Cos(θ)
 y := polarCoord.radius * math.Sin(θ)
 answers <- cartesian{x, y} ➋

 }
 }()

return answers
}

The createSolver() function begins by creating an answers channel to which it
will send the answers (i.e., cartesian coordinates) to the questions (i.e., polar
coordinates) that it receives from the questions channel.

After creating the channel, the function then hasa go statement. A go statement
is given a function call (syntactically just like a defer statement), which is exe-
cuted in a separate asynchronous goroutine. Thismeans that the flow of control
in the current function (i.e., in the main goroutine) continues immediately from
the following statement. In this case the go statement is followed by a return
statement that returns the answers channel to the caller. Aswenoted earlier, it is
perfectly safe and good practice in Go to return local variables, since Go handles
the chore of memory management for us.

In this case we have (created and) called an anonymous function in the go state-
ment. The function has an infinite loop that waits (blocking its own goroutine,
but not any other goroutines, and not the function in which the goroutine was
started), until it receives a question—in this case a polar struct on the questions
channel. When a polar coordinate arrives the anonymous function computes the
corresponding cartesiancoordinateusing somesimplemath (andusing the stan-
dard library’s math package), and then sends the answer as a cartesian struct
(created using Go’s composite literal syntax), to the answers channel.

In ➊ the <- operator is used as a unary operator, retrieving a polar coordinate
from the questions channel. And in ➋ the <- operator is used as a binary opera-
tor; its left-hand operand being the answers channel to send to, and its right-hand
operand being the cartesian to send.

Once the call to createSolver() returnswe have reached the point wherewehave
two communication channels set up and where a separate goroutine is waiting
for polar coordinates to be sent on the questions channel—andwithout any other
goroutine, including the one executing main(), being blocked.

ptg7913109

46 Chapter 1. An Overview in Five Examples

const result = "Polar radius=%.02f θ=%.02f° → Cartesian x=%.02f y=%.02f\n"

func interact(questions chan polar, answers chan cartesian) {
 reader := bufio.NewReader(os.Stdin)
 fmt.Println(prompt)

for {
 fmt.Printf("Radius and angle: ")
 line, err := reader.ReadString('\n')

if err != nil {
break

 }
var radius, θ float64
if _, err := fmt.Sscanf(line, "%f %f", &radius, &θ); err != nil {

 fmt.Fprintln(os.Stderr, "invalid input")
continue

 }
 questions <- polar{radius, θ}
 coord := <-answers
 fmt.Printf(result, radius, θ, coord.x, coord.y)
 }
 fmt.Println()
}

This function is called with both channels passed as parameters. It begins by
creating a buffered reader for os.Stdin sincewewant to interact with the user in
the console. It then prints the prompt that tells the user what to enter and how
to quit. We could have made the program terminate if the user simply pressed
Enter (i.e., didn’t type in any numbers), rather than asking them to enter end of
file. However, by requiring the use of end of file we have made polar2cartesian
more flexible, since it is also able to read its input from an arbitrary external file
using file redirection (providing only that the file has two whitespace-separated
numbers per line).

The function then starts an infinite loop which begins by prompting the user to
enter a polar coordinate (a radiusand an angle).After asking for the user’s input
the functionwaits for the user to type some text and pressEnter, or to pressCtrl+D
(or Ctrl+Z, Enter on Windows) to signify that they have finished. We don’t bother
checking the error value; if it isn’t nil we break out of the loop and return to the
caller (main()),which in turnwill return (and call its deferred statements to close
the communication channels).

We create two float64s to hold the numbers the user has entered and then use
Go’s fmt.Sscanf() function to parse the line. This function takesa string to parse,
a format—in this case two whitespace-separated floating-point numbers—and
one or more pointers to variables to populate. (The & address of operator is used
to get a pointer to a value; see §4.1, ➤ 140.) The function returns the number of

ptg7913109

1.7. Polar to Cartesian—Concurrency 47

items it successfully parsed and an error (or nil). In the case of an error,we print
an error message to os.Stderr—this is to make the error message visible on the
console even if the program’s os.Stdout is redirected to a file. Go’s powerful and
flexible scan functionsare shown in use in Chapter 8 (§8.1.3.2,➤ 380), and listed
in Table 8.2 (➤ 383).

If valid numberswere input and sent to the questions channel (in a polar struct),
we block themain goroutine waiting for a response on the answers channel. The
additional goroutine created in the createSolver() function is itself blockedwait-
ing for a polar on the questions channel, so when we send the polar, the addi-
tional goroutine performs the computation, sends the resultant cartesian to the
answers channel, and then waits (blocking only itself) for another question to
arrive. Once the cartesian answer is received in the interact() function on the
answers channel, interact() is no longer blocked. At this point we print the re-
sult string using the fmt.Printf() function, and passing the polar and cartesian
values as the arguments that the result string’s % placeholders are expecting.
The relationship between the goroutines and the channels is illustrated in Fig-
ure 1.1.

Main goroutine

init()

main()

createSolver()

interact()

Solver goroutine

func() // anonymous

Questions

Answers

Figure 1.1 Two communicating goroutines

The interact() function’s for loop is an infinite loop, so as soon as a result is
printed the user is once again asked to enter a radius and angle, with the loop
being broken out of only if the reader reads end of file—either interactively from
the user or because the end of a redirected input file has been reached.

The calculations in polar2cartesian are very lightweight, so there was no real
need to do them in a separate goroutine. However, a similar program that
needed to do multiple independent heavyweight calculations as the result of
each input might well benefit from using the approach shown here, for example,
with one goroutine per calculation. We will see more realistic use cases for
channels and goroutines in Chapter 7.

We have now completed our overview of the Go language as illustrated by the
five example programs reviewed in this chapter. Naturally, Go has much more
to offer than there has been space to show here, as we will see in the subsequent
chapters, each of which focuses on a specific aspect of the language and any
relevant packages from the standard library. This chapter concludes with a
small exercise, which despite its size, requires some thought and care.

ptg7913109

48 Chapter 1. An Overview in Five Examples

1.8. Exercise
Copy the bigdigits directory to, say, my_bigdigits, and modify my_bigdigits/big-
digits.go to produce a version of the bigdigits program (§1.4, 16 ➤) that can
optionally output the number with an overbar and underbar of “*”s, and with
improved command-line argument handling.

The original program output its usage message if no number was given; change
this so that the usagemessage is also output if the user gives an argument of -h
or --help. For example:

$./bigdigits --help

usage: bigdigits [-b|--bar] <whole-number>
-b --bar draw an underbar and an overbar

If the --bar (or -b) option is not present the program should have the same
behavior as before. Here is an example of the expected output if the option is
present:

$./bigdigits --bar 8467243

888 4 666 77777 222 4 333
8 8 44 6 7 2 2 44 3 3
8 8 4 4 6 7 2 4 4 3
888 4 4 6666 7 2 4 4 33
8 8 444444 6 6 7 2 444444 3
8 8 4 6 6 7 2 4 3 3
888 4 666 7 22222 4 333

The solution requiresmore elaborate command-line processing than the version
shown in the text, although the code producing the output only needs a small
change to output the overbar before the first row and the underbar after the
last row. Overall, the solution needs about 20 extra lines of code—the solution’s
main() function is twice as long as the original (~40 vs. ~20 lines), mostly due to
the code needed to handle the command line. A solution is provided in the file
bigdigits_ans/bigdigits.go.

Hints:The solution also has a subtle difference in theway it builds up each row’s
line to prevent the bars extending too far. Also, the solution imports the strings
package and uses the strings.Repeat(string, int) function. This function
returnsa string that contains the string it is given as itsfirst argument repeated
by the number of times of the int given as its second argument. Why not look
this function up either locally (see the sidebar “The Go Documentation”, 8 ➤),
or at golang.org/pkg/strings, and start to become familiar with the Go standard
library’s documentation.

ptg7913109

1.8. Exercise 49

It would bemuch easier to handle command-line argumentsusing a package de-
signed for the purpose. Go’s standard library includes a rather basic command
line parsing package, flag, that supports X11-style options (e.g., -option). In ad-
dition, several option parsers that support GNU-style short and long options
(e.g., -o and --option) are available from godashboard.appspot.com/project.

ptg7913109

This page intentionally left blank

ptg7913109

2 Booleans and
Numbers

§2.1. Preliminaries ➤ 51

§2.1.1. Constants and Variables ➤ 53

§2.2. Boolean Values and Expressions ➤ 56

§2.3. Numeric Types ➤ 57

§2.3.1. Integer Types ➤ 59

§2.3.2. Floating-Point Types ➤ 64

§2.4. Example: Statistics ➤ 72

§2.4.1. Implementing Simple Statistics Functions ➤ 73

§2.4.2. Implementing a Basic HTTP Server ➤ 75

This is the first of four chapters on procedural programming that lay down
the foundations for Go programming—whether procedural, object-oriented,
concurrent, or any combination of these approaches.

This chapter covers Go’s built-in Boolean type and all of Go’s built-in numeric
types, and briefly introduces two of the numeric types from Go’s standard
library. Apart from the need to explicitly convert between different types of
numbers and the convenience of having a built-in complex type, programmers
coming from C, C++, and Java should find few surprises in this chapter.

This chapter’s first section covers some of the language’s basics, such as how
comments are written, Go’s keywords and operators, what constitutes a valid
identifier, and so on. Once these preliminaries have been covered, there are
sections on Booleans, integers, and floating-point numbers, the latter including
coverage of complex numbers.

2.1. Preliminaries
Go supports two kinds of comments, both adopted from C++. Line comments
begin with // and end at the newline; these are treated simply as a newline.
General comments begin with /* and end with */ and may span multiple lines.
When a general comment is all on one line (e.g., /* inline comment */), it is treated

51

ptg7913109

52 Chapter 2. Booleans and Numbers

as a space, and when a general comment spans one or more lines it it treated as
a newline. (Newlines are significant in Go, as we will see in Chapter 5.)

A Go identifier is a nonempty sequence of letters and digits where the first
character must be a letter, and which is not the name of a keyword. A letter is
the underscore, _, or any character that is in the Unicode categories, “Lu” (letter,
uppercase), “Ll” (letter, lowercase), “Lt” (letter, titlecase), “Lm” (letter,modifier),
or “Lo” (letter, other); this includes all the English alphabetic characters (A–Z
and a–z).A digit is any character in theUnicode category “Nd” (number,decimal
digit); this includes the Arabic digits (0–9). The compiler will prevent the use of
an identifier that has the same name as a keyword; see Table 2.1.

Table 2.1 Go’s Keywords

break default func interface select

case defer go map struct

chan else goto package switch

const fallthrough if range type

continue for import return var

Go hasmany predefined identifiers; it is possible—but rarely wise—to create an
identifier with the same name as a predefined identifier; see Table 2.2.

Table 2.2 Go’s Predefined Identifiers

append copy int8 nil true

bool delete int16 panic uint

byte error int32 print uint8

cap false int64 println uint16

close float32 iota real uint32

complex float64 len recover uint64

complex64 imag make rune uintptr

complex128 int new string

Identifiers are case-sensitive, so for example, LINECOUNT, Linecount, LineCount,
lineCount, and linecount are five different identifiers. Identifiers that beginwith
a capital letter, that is, with a character in Unicode category “Lu” (including
A–Z), are considered to be public—exported in Go terminology—while all others
are considered to be private—unexported in Go terminology. (This rule does
not apply to package names which are conventionally all lowercase.) We will
see this distinction in action when we discuss object-oriented programming in
Chapter 6, and packages in Chapter 9.

The blank identifier, _, serves as a placeholder for where a variable is expected
in an assignment, and discards any value it is given. The blank identifier is not

ptg7913109

2.1. Preliminaries 53

considered to be a new variable, so if it is used with the := operator, at least one
other (new) variable must be assigned to. It is legitimate to discard some or all
of a function’s return values by assigning them to the blank identifier. However,
if no return values are wanted it is more conventional to simply ignore them.
Here are some examples:

count, err = fmt.Println(x) // get number of bytes printed and error
count, _ = fmt.Println(x) // get number of bytes printed; discard error
_, err = fmt.Println(x) // discard number of bytes printed; get error
fmt.Println(x) // ignore return values

It is not uncommon to ignore the return values when printing to the console,
but the error value should always be checked when printing to files, network
connections, and so on—for example, using fmt.Fprint() and similar functions.
(Go’s print functions are fully covered later; §3.5, ➤ 93.)

2.1.1. Constants and Variables

Constantsare declared using the const keyword;variables can be declared using
the var keyword, or using the short variable declaration syntax. Go can infer
the type of the declared type, although it is legal to specify it if we wish to or
need to—for example, to specify a type that is different from the type Go would
normally infer. Here are some example declarations:

const limit = 512 // constant; type-compatible with any number
const top uint16 = 1421 // constant; type: uint16
start := -19 // variable; inferred type: int
end := int64(9876543210) // variable; type: int64
var i int // variable; value 0; type: int
var debug = false // variable; inferred type: bool
checkResults := true // variable; inferred type: bool
stepSize := 1.5 // variable; inferred type: float64
acronym := "FOSS" // variable; inferred type: string

For integer literals Go infers type int, for floating-point literals Go infers type
float64, and for complex literals Go infers type complex128 (the numbers in their
names refer to howmany bits they occupy).The normal practice is to leave types
unspecified unless we want to use a specific type that Go won’t infer; we will
discuss this further in §2.3, ➤ 57. Typed numeric constants (e.g., top) can only
be used in expressions with other numbers of the same type (unless converted).
Untyped numeric constants can be used in expressions with numbers of any
built-in type, (e.g., limit can be used in an expression with integers or in one
with floating-point numbers).

The variable iwasnot given any explicit value. This is perfectly safe in Go since
Go always assigns variables their type’s zero value if no other value is specified.

ptg7913109

54 Chapter 2. Booleans and Numbers

This means that every numeric variable is guaranteed to be zero and every
string to be empty—unlesswe specify otherwise. This ensures thatGoprograms
don’t suffer from the problems of uninitialized garbage values that afflict some
other languages.

2.1.1.1. Enumerations

Rather than repeat the const keyword when we want to set multiple constants,
we can group together several constant declarations using the const keyword
just once. (We used the same grouping syntax when importing packages in
Chapter 1; the syntax can also be used to group variables declared with var.) For
those caseswherewe just want constants to have distinct values and don’t really
care what those values are, we can use Go’s somewhat bare-bones enumeration
support.

const Cyan = 0
const Magenta = 1
const Yellow = 2

const (
 Cyan = 0
 Magenta = 1
 Yellow = 2
)

const (
 Cyan = iota // 0
 Magenta // 1
 Yellow // 2
)

These three code snippets all achieve exactly the same thing. The way a group
of consts works is that the first one is set to its zero value unless explicitly set
(either to a value or to iota), and the second and subsequent ones are set to their
predecessor’s value—or to iota if their predecessor’s value is iota. And each
subsequent iota value is one more than the previous one.

More formally, the iota predefined identifier represents successive untyped
integer constants. Its value is reset to zero whenever the keyword const occurs
(so every time a new const group is defined), and increments by one for each
constant declaration. So in the right-hand code snippet all the constants are set
to iota (implicitly for the Magenta and Yellow ones). And since Cyan immediately
follows a const, iota is reset to 0 which become’s Cyan’s value; Magenta’s value is
also iota but at this point iota’s value is 1. Similarly, Yellow’s value is iota whose
value is now 2. And if we added Black at the end (but within the const group) it
would be implicitly set to iota whose value at that point would be 3.

On the other hand, if the right-hand code snippet didn’t have iota, Cyan would
be set to 0 and Magenta would be set to Cyan’s value and Yellow would be set to
Magenta’s value—so they would all end up being set to 0.Similarly, if Cyanwas set
to 9, then they would all be set to 9; or if Magenta was set to 5, Cyan would be set
to 0 (first in the group and not assigned an explicit value or iota), Magenta would
be 5 (explicitly set), and Yellow would be 5 (the previous constant’s value).

It is also possible to use iota with floating-point numbers, simple expressions,
and custom types.

ptg7913109

2.1. Preliminaries 55

type BitFlag int

const (
 Active BitFlag = 1 << iota // 1 << 0 == 1
 Send // Implicitly BitFlag = 1 << iota // 1 << 1 == 2
 Receive // Implicitly BitFlag = 1 << iota // 1 << 2 == 4
)
flag := Active | Send

In this snippet we have created three bit flags of custom type BitFlag and then
set variable flag (of type BitFlag) to the bitwise OR of two of them (so flag has
value 3; Go’s bitwise flags are shown in Table 2.6, ➤ 60).We could have omitted
the custom type in which case Go would have made the constants untyped
integers and inferred flag’s type as int. Variables of type BitFlag can have any
int value; nonetheless BitFlag is a distinct type so can only be used in operations
with ints if converted to an int (or if the ints are converted to BitFlags).

The BitFlag type is useful as it stands, but it isn’t very convenient for debugging.
If we were to print flag we would just get 3 with no indication of what that
means. Go makes it really easy to control how values of custom types are print-
ed, because the fmt package’s print functions will use a type’s String() method
if it has one. So to make our BitFlag type print in a more informative way, we
can simply add a suitable String()method to it. (Custom types andmethodsare
covered fully in Chapter 6.)

func (flag BitFlag) String() string {
var flags []string
if flag&Active == Active {

 flags = append(flags, "Active")
 }

if flag&Send == Send {
 flags = append(flags, "Send")
 }

if flag&Receive == Receive {
 flags = append(flags, "Receive")
 }

if len(flags) > 0 { // int(flag) is vital to avoid infinite recursion!
return fmt.Sprintf("%d(%s)", int(flag), strings.Join(flags, "|"))

 }
return "0()"

}

This method builds up a (possibly empty) slice of strings for those bit fields that
are set and then prints the bit field’s value as a decimal int and with the strings
to indicate its value. (We could easily have printed the value as a binary number
by replacing the %d format specifier with %b.) As the comment notes, it is essen-

ptg7913109

56 Chapter 2. Booleans and Numbers

tial that we convert the flag (of type BitFlag) to its underlying int type when
passing it to the fmt.Sprintf() function, otherwise the BitFlag.String() method
will be called recursively on the flagwhichwill takeus into an infinite recursion.
(The built-in append() function is covered in §4.2.3,➤ 156; the fmt.Sprintf() and
strings.Join() functions are covered in Chapter 3.)

Println(BitFlag(0), Active, Send, flag, Receive, flag|Receive)

0() 1(Active) 2(Send) 3(Active|Send) 4(Receive) 7(Active|Send|Receive)

This snippet shows how BitFlags with the String() method in place look when
printed—clearly, this is much more useful for debugging than bare integers.

It is, of course,possible to create a customtype that representsa restricted range
of integers, and to create a more elaborate custom enumeration type; we cover
custom typesmore fully inChapter 6.Go’sminimalist approach to enumerations
is typical of theGo philosophy:Go aims to provide everything that programmers
need—including many powerful and convenient features—while keeping the
language as small, consistent, and fast (to build and run) as possible.

2.2. Boolean Values and Expressions

Go provides two built-in Boolean values, true and false, both of type bool. Go
supports the standard logical and comparison operators, all of which produce a
bool result; they are shown in Table 2.3.

Boolean values and expressions are used in if statements (§5.2.1,➤ 192), in the
conditions of for statements (§5.3, ➤ 203), and sometimes in the conditions of
switch statements’ case clauses (§5.2.2, ➤ 195), as we will see in Chapter 5.

The binary logical operators (|| and &&) use short-circuit logic. This means that
if we have b1 || b2 and expression b1 evaluates to true, the result must be true
nomatter what b2 is, so true is returned and b2 is not evaluated. Similarly, if we
have b1 && b2 and expression b1 evaluates to false, the result must be false, so
false is returned and b2 is not evaluated.

Go is strict about the values that can be compared using the comparison oper-
ators (<, <=, ==, !=, >=, >). The two values must be of the same type, or—if they
are interfaces—they must implement the same interface type. If one value is
a constant then it must be of a type that is compatible with the other’s type.
This means that an untyped numeric constant can be compared with another
value of any numeric type, but numbers of different types—and that are not
constants—cannot be compared unless one of them is explicitly converted to
be of the same type as the other. (Numeric conversions are discussed in §2.3,
➤ 57.)

ptg7913109

2.2. Boolean Values and Expressions 57

Table 2.3 Boolean and Comparison Operators

Syntax Description/result

!b Logical NOT operator; false if Boolean expression b is true

a || b Short-circuit logical OR operator; true if either Boolean expression a
or b is true

a && b Short-circuit logical AND operator; true if both Boolean expressions a
and b are true

x < y true if expression x is less than expression y

x <= y true if expression x is less than or equal to expression y

x == y true if expression x is equal to expression y

x != y true if expression x is not equal to expression y

x >= y true if expression x is greater than or equal to expression y

x > y true if expression x is greater than expression y

The == and != operators can be applied to operands of any comparable types, in-
cluding arrays and structswhose items or fields are comparable using == and !=.
These operators cannot be used to compare slices, although such a comparison
can be done using the Go standard library’s reflect.DeepEqual() function. The
== and != operators can be used to compare two pointers or two interfaces—or to
compare a pointer or interface or reference (e.g., to a channel,map, or slice) with
nil. The other comparison operators (<, <=, >=, >) may be applied only to numbers
and strings. (Since Go—like C and Java—doesn’t support operator overloading,
for our own custom types we can implement our own comparison methods or
functions if needed, such as Less() or Equal(), as we will see in Chapter 6.)

2.3. Numeric Types

Go provides a wide range of built-in numeric types, and the standard library
adds integers of type big.Int and rationals of type big.Rat which are of un-
bounded size (i.e., limited only by the machine’s memory). Every numeric type
is distinct: This means that we cannot use binary arithmetic operations or com-
parisons (e.g., + or <) on numeric values of different types (e.g., of type int32 and
type int). Untyped numeric constants are compatible with any (built-in) typed
number they are in an expressionwith, sowe can add or comparean untypednu-
meric constant with another number, no matter what the other number’s (built-
in) type.

If we need to perform arithmetic or comparisons on typed numbers of different
types we must perform conversions—usually to the biggest type to avoid loss of
accuracy. Conversions take the form type(value) and where valid (e.g., from one
type of number to another) they always succeed—even if this results in data
loss. Here are some examples:

ptg7913109

58 Chapter 2. Booleans and Numbers

const factor = 3 // factor is compatible with any numeric type
i := 20000 // i is of type int by inference
i *= factor
j := int16(20) // j is of type int16; same as: var j int16 = 20
i += int(j) // Types must match so conversion is required
k := uint8(0) // Same as: var k uint8
k = uint8(i) // Succeeds, but k's value is truncated to 8 bits ✗

fmt.Println(i, j, k) // Prints: 60020 20 116

If we want to perform safe downsizing conversions we can always create
suitable functions. For example:

func Uint8FromInt(x int) (uint8, error) {
if 0 <= x && x <= math.MaxUint8 {

return uint8(x), nil

 }
return 0, fmt.Errorf("%d is out of the uint8 range", x)

}

This function acceptsan int argument and returnsa uint8 and nil if the int is in
range, or 0 and an error otherwise. The math.MaxUint8 constant is from the math
package which also has similar constants for Go’s other built-in numeric types.
(Of course, there are no minimum constants for the unsigned types since they
all share a minimum of 0.) The fmt.Errorf() function returns an error based on
the format string and value or values it is given. (String formatting is covered
in §3.5, ➤ 93.)

Numbers of the same type can be compared using the comparison operators (see
Table 2.3, 57 ➤). Similarly,Go’s arithmetic operators can be applied to numbers;
these are shown in Table 2.4 (➤ 59) applicable to all built-in numbers, and in
Table 2.6 (➤ 60) applicable only to integers.

Constant expressions are evaluated at compile time; they may use any of the
arithmetic, Boolean, and comparison operators. For example:

const (
 efri int64 = 10000000000 // type: int64
 hlutföllum = 16.0 / 9.0 // type: float64
 mælikvarða = complex(-2, 3.5) * hlutföllum // type: complex128
 erGjaldgengur = 0.0 <= hlutföllum && hlutföllum < 2.0 // type: bool
)

The example uses Icelandic identifiers as a reminder that Go fully supports
native language identifiers. (We will discuss complex() shortly; §2.3.2.1, ➤ 70.)

ptg7913109

2.3. Numeric Types 59

Table 2.4 Arithmetic Operators Applicable to All Built-In Numbers

Syntax Description/result

+x x

-x The negation of x

x++ Increments x by the untyped constant 1

x-- Decrements x by the untyped constant 1

x += y Increments x by y

x -= y Decrements x by y

x *= y Sets x to x multiplied by y

x /= y Sets x to x divided by y; if the numbers are integers any remainder is
discarded; division by zero causes a runtime panic★

x + y The sum of x and y

x - y The result of subtracting y from x

x * y The result of multiplying x by y

x / y The result of dividing x by y; if the numbers are integers any remain-
der is discarded; division by zero causes a runtime panic★

Although Go has sensible rules of precedence (unlike, say, C and C++), we
recommend using parentheses to make intentions clear. Using parentheses is
particularly recommended for programmers who use multiple languages so as
to avoid subtle mistakes.

2.3.1. Integer Types

Go provides 11 separate integer types, five signed and five unsigned, plus an in-
teger type for storing pointers—their names and values are shown in Table 2.5
(➤ 60). In addition, Go allows the use of byte as a synonym for the unsigned
uint8 type, and encourages the use of rune as a synonym for the int32 type when
working with individual characters (i.e.,Unicode code points).For most process-
ing purposes the only integer type that we need is int. This is suitable for loop
counters, array and slice indexes, and all general-purpose integer arithmetic; it
is also normally the integer type that offers the fastest processing speeds. At the
time of this writing, the int type is represented by a signed 32-bit integer (even
on 64-bit platforms), but is expected to change to 64-bit in a future Go version.

The other integer types that Go provides are needed when it comes to reading
and writing integers outside the program—for example, from and to files or
network connections. In such cases it is essential to know exactly how many
bitsmust be read or written so that integers can be handled without corruption.

★A panic is an exception; see Chapter 1 (32 ➤) and §5.5, ➤ 212.

ptg7913109

60 Chapter 2. Booleans and Numbers

Table 2.5 Go’s Integer Types and Ranges

Type Range

byte Synonym for uint8

int The int32 or int64 range depending on the implementation

int8 [−128, 127]

int16 [−32768, 32767]

int32 [−2147483648, 2147483647]

int64 [−9223372036854775808, 9223372036854775807]

rune Synonym for int32

uint The uint32 or uint64 range depending on the implementation

uint8 [0, 255]

uint16 [0, 65535]

uint32 [0, 4 294967295]

uint64 [0, 18446744073709551615]

uintptr An unsigned integer capable of storing a pointer value (advanced)

Table 2.6 Arithmetic Operators Applicable Only to Built-In Integer Types

Syntax Description/result

^x The bitwise complement of x

x %= y Sets x to be the remainder of dividing x by y; division by zero causes
a runtime panic

x &= y Sets x to the bitwise AND of x and y

x |= y Sets x to the bitwise OR of x and y

x ^= y Sets x to the bitwise XOR of x and y

x &^= y Sets x to the bitwise clear (AND NOT) of x and y

x >>= u Sets x to the result of right-shifting itself by unsigned int u shifts

x <<= u Sets x to the result of left-shifting itself by unsigned int u shifts

x % y The remainder of dividing x by y; division by zero causes a runtime
panic

x & y The bitwise AND of x and y

x | y The bitwise OR of x and y

x ^ y The bitwise XOR of x and y

x &^ y The bitwise clear (AND NOT) of x and y

x << u The result of left-shifting x by unsigned int u shifts

x >> u The result of right-shifting x by unsigned int u shifts

ptg7913109

2.3. Numeric Types 61

A common practice is to store integers in memory using the int type, and to
convert to or from one of the explicitly signed and sized integer types when
writing or reading integers. The byte (uint8) type is used for reading andwriting
raw bytes—for example,when handling UTF-8 encoded text. We saw the basics
of reading andwriting UTF-8 encoded text in the previous chapter’s americanise
example (29 ➤), and will see how to read and write built-in and custom data in
Chapter 8.

Go integers support all the arithmetic operations listed in Table 2.4 (59 ➤),
and in addition they support all the arithmetic and bitwise operations listed in
Table 2.6 (60 ➤). All of these operations have the expected standard behaviors,
so they are not discussed further, especially since wewill see plenty of examples
throughout the book.

It is always safe to convert an integer of a smaller type to one of a larger type
(e.g., from an int16 to an int32); but downsizing an integer that is too big for the
target type or converting a negative integer to an unsigned integer will silent-
ly result in a truncated or otherwise unexpected value. In such cases it is best
to use a custom downsizing function such as the one shown earlier (58 ➤). Of
course, when attempting to downsize a literal (e.g., int8(200)), the compiler will
detect the problem and report an overflow error. Integers can also be converted
to floating-point numbers using the standard Go syntax (e.g., float64(integer)).

Go’s support for 64-bit integers makes it realistically possible to use scaled
integers for precise calculations in some contexts. For example, computing the
finances for a business using int64s to represent millionths of a cent allows for
calculations in the range of billions of dollars with sufficient accuracy for most
purposes—especially if we are careful about divisions. And if we need to do
financial calculations with perfect accuracy and avoid rounding errors we can
use the big.Rat type.

2.3.1.1. Big Integers

In some situations we need to perform perfectly accurate computations with
whole numbers whose range exceeds even that of int64s and uint64s. In such
caseswe cannot use floating-point numbers because they are represented by ap-
proximations. Fortunately,Go’s standard library providestwounlimitedaccura-
cy integer types: big.Int for integers and big.Rat for rationals (i.e., for numbers
than can be representedas fractionssuch as 2

3 and 1.1496,but not irrationals like
e or π). These integer types can hold an arbitrary number of digits—providing
only that the machine has sufficient memory—but are potentially a lot slower
to process than built-in integers.

Since Go—like Cand Java—does not support operator overloading, themethods
provided for big.Ints and big.Rats have names—for example, Add() and Mul(). In
most cases themethodsmodify their receiver (i.e., the big integer they are called
on), and also return their receiver as their result to support the chaining of

ptg7913109

62 Chapter 2. Booleans and Numbers

operations. Wewon’t list all the functions andmethods provided by the math/big
package since they can easily be looked up in the documentation and may have
been added to since this was written; however, we will look at a representative
example to get a flavor of how big.Ints are used.

Using Go’s float64 type allows us to accurately compute to about 15 decimal
digits—which is more than enough for most situations. However, if we want to
compute to a large number of decimal places, say, tens or hundreds of places, as
we might want to when computing π, no built-in type is sufficient.

In 1706 John Machin developed a formula for calculating π to an arbitrary
number of decimal places, and we can adapt this formula in conjunction with
theGo standard library’s big.Ints to compute π to any number of decimal places.
The pure formula, and the arccot() function it relies on, are shown in Figure 2.1.
(No understanding of Machin’s formula is required to understand the use of the
big.Int package introduced here.) Our implementation of the arccot() function
accepts an additional argument to limit the precision of the calculation so that
we don’t go beyond the number of digits required.

π = 4 × (4 × arccot(5) − arccot(239)) arccot(x) = 1
x

− 1
33x

+ 1
55x

− 1
77x

+ …

Figure 2.1 Machin’s formula

The entire program is less than 80 lines and is in the file pi_by_digits/pi_by_dig-
its.go; here is its main() function.★

func main() {
 places := handleCommandLine(1000)
 scaledPi := fmt.Sprint(π(places))
 fmt.Printf("3.%s\n", scaledPi[1:])
}

The program assumes a default value of 1000 decimal places, although the user
can choose any number they like by entering a value on the command line. The
handleCommandLine() function (not shown) returns the value it is passed or the
number the user entered on the command line (if any, and if it is valid). The
π() function returns π as a big.Int of value 314159…; we print this to a string,
and then print the string on the console properly formatted so that the output
appears as, say, 3.14159265358979323846264338327950288419716939937510
(here we have used a mere 50 digits).

★ The implementation used here is based on http://en.literateprograms.org/Pi_with_Machin's_for-
mula_(Python).

http://en.literateprograms.org/Pi_with_Machin's_formula_(Python)
http://en.literateprograms.org/Pi_with_Machin's_formula_(Python)

ptg7913109

2.3. Numeric Types 63

func π(places int) *big.Int {
 digits := big.NewInt(int64(places))
 unity := big.NewInt(0)
 ten := big.NewInt(10)
 exponent := big.NewInt(0)
 unity.Exp(ten, exponent.Add(digits, ten), nil) ➊

 pi := big.NewInt(4)
 left := arccot(big.NewInt(5), unity)
 left.Mul(left, big.NewInt(4)) ➋

 right := arccot(big.NewInt(239), unity)
 left.Sub(left, right)
 pi.Mul(pi, left) ➌

return pi.Div(pi, big.NewInt(0).Exp(ten, ten, nil)) ➍

}

The π() function begins by computing a value for the unity variable (digits+1010)
which we use as a scale factor so that we can do all our calculations using inte-
gers. The +10 adds an extra ten digits to those given by the user, to avoid round-
ing errors. We then use Machin’s formula with our modified arccot() function
(not shown) that takes the unity variable as its second argument. Finally, we
return the result divided by 1010 to reverse the effects of the unity scale factor.

To get the unity variable to hold the correct value we begin by creating four
variables, all of type *big.Int (i.e., pointer to big.Int; see §4.1,➤ 140). The unity
and exponent variables are initialized to 0, the ten variable to 10, and the digits
variable to the number of digits requested by the user. The unity computation is
performed in a single line (➊). The big.Int.Add() method adds 10 to the number
of digits. Then the big.Int.Exp() method is used to raise 10 to the power of
its second argument (digits + 10). When used with a nil third argument—as
here—big.Int.Exp(x, y, nil) performs the computation yx ; with three non-nil
arguments, big.Int.Exp(x, y, z) computes yx mod z. Notice that we did not need
to assign to unity; this is because most big.Int methodsmodify their receiver as
well as return it, so here, unity is modified to have the resultant value.

The rest of the computation follows a similar pattern. We set an initial value of
pi to 4 and then compute the inner left-hand part of Machin’s formula. We don’t
need to assign to left after creating it (➋), since the big.Int.Mul()method stores
the result in its receiver (i.e., in this case in variable left) as well as returning
the result (which we can safely ignore). Next we compute the inner right-hand
part of the formula and subtract the right from the left (leaving the result in
left).Nowwemultiply pi (of value 4) by left (which holds the result of Machin’s
formula). This produces the result but scaled by unity. So in the final line (➍) we
reverse the scaling by dividing the result (in pi) by 1010 .

Using the big.Int type takes some care sincemostmethodsmodify their receiver
(this is done for efficiency to save creating lots of temporary big.Ints). Compare

ptg7913109

64 Chapter 2. Booleans and Numbers

the linewherewe perform the computation pi × leftwith the result being stored
in pi (63 ➤,➌) to the linewherewe compute pi ÷ 1010 and return the result (63 ➤,
➍)—not caring that the value of pi has been overwritten by the result.

Wherever possible it is best to use plain ints, falling back to int64s if the int
range isn’t sufficient, or using float32s or float64s if the fact that they are ap-
proximations is not a concern. However, if computations of perfect accuracy are
required and we are prepared to pay the price in memory use and processing
overhead, thenwe canuse big.Ints or big.Rats—the latter particularly useful for
financial calculations—scaling if necessary as we did here, when floating-point
computations are required.

2.3.2. Floating-Point Types

Go provides two types of floating-point numbers and two types of complex
numbers—their names and ranges are shown in Table 2.7. Floating-point
numbers in Go are held in the widely used IEEE-754 format (http://en.wiki-
pedia.org/wiki/IEEE_754-2008). This format is also the native format used by
manymicroprocessorsandfloating-point units,so inmost casesGo isable to take
direct advantage of the hardware’s floating-point support.

Table 2.7 Go’s Floating-Point Types

Type Range

float32 ±3.40282346638528859811704183484516925440 × 3810
The mantissa is reliably accurate to about 7 decimal places.

float64 ±1.797693134862315708145274237317043567981 × 30810
The mantissa is reliably accurate to about 15 decimal places.

complex64 The real and imaginary parts are both of type float32.

complex128 The real and imaginary parts are both of type float64.

Go floating-point numbers support all the arithmetic operations listed in
Table 2.4 (59 ➤).Most of the math package’s constants and all of its functions are
listed in Tables 2.8 to 2.10 (➤ 65–67).

Floating-point numbers are written with a decimal point, or using exponential
notation, for example, 0.0, 3., 8.2, −7.4, −6e4, .1, 5.9E−3. Computers commonly
represent floating-point numbers internally using base 2—thismeans that some
decimals can be represented exactly (such as 0.5), but others only approximately
(such as 0.1 and 0.2). Furthermore, the representation uses a fixed number of
bits, so there is a limit to the number of digits that can be held. This is not a Go-
specific problem, but one that afflicts floating-point numbers in all mainstream
programming languages. However, the imprecision isn’t always apparent, be-
causeGousesa smart algorithm for outputting floating-point numbers that uses
the fewest possible digits consistent with maintaining accuracy.

http://en.wikipedia.org/wiki/IEEE_754-2008
http://en.wikipedia.org/wiki/IEEE_754-2008

ptg7913109

2.3. Numeric Types 65

Table 2.8 TheMath Package’s Constants and Functions #1

All the math package’s functionsaccept and return float64s unless specified otherwise. All
the constants are shown truncated to 15 decimal digits to fit neatly into the tables.

Syntax Description/result

math.Abs(x) |x|, i.e., the absolute value of x

math.Acos(x) The arc cosine of x in radians

math.Acosh(x) The arc hyperbolic cosine of x in radians

math.Asin(x) The arc sine of x in radians

math.Asinh(x) The arc hyperbolic sine of x in radians

math.Atan(x) The arc tangent of x in radians

math.Atan2(y, x) The arc tangent of y
x in radians

math.Atanh(x) The arc hyperbolic tangent of x in radians

math.Cbrt(x) 3√x, the cube root of x

math.Ceil(x) ⎡x⎤ , i.e., the smallest integer greater than or equal to x;
e.g., math.Ceil(5.4) == 6.0

math.Copysign(x, y) A value with x’s magnitude and y’s sign

math.Cos(x) The cosine of x in radians

math.Cosh(x) The hyperbolic cosine of x in radians

math.Dim(x, y) In effect, math.Max(x - y, 0.0)

math.E The constant e; approximately 2.718281828459045

math.Erf(x) erf (x); x’s Gauss error function

math.Erfc(x) erfc(x); x’s complementary Gauss error function

math.Exp(x) xe

math.Exp2(x) x2

math.Expm1(x)
xe − 1; this is more accurate than using math.Exp(x) - 1
when x is close to 0

math.Float32bits(f)
The IEEE-754 binary representation of f (of type
float32) as a uint32

math.
Float32frombits(u)

The float32 represented by the IEEE-754 bits in u (of
type uint32)

math.Float64bits(x)
The IEEE-754 binary representation of x (of type
float64) as a uint64

math.
Float64frombits(u)

The float64 represented by the IEEE-754 bits in u (of
type uint64)

ptg7913109

66 Chapter 2. Booleans and Numbers

Table 2.9 TheMath Package’s Constants and Functions #2

Syntax Description/result

math.Floor(x) ⎣x⎦ , i.e., the largest integer less than or equal to x; e.g.,
math.Floor(5.4) == 5.0

math.Frexp(x)
frac of type float64 and exp of type int such that
x = frac exp× 2 ; the inverse function is math.Ldexp()

math.Gamma(x) Γ(x), i.e., (x − 1)!

math.Hypot(x, y) math.Sqrt(x * x, y * y)

math.Ilogb(x) The binary exponent of x as an int; see also math.Logb()

math.Inf(n) A float64 of value +∞ if n of type int is ≥ 0; otherwise −∞

math.IsInf(x, n)
true if x of type float64 is +∞ and n of type int is > 0, or
if x is −∞ and n is < 0, or if x is either infinity and n is 0;
otherwise false

math.IsNaN(x) true if x has the IEEE-754 “not a number” value

math.J0(x) J0(x), the Bessel function of the first kind

math.J1(x) J1(x), the Bessel function of the first kind

math.Jn(n, x) Jn(x), the order-n (where n is of type int) Bessel function of
the first kind

math.Ldexp(x, n)
nx × 2 where x is of type float64 and n is of type int; the

inverse function is math.Frexp()

math.Lgamma(x)
loge(Γ(x)) as a float64 and the sign of Γ(x) as an int (−1
or +1)

math.Ln2 loge(2); approximately 0.693147180559945

math.Ln10 loge(10); approximately 2.302585092994045

math.Log(x) loge(x)

math.Log2E 1
loge(2); approximately 1.442695021629333

math.Log10(x) log10(x)

math.Log10E 1
loge(10); approximately 0.434294492006301

math.Log1p(x) loge(1 + x) but is more accurate than using math.Log() when
x is near zero

math.Log2(x) log2(x)

math.Logb(x) The binary exponent of x; see also math.Ilogb()

math.Max(x, y) The larger of x and y

math.Min(x, y) The smaller of x and y

math.Mod(x, y) The remainder of x
y; see also math.Remainder()

ptg7913109

2.3. Numeric Types 67

Table 2.10 TheMath Package’s Constants and Functions #3

Syntax Description/result

math.Modf(x) The whole and fractional parts of x as float64s

math.NaN(x) An IEEE-754 “not a number” value

math.Nextafter(
x, y)

The next representable value after x going toward y

math.Pi The constant π; approximately 3.141592653589793

math.Phi The constant φ; approximately 1.618033988749984

math.Pow(x, y) yx

math.Pow10(n) n10 as a float64; n is of type int

math.Remainder(
x, y)

the IEEE-754-compliant remainder of x
y; see also math.Mod()

math.Signbit(x) Returns a bool; true if x is negative (including −0.0)

math.Sin(x) The sine of x in radians

math.SinCos(x) The sine and cosine of x in radians

math.Sinh(x) The hyperbolic sine of x in radians

math.Sqrt(x) √x
math.Sqrt2 √2; approximately 1.414213562373095

math.SqrtE √e; approximately 1.648721270700128

math.SqrtPi √π; approximately 1.772453850905516

math.SqrtPhi √φ; approximately 1.272019649514068

math.Tan(x) The tangent of x in radians

math.Tanh(x) The hyperbolic tangent of x in radians

math.Trunc(x) x with its fractional part set to 0

math.Y0(x) Y0(x), the Bessel function of the second kind

math.Y1(x) Y1(x), the Bessel function of the second kind

math.Yn(n, x) Yn(x), the order-n (where n is of type int) Bessel function of
the second kind

ptg7913109

68 Chapter 2. Booleans and Numbers

All the comparison operations listed in Table 2.3 (57 ➤) can be used with
floating-point numbers. Unfortunately, due to the fact that floating-point num-
bers are held as approximations, comparing them for equality or inequality does
not always work intuitively.

x, y := 0.0, 0.0
for i := 0; i < 10; i++ {
 x += 0.1

if i%2 == 0 {
 y += 0.2
 } else {
 fmt.Printf("%-5t %-5t %-5t %-5t", x == y,
 EqualFloat(x, y, -1), EqualFloat(x, y, 0.000000000001),
 EqualFloatPrec(x, y, 6))
 fmt.Println(x, y)
 }
}

true true true true 0.2 0.2
true true true true 0.4 0.4
false false true true 0.6 0.6000000000000001
false false true true 0.7999999999999999 0.8
false false true true 0.9999999999999999 1

Here we start with two float64s with initial values of 0. We add ten 0.1s to the
first one and five 0.2s to the second, so at the end both should be 1. However, as
the output shown below the code snippet illustrates, perfect accuracy for some
floating-point numbers is not possible. In view of this we must be very careful
when comparing floating-point numbers for equality or inequality using ==
and !=. Of course, there are cases where it is sensible to compare floating-point
numbers for equality or inequality using the built-in operators—for example,
when trying to avoid division by zero, as in, say, if y != 0.0 { return x / y }.

The "%-5t" format prints a bool left-aligned in a field five characters wide—
string formatting is covered in the next chapter; §3.5, ➤ 93.

func EqualFloat(x, y, limit float64) bool {
if limit <= 0.0 {

 limit = math.SmallestNonzeroFloat64
 }

return math.Abs(x-y) <=
 (limit * math.Min(math.Abs(x), math.Abs(y)))
}

The EqualFloat() function compares two float64s to the given accuracy—or to
the greatest accuracy the machine can achieve if a negative number (e.g., -1)

ptg7913109

2.3. Numeric Types 69

is passed as the limit. It relies on functions (and a constant) from the standard
library’s math package.

An alternative (and slower) approach is to compare numbers as strings.

func EqualFloatPrec(x, y float64, decimals int) bool {
 a := fmt.Sprintf("%.*f", decimals, x)
 b := fmt.Sprintf("%.*f", decimals, y)

return len(a) == len(b) && a == b
}

For this function the accuracy is specified as the number of digits after the dec-
imal point. The fmt.Sprintf() function’s % formatting argument can accept a *
placeholder where it expects a number, so here we create two strings based on
the two given float64s, formatting each with the specified number of decimal
places. If the magnitudes of the numbers differ, then so will the lengths of the
a and b strings (e.g., 12.32 vs. 592.85), which gives us a relatively fast short-cir-
cuiting equality test. (String formatting is covered in §3.5, ➤ 93.)

In most cases where floating-point numbers are needed the float64 type is
the best choice—especially since all the functions in the math package work in
terms of float64s. However, Go also provides the float32 type which may be
useful when memory is at a premium and we either don’t need to use the math
package, or are willing to put up with the minor inconvenience of converting to
and from float64s when necessary. Since Go’s floating-point types are sized it
is always safe to read or write them from or to external sources such as files or
network connections.

Floating-point numbers can be converted to integers using the standard Go
syntax (e.g., int(float)), in which case the fractional part is simply discarded.
Of course, if the floating-point value exceeds the range of the integer type
converted to, the resultant integer will have an unpredictable value. We can
address this problem using a safe conversion function. For example:

func IntFromFloat64(x float64) int {
if math.MinInt32 <= x && x <= math.MaxInt32 {

 whole, fraction := math.Modf(x)
if fraction >= 0.5 {

 whole++
 }

return int(whole)
 }

panic(fmt.Sprintf("%g is out of the int32 range", x))
}

The Go Specification (golang.org/doc/go_spec.html) states that an int occupies
the same number of bits as a uint and that a uint is always 32 or 64 bits. This

ptg7913109

70 Chapter 2. Booleans and Numbers

implies that an int is at least 32 bits which means that we can safely use the
math.MinInt32 and math.MaxInt32 constants as the int range.

We use the math.Modf() function to separate thewhole and fractional parts of the
given number (both as float64s), and rather than simply returning the whole
part (i.e., truncating), we perform a very simple rounding if the fractional part
is ≥ 0.5.

Rather than return an error as we did for our custom Uint8FromInt() function
(58 ➤), we have chosen to treat out-of-range values as important enough to stop
the program, so we have used the built-in panic() function which will cause a
runtime panic and stop the program unless the panic is caught by a recover()
call (§5.5, ➤ 212). This means that if the program runs successfully we know
that no out-of-range conversionswere attempted. (Notice also that the function
does not end with a return statement; theGo compiler is smart enough to realize
that a call to panic() means that a normal return cannot occur at that point.)

2.3.2.1. Complex Types

The two complex types supported by Go are shown in Table 2.7 (64 ➤). Complex
numbers can be created using the built-in complex() function or by using
constant literals involving imaginary numbers. Complex numbers’ components
can be retrieved using the built-in real() and imag() functions, both of which
return a float64 (or a float32 for complex64s).

Complex numbers support all the arithmetic operations listed in Table 2.4
(59 ➤). The only comparison operators that can be used with complex numbers
are == and != (see Table 2.3, 57 ➤), but these suffer from the same issues as they
dowhen comparing floating-point numbers. The standard library hasa complex
number-specific package, math/cmplx, whose functions are listed in Table 2.11.

Here are some simple examples:

f := 3.2e5 // type: float64
x := -7.3 - 8.9i // type: complex128 (literal)
y := complex64(-18.3 + 8.9i) // type: complex64 (conversion) ➊

z := complex(f, 13.2) // type: complex128 (construction) ➋

fmt.Println(x, real(y), imag(z)) // Prints: (-7.3-8.9i) -18.3 13.2

Go signifies imaginary numbers using the suffix i as used in pure mathemat-
ics.★ Here, the numbers x and z are of type complex128, so their real and imag-
inary parts are of type float64; y is of type complex64 so its components are of
type float32. One subtle point to notice is that using the complex64 type name
(or any other built-in type name for that matter) as a function performs a type
conversion. So here (➊), the complex number -18.3+8.9i (of type complex128—the

★By contrast, in engineering and in Python, imaginary numbers are indicated using j.

ptg7913109

2.3. Numeric Types 71

Table 2.11 The Complex Math Package’s Functions

Import "math/cmplx".All the functions accept and return complex128s unless specified oth-
erwise.

Syntax Description/result

cmplx.Abs(x) |x|, i.e., the absolute value of x as a float64

cmplx.Acos(x) The arc cosine of x in radians

cmplx.Acosh(x) The arc hyperbolic cosine of x in radians

cmplx.Asin(x) The arc sine of x in radians

cmplx.Asinh(x) The arc hyperbolic sine of x in radians

cmplx.Atan(x) The arc tangent of x in radians

cmplx.Atanh(x) The arc hyperbolic tangent of x in radians

cmplx.Conj(x) The complex conjugate of x

cmplx.Cos(x) The cosine of x in radians

cmplx.Cosh(x) The hyperbolic cosine of x in radians

cmplx.Cot(x) The cotangent of x in radians

cmplx.Exp(x) xe

cmplx.Inf() complex(math.Inf(1), math.Inf(1))

cmplx.IsInf(x) true if real(x) or imag(x) is ±∞; otherwise false

cmplx.IsNaN(x)
true if real(x) or imag(x) is “not a number” and if neither is
±∞; otherwise false

cmplx.Log(x) loge(x)

cmplx.Log10(x) log10(x)

cmplx.NaN() A complex “not a number” value

cmplx.Phase(x) The phase of x as a float64 in the range [−π, +π]

cmplx.Polar(x)
The absolute value r and phase θ both of type float64,
satisfying x = θir × e ; phase is in the range [−π, +π]

cmplx.Pow(x, y) yx

cmplx.Rect(r, θ) A complex128 with polar coordinates r and θ both of type
float64

cmplx.Sin(x) The sine of x in radians

cmplx.Sinh(x) The hyperbolic sine of x in radians

cmplx.Sqrt(x) √x
cmplx.Tan(x) The tangent of x in radians

cmplx.Tanh(x) The hyperbolic tangent of x in radians

ptg7913109

72 Chapter 2. Booleans and Numbers

inferred complex type for complex literals) is converted to a complex64. However,
complex() is a function (there is no type of that name) that takes two floats and
returns the corresponding complex128 (70 ➤, ➋).

Another subtle point is that the fmt.Println() function can print complex
numbers without formality. (As we will see in Chapter 6 we can make our own
types seamlessly cooperate with Go’s print functions simply by providing them
with a String() method.)

In general the best complex type to use is complex128 since all the functions in
the math/cmplx package work in terms of complex128s. However,Go also provides
the complex64 type which may be useful when memory is very tight. Since Go’s
complex types are sized it is always safe to read or write them from or to external
sources such as files or network connections.

In this chapter we have looked at Go’sBoolean and numeric types and presented
tables showing the operators and functions that are available to query and
manipulate them. The next chapter coversGo’s string type, including thorough
coverage of Go’s print formatting functionality (§3.5, ➤ 93), which includes, of
course, the printing of Booleansand numbers formatted aswewant. Wewill see
how to read and write Go data types—including Booleans and numbers—from
and to files in Chapter 8. Before closing this chapter, though, we will review a
small but complete working example program.

2.4. Example: Statistics

The purpose of this example (and the exercises that follow) is to provide some
context for (and practice of) Go programming. Just like in Chapter 1, the ex-
ample makes use of some Go features that haven’t yet been fully covered. This
shouldn’t cause problems since brief explanations and forward references are
provided. The example also introduces some very simple usage of the Go stan-
dard library’s net/http package—this packagemakes it incredibly easy to create
HTTP servers. As appropriate to the main theme of the chapter, the example
and the exercises are numeric in flavor.

The statistics program (in file statistics/statistics.go) is a web application
that asks the user to enter a list of numbers and then does some very simple
statistical calculations. Figure 2.2 shows the program in action. We will review
the program’s code in two parts, first the implementation of the mathematical
functionality, and then the implementation of the application’s web page. We
won’t show the whole program (e.g., we will skip the imports and most of the
constants), since it is available for download, but we will cover enough to make
it understandable.

ptg7913109

2.4. Example: Statistics 73

Figure 2.2 The Statistics program on Linux and Windows

2.4.1. Implementing Simple Statistics Functions

For convenience we have created an aggregate type that holds the numbers the
user entered and the two statistics we plan to calculate.

type statistics struct {
 numbers []float64
 mean float64
 median float64
}

A Go struct is similar to a C struct or to a Java class that has public data fields
and no methods—but not like a C++ struct since it isn’t a class. As we will
see, Go structs provide excellent support for aggregation and embedding (§6.4,
➤ 275), and are also often central to Go’s object-oriented functionality (Chap-
ter 6).

func getStats(numbers []float64) (stats statistics) {
 stats.numbers = numbers
 sort.Float64s(stats.numbers)
 stats.mean = sum(numbers) / float64(len(numbers))
 stats.median = median(numbers)

return stats
}

This function accepts a slice of numbers (in this case as obtained by our process-
Request() function➤ 77),and populates its stats result value (of type statistics)
with appropriate values. To compute the median we need the numbers to be

ptg7913109

74 Chapter 2. Booleans and Numbers

sorted into ascending order; this is achieved using the sort package’s Float64s()
function which sorts a []float64 in-place. This means that the getStats() func-
tion modifies its argument—something that is quite common when slices, refer-
ences, or pointers are passed to functions. If we wanted to preserve the original
slice of numbers, we could copy it to a temporary slice using the built-in copy()
function (§4.2.3, ➤ 156), and work on the copy.

The mean (or average) is simply the sum of a sequence of values divided by
the number of values in the sequence. Here we have used a separate helper
function to sum the numbers, and converted the length (count of numbers) to a
float64 to make the types compatible (since sum() returns a float64). This also
ensures that we get floating-point division and avoid the truncation that would
occur if we used integers. The median is the middle value; we compute this
separately using the median() function.

We haven’t checked for division by zero since our program’s logic means that
getStats() is only called when there is at least one number; so if we ever break
the logic the programwill terminatewith a runtimepanic. For amission-critical
application that should never terminate when problems occur we could use Go’s
recover() function to catch panics, restore the application to a sane state, and
continue to run (§5.5, ➤ 212).

func sum(numbers []float64) (total float64) {
for _, x := range numbers {

 total += x
 }

return total
}

This functionusesa for…range loop to iterate over all thenumbers (anddiscard-
ing their index positions) to produce their sum. Thanks toGo always initializing
variables—including named return values—to their zero value, total correctly
starts at zero.

func median(numbers []float64) float64 {
 middle := len(numbers) / 2
 result := numbers[middle]

if len(numbers)%2 == 0 {
 result = (result + numbers[middle-1]) / 2
 }

return result
}

This function must be called with a sorted slice of float64s. It initially takes
the median to be the middle value, but if the number of numbers is even there
are actually two middle values, so in that case we sum those values and divide

ptg7913109

2.4. Example: Statistics 75

by two to get the mean of the two middle values. And at the end we return
the result.

In this subsection we have covered the application-specific processing. In the
next subsection we will look at the basics of implementing the infrastructure
to support a web application that has a single web page. (Readers who aren’t
interested in web programming might prefer to skip to the exercises or to the
next chapter.)

2.4.2. Implementing a Basic HTTP Server

The statistics program provides a single web page on the local host. Here is its
main() function.

func main() {
 http.HandleFunc("/", homePage)

if err := http.ListenAndServe(":9001", nil); err != nil {
 log.Fatal("failed to start server", err)
 }
}

The http.HandleFunc() function takes two arguments: a path and a reference
to a function to call when that path is requested. The function must have the
signature func(http.ResponseWriter, *http.Request). We can register as many
path–function pairs as we like. Here we have registered the / path (i.e., the web
application’s home page) with a custom homePage() function.

The http.ListenAndServe() function starts up a web server at the given TCP
network address; here we have used localhost and port number 9001. The local
host is assumed if only the port number is given—we could just as easily have
used an address of "localhost:9001" or "127.0.0.1:9001". (The port number we
have chosen is arbitrary—simply change the code to use a different one if it
conflicts with an existing server.) The second argument is used to specify which
kind of server to use—normally we pass nil to indicate that we want to use the
default kind.

The program has several string constants but we will only show one of them
here.

 form = `<form action="/" method="POST">
<label for="numbers">Numbers (comma or space-separated):</label>

<input type="text" name="numbers" size="30">

<input type="submit" value="Calculate">
</form>`

The form string constant containsa <form> elementwhich itself contains the text
and submit button <input> elements.

http.HandleFunc()
http.ResponseWriter
*http.Request
http.ListenAndServe()

ptg7913109

76 Chapter 2. Booleans and Numbers

func homePage(writer http.ResponseWriter, request *http.Request) {
 err := request.ParseForm() // Must be called before writing response
 fmt.Fprint(writer, pageTop, form)

if err != nil {
 fmt.Fprintf(writer, anError, err)
 } else {

if numbers, message, ok := processRequest(request); ok {
 stats := getStats(numbers)
 fmt.Fprint(writer, formatStats(stats))
 } else if message != "" {
 fmt.Fprintf(writer, anError, message)
 }
 }
 fmt.Fprint(writer, pageBottom)
}

This function is called whenever the statisticsweb site is visited. The writer ar-
gument is where we write our response to (in HTML) and the request argument
contains details of the request.

We begin by parsing the form (which will initially have an empty text <input>
element. We have called the text <input> element “numbers” so that we can
refer to it when we process the form later on. Also, the form’s action is set to
/, so when the user presses the Calculate button the same page is requested
again. This means that the homePage() function is called in all cases, so it must
handle the initial case where no numbers have been entered, and subsequent
caseswhere numbers have been entered or where an error has occurred. In fact,
all the work is passed on to a custom processRequest() function, so it is in that
function that each case is dealt with.

After the parse, we write the pageTop (not shown) and form string constants. If
the parse fails for any reason we write an error message; anError is a format
string and err is the error value to be formatted. (Format strings are covered
later; §3.5, ➤ 93.)

 anError = `<p class="error">%s</p>`

If the parse succeeds (as it should),we call a custom processRequest() function to
retrieve the numbers entered by the user ready for processing. If the numbers
are valid we compute the statistics using the getStats() function we saw earlier
(73 ➤) and write the formatted results; otherwise we write an error message if
we are given one. (When the form is shown for the first time it has no numbers,
yet no error has occurred, in which case ok is false and message is empty.) And
at the end we print the pageBottom constant string (not shown) which just closes
the <body> and <html> tags.

ptg7913109

2.4. Example: Statistics 77

func processRequest(request *http.Request) ([]float64, string, bool) {
var numbers []float64
if slice, found := request.Form["numbers"]; found && len(slice) > 0 {

 text := strings.Replace(slice[0], ",", " ", -1)
for _, field := range strings.Fields(text) {

if x, err := strconv.ParseFloat(field, 64); err != nil {
return numbers, "'" + field + "' is invalid", false

 } else {
 numbers = append(numbers, x)
 }
 }
 }

if len(numbers) == 0 {
return numbers, "", false // no data first time form is shown

 }
return numbers, "", true

}

This function reads the form’s data from the request value. If the form is being
shown for the first time the “numbers” text <input> element is empty. This isn’t
an error so we return an empty slice of float64s, an empty error message, and
false to indicate that there are no statistics to gather—this results in the empty
form being shown. If the user has entered some numbers we return either a
slice of float64s, an empty error message, and true; or, if one or more numbers
is invalid, a possibly empty slice, an error message, and false.

The request value has a Form field of type map[string][]string (§4.3,➤ 164). This
means that themap’s keys are strings and its values are slices of strings. So any
one key may have any number of strings as its value. For example, if the user
has entered the numbers “5 8.2 7 13 6”, the Form map will have a "numbers" key
with a value of []string{"5 8.2 7 13 6"}, that is, its value will be a slice of strings
that actually has only one string. (For comparison, here is an example of a slice
of two strings: []string{"1 2 3", "a b c"}.) We check to see if the "numbers" key is
present (it ought to be), and if it is—and if its value has at least one string—we
know that we have numbers to read.

We use the strings.Replace() function to obtain the string of numbers that the
user entered but with any commas replaced by spaces. (The third argument
is the number of replacements to perform; -1 means do as many as possible.)
Having obtained the string of whitespace-separated numbers we then use the
strings.Fields() function to split the string (on any amount of whitespace) into
a slice of strings which we iterate over straight away using a for … range loop.
(The strings package’s functions are covered in §3.6,➤ 106; the for …range loop
is covered in §5.3,➤ 203.) For each string (“5”, “8.2”, etc.) we attempt to convert
it to a float64 using the strconv.ParseFloat() function which takes a string to
parse and a bit size of 32 or 64 (§3.6, ➤ 106). If the conversion fails we imme-

ptg7913109

78 Chapter 2. Booleans and Numbers

diately return with whatever float64s we have, a nonempty error message, and
false. If the conversion succeedswe append the float64 to the numbers slice. The
built-in append() function takes a slice and one ormore values and returnsa slice
that has all the items from the original slice plus the values—the function is
smart enough to reuse the original slice if its capacity is greater than its length,
so it is efficient to use. (We cover append() in §4.2.3, ➤ 156.)

If we haven’t already returned due to an error (i.e., an invalid number), we
return the numbers with an empty error message and true, unless there are no
numbers to process (because the formhas been shown for the first time) in which
case we return false.

func formatStats(stats statistics) string {
return fmt.Sprintf(`<table border="1">

<tr><th colspan="2">Results</th></tr>
<tr><td>Numbers</td><td>%v</td></tr>
<tr><td>Count</td><td>%d</td></tr>
<tr><td>Mean</td><td>%f</td></tr>
<tr><td>Median</td><td>%f</td></tr>
</table>`, stats.numbers, len(stats.numbers), stats.mean, stats.median)
}

Once the statistics have been computed we must output them to the user,
and since the program is a web application we need to produce HTML. (Go’s
standard library has dedicated text/template and html/template packages for
creating data-driven text and HTML, but our needs here are so simple that we
have chosen to do it all by hand. A small text/template-based example is shown
later; §9.4.2, ➤ 419.)

The fmt.Sprintf() function takes a format string and one or more values and re-
turns a string that is a copy of the format string but with the format verbs (e.g.,
%v, %d, %f) replaced with corresponding values. (String formatting is thoroughly
covered in §3.5,➤ 93.)We had no need to do any HTML escaping since all of our
values are numbers. (If escaping is neededwe can use the template.HTMLEscape()
or html.EscapeString() functions.)

As this example illustrates, Go makes it easy to create simple web applications
—providing we know some basic HTML—and provides the html, net/http, html/
template, and text/template packages to make life easier.

2.5. Exercises
There are two exercises for this chapter, both numeric in flavor. The first
involves modifying the statistics program we have just reviewed; the second
involves creating a simple mathematical web application from scratch.

ptg7913109

2.5. Exercises 79

1. Copy the statistics directory to, say, my_statistics and modify my_statis-
tics/statistics.go to produce two more statistical measures: the mode and
the standard deviation. When the user clicks the Calculate button it should
produce output similar to that shown in Figure 2.3.

Figure 2.3 The Statistics solution onMac OS X

This involves adding a couple more items to the statistics struct and
adding two new functions to perform the calculations. A solution is in
the file statistics_ans/statistics.go; this needed about 40 extra lines and
made use of the built-in append() function (§4.2.3,➤ 156) to add numbers to
a slice.

The standard deviation function is the easiest to write—it just requires the
use of some functions from the math package and can be done in fewer than

ten lines. We used the formula σ = √ ∑(x − −x 2)
n − 1 , where x is each number, −x is the

mean, and n is the number of numbers.

The mode is the most frequently occurring number—or numbers, if two
or more are equally the most frequently occurring. However, we return
no mode if all of the numbers occur with the same frequency. The mode is
trickier than the standard deviation, and needs about 20 lines of code.

2. Createawebapplication for calculating the solution or solutions to quadrat-

ic equations using the standard formula x = −b±√ 2b − 4ac
2a . Use complex num-

bers so that it is possible to find solutions even when the discriminant (the
2b − 4ac part) is negative. Initially, just get the math working, as shown
in Figure 2.4’s left-hand screenshot (➤ 80). Then, modify your application
to produce more intelligent output, as shown in Figure 2.4’s right-hand
screenshot.

ptg7913109

80 Chapter 2. Booleans and Numbers

Figure 2.4 The Quadratic solutions on Linux

One easy way to get started is to copy the statistics application’s main(),
homePage(), and processRequest() functions, modifying homePage() to call
three new custom functions—formatQuestion(), solve(), and formatSolu-
tions()—and heavily modifying processRequest() to read in three separate
floating-point numbers. The file quadratic_ans1/quadratic.go contains an
initial application of about 120 lines. This version is smart enough to out-
put just one solution if both solutions are approximately equal by making
use of the EqualFloat() function discussed earlier in the chapter (68 ➤).

A second application is in file quadratic_ans2/quadratic.go; this runs to
about 160 lines and is much smarter about how it formats the output. For
example, it replaces “+ -” with “-” and “1x” with “x”, suppresses zero com-
ponents (e.g., eliminates “0x”), and formats a solution as a floating-point
number if the imaginary part is approximately zero. It makes use of some
math/cmplx package functions such as cmplx.IsNaN(), and more advanced
string formatting (§3.5, ➤ 93).

ptg7913109

3 Strings

§3.1. Literals, Operators, and Escapes ➤ 83

§3.2. Comparing Strings ➤ 86

§3.3. Characters and Strings ➤ 87

§3.4. Indexing and Slicing Strings ➤ 90

§3.5. String Formatting with the Fmt Package ➤ 93

§3.5.1. Formatting Booleans ➤ 97

§3.5.2. Formatting Integers ➤ 98

§3.5.3. Formatting Characters ➤ 99

§3.5.4. Formatting Floating-Point Numbers ➤ 100

§3.5.5. Formatting Strings and Slices ➤ 101

§3.5.6. Formatting for Debugging ➤ 103

§3.6. Other String-Related Packages ➤ 106

§3.6.1. The Strings Package ➤ 107

§3.6.2. The Strconv Package ➤ 113

§3.6.3. The Utf8 Package ➤ 117

§3.6.4. The Unicode Package ➤ 118

§3.6.5. The Regexp Package ➤ 120

§3.7. Example:M3u2pls ➤ 130

This chapter covers Go’s string type and key string-related packages from the
standard library. The chapter’s sections include coverage of how to write literal
strings and use the string operators; how to index and slice (take substrings of)
strings;and how to format the output of strings,numbers,and other built-in and
custom types.

Go’s high-level string-related functionality, such as its for … range loop which
iterates over a string character by character, the functions from the strings and
strconv packages,andGo’s ability to slice strings,are all that is needed for every-
day programming. Nonetheless, this chapter covers Go strings in depth, includ-

81

ptg7913109

82 Chapter 3. Strings

Unicode i
Prior to Unicode it was not really possible to have plain text files that con-
tained text in different languages—for example, English with some quoted
sentences in Japanese and Russian—since separate encodings were used for
separate languages and each text file used a single encoding.

Unicode is designed to be able to represent the characters from all of the
world’s writing systems, so a single text file using a Unicode encoding can
contain text in any mixture of languages—as well as math, “dingbats”, and
other special characters.

Every Unicode character has a unique identifying number called a codepoint.
There are more than 100000 Unicode characters defined, with code points
ranging in value from 0x0 to 0x10FFFF (the latter defined in Go as the constant
unicode.MaxRune), with some large gaps and various special cases. In Unicode
documentation, code points arewritten using four or more hexadecimal digits
in the form U+hhhh—for example, U+21D4 for the ⇔ character.

In Go, an individual code point (i.e., a character) is represented by a rune in
memory. (The rune type is a synonym for int32; see §2.3.1, 59 ➤.)

Unicode text—whether in files or in memory—must be represented using
an encoding. The Unicode standard defines variousUnicode Transformation
Formats (encodings), such asUTF-8,UTF-16,andUTF-32.Go uses theUTF-8
encoding for strings. UTF-8 is themost widely used encoding; it is also the de
facto standard encoding for text files and the default encoding for XML and
JSON files.
The UTF-8 encoding uses between one and four bytes to represent each code
point. For strings that contain only 7-bit ASCII (US-ASCII) characters, there
is a one-to-one relationship between bytes and characters because each 7-bit
ASCII character is represented by a single byte (of the same value) in UTF-8.
One consequence of this is that UTF-8 stores English text very compactly
(one byte per character);another consequence is that a text file encoded using
7-bit ASCII is indistinguishable from a UTF-8-encoded text file.

ing some low-level details such as how strings are represented internally. The
low-level aspects are interesting and can be useful to know in some situations.

A Go string is an immutable sequence of arbitrary bytes. Inmost casesa string’s
bytes represent Unicode text using the UTF-8 encoding; (see the “Unicode”
sidebar above). The use of Unicode means that Go strings can contain text in
a mixture of any of the world’s languages, without any of the confusions and
limitations of code pages.

Go’s string type is fundamentally different from the equivalent type in many
other languages. Java’sString, C++’s std::string, and Python 3’s str types are all

ptg7913109

3.1. Literals,Operators,and Escapes 83

sequences of fixed-width characters (with some caveats), whereas a Go string is
a sequence of variable-width characterswhere each character is represented by
one or more bytes, normally using the UTF-8 encoding.

At first sight it might appear that these other languages’ string types are more
convenient than Go’s since individual characters in their strings can be direct-
ly indexed—something only possible in Go if the string exclusively holds 7-bit
ASCII characters (since these are all represented by a single UTF-8 byte). In
practical terms this is never a problem for Go programmers:first, because direct
indexing isn’t usedmuch in Go becauseGo supports character-by-character iter-
ation over strings; second, because the standard library provides a comprehen-
sive range of string searching and manipulation functions; and third, because
we can always convert a Go string into a slice of Unicode code points (of type
[]rune) which can be indexed directly.

Go’s use of UTF-8 for its string type has several advantages compared with,
say, Java or Python, both of which also have Unicode strings. Java represents
strings as sequences of code points, each occupying 16 bits; Python versions 2.x
to 3.2 use the same approach but using 16 or 32 bits depending on how Python
is built. For English text thismeans that Go uses 8 bits per character compared
to at least twice that for Java and Python. Another advantage of UTF-8 is that
machine endianness doesn’t matter,whereas for UTF-16 andUTF-32 it is essen-
tial to know the endianness (e.g., UTF-16 little-endian) to be able to decode the
text correctly. In addition, since UTF-8 is the world’s de facto standard encoding
for text files, while other languages must decode and encode such files to con-
vert to and from their internal Unicode representations, Go can read and write
such files directly. Furthermore, somemajor libraries (such as GTK+) use UTF-
8 strings natively, so Go can work with them without encoding or decoding.

In practice,Go strings are just as convenient and easy to use as other languages’
string types—once we have learned the Go idioms for working with them.

3.1. Literals, Operators, and Escapes

String literals are created using double quotes (") or backticks (̀).Double quotes
are used to create interpreted string literals—such strings support the escape
sequences listed in Table 3.1 (➤ 84) but may not span multiple lines. Backticks
are used to create raw string literals—these strings may span multiple lines;
they do not support any escape sequences andmay contain any character except
for a backtick. Interpreted string literals are the most commonly used kind,
but raw string literals are useful for writing multiline messages, HTML, and
regular expressions. Here are a few examples.

text1 := "\"what's that?\", he said" // Interpreted string literal
text2 := `"what's that?", he said` // Raw string literal
radicals := "√ \u221A \U0000221a" // radicals == "√ √ √"

ptg7913109

84 Chapter 3. Strings

Table 3.1 Go’s String and Character Escapes

Escape Meaning

\\ Backslash (\)

\ooo Unicode character with the given 3-digit 8-bit octal code point

\' Single quote ('); only allowed inside character literals

\" Double quote ("); only allowed inside interpreted string literals

\a ASCII bell (BEL)

\b ASCII backspace (BS)

\f ASCII formfeed (FF)

\n ASCII linefeed (LF)

\r ASCII carriage return (CR)

\t ASCII tab (TAB)

\uhhhh Unicode character with the given 4-digit 16-bit hex code point

\Uhhhhhhhh Unicode character with the given 8-digit 32-bit hex code point

\v ASCII vertical tab (VT)

\xhh Unicode character with the given 2-digit 8-bit hex code point

The three variables created here are of type string, and text1 and text2 contain
exactly the same text. Since .go files use the UTF-8 encoding we can include
Unicode characters in them without formality. However, we can still use
Unicode escapes as we have done here for the second and third √ symbols. We
could not use an octal or hexadecimal escape in this particular case, since their
code point range is limited to U+0000 to U+00FF, far too small for the √ symbol’s
U+221A code point value.

If we want to create a long interpreted string literal without having an equally
long line in our code we can create the literal in pieces, joining the pieces us-
ing the + concatenation operator. Furthermore, although Go’s strings are im-
mutable, they support the += append operator: This replaces the underlying
stringwith its concatenationwith the appended string, if theunderlying string’s
capacity isn’t large enough to accommodate the appended string. These opera-
tors are listed in Table 3.2 (➤ 85). Strings can be compared using the compari-
son operators (see Table 2.3, 57 ➤). Here is an example that uses some of these
operators:

book := "The Spirit Level" + // String concatenation
" by Richard Wilkinson"

book += " and Kate Pickett" // String append
fmt.Println("Josey" < "José", "Josey" == "José") // String comparisons

ptg7913109

3.1. Literals,Operators,and Escapes 85

Table 3.2 String Operations

All usesof the [] sliceoperator arefine for stringscontaining only7-bit ASCII characters;
but care is needed for strings containing non-ASCII characters (see §3.4,➤ 90).
Strings can be compared using the standard comparison operators: <,<=,==,!=,>=,>= (see
Table 2.3, 57 ➤and §3.2,➤ 86.)

Syntax Description/result

s += t Appends string t to the end of string s

s + t The concatenation of strings s and t

s[n] The raw byte at index position n (of type uint8) in s

s[n:m] A string taken from s from index positions n to m - 1

s[n:] A string taken from s from index positions n to len(s) - 1

s[:m] A string taken from s from index positions 0 to m - 1

len(s) The number of bytes in string s

len([]rune(s)) The number of characters in string s—use the faster utf8.
RuneCountInString() instead; see Table 3.10 (➤ 118)

[]rune(s) Converts string s into a slice of Unicode code points

string(chars) Converts a []rune or []int32 into a string; assumes that the
runes or int32s are Unicode code points★

[]byte(s) Converts string s into a slice of raw bytes without copying;
there’s no guarantee that the bytes are valid UTF-8

string(bytes) Converts a []byte or []uint8 into a string without copying;
there’s no guarantee that the bytes are valid UTF-8

string(i) Converts i of any integer type into a string; assumes that i
is a Unicode code point; e.g., if i is 65, it returns "A"★

strconv.
Itoa(i)

The string representation of i of type int and an error; e.g.,
if i is 65, it returns ("65", nil); see also Tables 3.8 and 3.9
(➤ 114–115)

fmt.Sprint(x) The string representation of x of any type; e.g., if x is an
integer of value 65, it returns "65"; see also Table 3.3 (➤ 94)

This results in book containing the text “The Spirit Level by Richard Wilkinson
and Kate Pickett”, and “true false” being output to os.Stdout.

★ The conversion always succeeds; invalid integers are converted as the Unicode replacement
character U+FFFD which is often depicted as ? .

ptg7913109

86 Chapter 3. Strings

3.2. Comparing Strings

As we have noted, Go strings support the usual comparison operators (<, <=, ==,
!=, >, >=); these are shown in Table 2.3 (57 ➤).The comparison operators compare
strings byte by byte in memory. Comparisons are used directly—for example,
to compare two strings for equality, and indirectly—for example, when < is used
to compare the strings in a []string that is being sorted. Unfortunately, three
problems can arise when performing comparisons—these problems afflict every
programming language that uses Unicode strings; none of them is specific
to Go.

The first problem is that some Unicode characters can be represented by two
or more different byte sequences. For example, the character Å could be the
Ångström symbol or simply an A with a ring above—the two are often visually
indistinguishable. TheÅngströmsymbol’sUnicode codepoint is U+212B, but anA
with a ring above can be represented by Unicode code point U+00C5 or by the two
code points U+0041 (A) and U+030A (°; combining ring above). In terms of UTF-8
bytes the Ångström symbol (Å) is represented by the bytes [0xE2, 0x84, 0xAB], the
Å character by the bytes [0xC3, 0x85], and anAwith the ° combining character by
the bytes [0x41, 0xCC, 0x81]. Of course, from a user’s point of view two Å charac-
ters ought to compare and sort as equals no matter what the underlying bytes.

This first problem isn’t necessarily as significant as we might imagine since all
UTF-8 byte sequences (i.e., strings) in Go are produced using the same code
point to bytes mappings. This means, for example, that an é character in a Go
character or string literal will always be represented by the same bytes. And,
of course, if we are only concerned with ASCII characters (i.e., English), the
problemdoesn’t occur at all. And evenwhenwedealwith non-ASCII characters,
the problem only really arises when we have two different characters that look
the same, or when we are reading UTF-8 bytes from outside our program from
a source that has used code point to bytes mappings that are legal UTF-8 but
which differ from Go’s mappings. If this really does turn out to be a problem it
is always possible to write a custom normalization function that, for example,
ensured that, say, éwas always represented by the bytes [0xC3, 0xA9] (which Go
uses natively) rather than, say, [0x65, 0xCC, 0x81] (i.e., an e and an ´ combining
character).NormalizingUnicode characters is explained in theUnicodeNormal-
ization Forms document (unicode.org/reports/tr15). At the time of this writing,
the Go standard library has an experimental normalization package (exp/norm).

Since this first problem can only really arise with strings coming from external
sources—and then only if they use different code point to bytes mappings than
Go—it is probably best handled by isolating the code that accepts external
strings. The isolating code could then normalize the strings it receives before
providing them to the rest of the program.

ptg7913109

3.2. Comparing Strings 87

The second problem is that there are cases where our users might reasonably
expect different characters to be considered equal. For example,we might write
a program that providesa text search function and a usermight type in theword
“f ile”. Naturally, they would expect the search to find any occurrences of “f ile”;
but they might also expect the search to match occurrences of “file” (i.e., an “fi”
ligature followed by “le”). Similarly, usersmight expect a search for “5” to match
“5”, “5”,

5“ ”, and maybe even “➄”. As with the first problem, this can be solved by
using some form of normalization.

The third problem is that the sorting of some characters is language-specific.
One example is that in Swedish ä is sorted after z, whereas in German phone-
books ä is sorted as though it were spelled ae and in German dictionaries as
though it were spelled a. Another example is that although in English we sort ø
as though it were o, in Danish andNorwegian it is sorted after z.There are lots of
rules along these lines, and they can be complicated by the fact that sometimes
the same application is used by people of different nationalities (who therefore
expect different sorting orders), and sometimes strings are in a mixture of lan-
guages (e.g., some Spanish, others English), and some characters (such as ar-
rows, dingbats, and mathematical symbols) don’t really have meaningful sort
positions at all.

On the plus side, Go’s comparing of strings byte by byte produces an ASCII sort
ordering for English. And if we lowercase or uppercase all the strings we want
to compare, we can get a more natural English language ordering—as we will
see in an example later (§4.2.4, ➤ 160).

3.3. Characters and Strings

InGo, charactersare represented in two different (easy-to-interchange)ways. A
single character can be represented by a single rune (or int32). From now on we
will use the terms “character”, “code point”, “Unicode character”, and “Unicode
code point” interchangeably to refer to a rune (or int32) that holds a single
character. Go strings represent sequences of zero or more characters—within
a string each character is represented by one or more UTF-8 encoded bytes.

We can convert a single character into a one-character string using Go’s
standard conversion syntax (string(char)). Here is an example.

æs := ""
for _, char := range []rune{'æ', 0xE6, 0346, 230, '\xE6', '\u00E6'} {
 fmt.Printf("[0x%X '%c'] ", char, char)
 æs += string(char)
}

ptg7913109

88 Chapter 3. Strings

This will print a line containing the text “[0xE6 'æ']” repeated six times. And
at the end the æs string will contain the text ææææææ. (We will see more efficient
alternatives to using the string += operator in a loop in a moment.)

An entire string can be converted to a slice of runes (i.e., code points) using the
syntax chars := []rune(s) where s is of type string. The chars will have type
[]int32 since rune is a synonym for int32. This can sometimes be useful when
we want to parse a string working character by character and at the same
time be able to peek at characters before or after the current one. The reverse
conversion is equally simple using the syntax s := string(chars) where chars is
of type []rune or []int32; s will have type string.Neither conversion is free—but
both are reasonably fast (O(n) where n is the number of bytes; see the sidebar
“Big-O Notation”, ➤ 89). For more string conversions see Table 3.2 (85 ➤); for
number↔string conversions see Tables 3.8 and 3.9 (➤ 114–115).

Although convenient, using the string += operator is not the most efficient way
to append to a string in a loop. A better approach (and one familiar to Python
programmers) is to populate a slice of strings ([]string) one at a time and then
concatenate them all in one go using the strings.Join() function. For Go,
though, there is an even better way, similar to the way Java’s StringBuilder
works. Here is an example.

var buffer bytes.Buffer
for {

if piece, ok := getNextValidString(); ok {
 buffer.WriteString(piece)
 } else {

break

 }
}
fmt.Print(buffer.String(), "\n")

We begin by creating an empty bytes.Buffer. Then wewrite each string wewant
to concatenate into the buffer using its bytes.Buffer.WriteString()method. (We
could, of course, write a separator between each string if we wanted to.) At
the end, the bytes.Buffer.String() method can be used to retrieve the entire
concatenated string. (We will see further uses of the powerful and versatile
bytes.Buffer type later, e.g., ➤ 111 and ➤ 201.)

Accumulating strings in a bytes.Buffer is potentially much more memory- and
CPU-efficient than using the += operator, especially if the number of strings to
concatenate is large.

Go’s for … range loop (§5.3,➤ 203) can be used to iterate over a string character
by character, producing an index position and a code point at each iteration.
Here is an example with its output beside it.

ptg7913109

3.3. Characters and Strings 89

Big-O Notation i
Big-O notation, O(…), is used in complexity theory to give approximate
bounds for processing and for memory use for particular algorithms. Most of
the measures are in proportion to n which is the number of items to process
or the length of the item to process. They could be measures of memory con-
sumption or of processing time.

O(1) means constant time, that is, the fastest possible time no matter what
n’s size. O(log n)means logarithmic time; this is very fast and in proportion to
log n. O(n) means linear time; this is fast and in proportion to n. O(2n) means
quadratic time; this is starting to get slow and is in proportion to 2n . O(mn)
means polynomial time which quickly becomes slow as n grows, especially if
m ≥ 3. O(n!) means factorial time; even for small values of n this can become
too slow to be practical.

This book uses big-O notation in a few places to give a feel for the costs of
processing, for example, the cost of converting from a string to a []rune.

phrase := "vått og tørt"
fmt.Printf("string: \"%s\"\n", phrase)
fmt.Println("index rune char bytes")
for index, char := range phrase {
 fmt.Printf("%-2d %U '%c' % X\n",
 index, char, char,
 []byte(string(char)))
}

string: "vått og tørt"
index rune char bytes
0 U+0076 'v' 76
1 U+00E5 'å' C3 A5
3 U+0074 't' 74
4 U+0074 't' 74
5 U+0020 ' ' 20
6 U+006F 'o' 6F
7 U+0067 'g' 67
8 U+0020 ' ' 20
9 U+0074 't' 74
10 U+00F8 'ø' C3 B8
12 U+0072 'r' 72
13 U+0074 't' 74

We create the phrase string literal, and then we print it followed by a heading
on the next line. Then we iterate over every character in the string—Go’s for
… range loop decodes UTF-8 bytes into Unicode code points (runes) as it iterates,
so we don’t have to concern ourselves with the underlying representation. For
each character, we print its index position, its code point value (using Unicode
notation), the character it represents, and the UTF-8 bytes used to encode
the character.

To get the list of bytes we convert the code point (char of type rune) into a string
(which will contain a single character consisting of one or more UTF-8-encoded
bytes). Then we convert this one-character string into a []byte, that is, a byte

ptg7913109

90 Chapter 3. Strings

slice, so that we can access the actual bytes. The []byte(string) conversion is
very fast (O(1)) since under the hood the []byte can simply refer to the string’s
underlying bytes with no copying required. The same is true of the reverse
conversion, string([]byte); again the underlying bytes are not copied, so the
conversion is O(1). Table 3.2 (85 ➤) lists Go’s string and byte conversions.

The %-2d, %U, %c, and % X format specifiers are explained shortly (§3.5, ➤ 93). As
we will see, when the %X format specifier is used for an integer it outputs the
integer in hexadecimal, and when it is used for a []byte it outputs a sequence of
two-digit hexadecimal numbers, one number per byte. Here we have specified
that the bytes should be output space-separated by including a space in the
format specifier.

In practical programming using a for…range loop to iterate over the characters
in a string, along with the functions from the strings and fmt packages (and to
a lesser extent from the strconv, unicode, and unicode/utf8 packages), provides
all the functionality needed for the powerful and convenient processing and
manipulation of strings. However, in addition, the string type supports slicing
(since under the hood a string is in effect an enhanced []byte), and this can be
very useful—providing we are careful not to slice any multibyte characters
in half!

3.4. Indexing and Slicing Strings

As Table 3.2 (85 ➤) shows, Go supports string slicing using a subset of the
syntax used by Python. This syntax can be used for slices of any type, aswe will
see in Chapter 4.

Since Go strings store their text as UTF-8-encoded bytes we must be careful to
only ever slice on character boundaries. This is easy if we have 7-bit ASCII text
since every byte represents one character, but for non-ASCII text the situation
is more challenging since such characters may be represented by one or more
bytes. Usually we don’t need to slice strings at all but simply iterate over them
character by character using a for…range loop, but in some situationswe really
do want to extract substrings using slicing. One way to be sure to use slice
indexes that slice on character boundaries is to use functions from Go’s strings
package, such as strings.Index() or strings.LastIndex(). The strings package’s
functions are listed in Tables 3.6 and 3.7 (➤ 108–109).

We will begin by looking at the different ways we can perceive a string. Index
positions—which are the positions of the string’s UTF-8 bytes—begin at 0 and
go up to the length of the string minus 1. It is also possible to index back from
the end of the slice using indexes of the form len(s) - n where n is the number
of bytes counting back from the end. For example, given the assignment s :=
"naïve", Figure 3.1 shows string s as Unicode characters, code points, and bytes,
as well as some valid index positions and a couple of slices.

ptg7913109

3.4. Indexing and Slicing Strings 91

s[:2] s[2:] == s[len(s)-4:] Slices

'n' 'a' 'ï' 'v' 'e' Characters

U+006E U+0061 U+00EF U+0076 U+0065 Code points

0x6E 0x61 0xC3 0xAF 0x76 0x65 Bytes

0 1 2 3 4 5

len(s)-2 len(s)-1
Indexes

Figure 3.1 Anatomy of a string

Each index position shown in Figure 3.1 can be used with the [] index operator
to return the corresponding ASCII character (as a byte)—for example, s[0] ==
'n' and s[len(s) - 1] == 'e'. The index position of the start of the ï character is
2, but if we used s[2] we would simply get the first of the UTF-8 bytes used to
encode ï (0xC3); such bytes are rarely what we want.

For strings that contain only 7-bit ASCII characters we can extract the first
character (as a byte) using the syntax s[0], and the last character using s[len(s)
- 1].However, in general we should use utf8.DecodeRuneInString() to get the first
character (as a rune, along with the number of UTF-8 bytes used to represent
it), and utf8.DecodeLastRuneInString() to get the last character. (See Table 3.10,
➤ 118.)

If we really need to index individual characters, a couple of options are open
to us. For strings that contain only 7-bit ASCII we can simply use the [] index
operator which gives us very fast (O(1)) lookups. For non-ASCII strings we can
convert the string to a []rune and use the [] index operator. This delivers very
fast (O(1)) lookup performance, but at the expense of the one-off conversion
which costs both CPU and memory (O(n)).

In the case of our example, if we wrote chars := []rune(s), the chars variable
would be created as a rune (i.e., int32) slice with the five code points—compared
with six bytes—shown in Figure 3.1. Recall that we can easily convert any rune
(code point) back to a string—containing one character—using the string(char)
syntax.

For arbitrary strings (i.e., those that might contain non-ASCII characters), ex-
tracting characters by index is rarely the right approach. Much better is to use
string slicing—which also has the convenience of returning a string rather than
a byte. To safely slice arbitrary strings, it is best to find the index position where
we want to slice up to or from using one of the strings package’s functions—see
Tables 3.6 and 3.7 (➤ 108–109).

The following equality holds for string slices—and, in fact, for slices of every
kind:

s == s[:i] + s[i:] // s is a string; i is an int; 0 <= i <= len(s)

ptg7913109

92 Chapter 3. Strings

Now let’s look at a real slice example, one that takes a rather naïve approach.
Suppose we have a line of text and want to extract the line’s first and last words.
One simple way to write the code is like this:

line := "røde og gule sløjfer"
i := strings.Index(line, " ") // Get the index of the first space
firstWord := line[:i] // Slice up to the first space
j := strings.LastIndex(line, " ") // Get the index of the last space
lastWord := line[j+1:] // Slice from after the last space
fmt.Println(firstWord, lastWord) // Prints: røde sløjfer

The firstWord (of type string) is assigned the bytes from the line from index po-
sition 0 (the first byte) to index position i - 1 (i.e., up to the last byte before the
space) since string slices go up to but exclude the end index position. Similarly,
the lastWord is assigned the bytes from the line from index position j + 1 (the byte
after the space), to the end of the line’s bytes (i.e., to index position len(line) -
1).

Although this example’s approach is fine for spaces and would also work for oth-
er 7-bit ASCII characters, it isn’t suitable for working with arbitrary Unicode
whitespace characters such as U+2028 (Line Separator, L

S) or U+2029 (Paragraph
Separator, P

S).

Here is how to find thefirst and last wordsof a string nomatterwhatwhitespace
characters are used to separate the words.

line := "rå tørt\u2028vær"
i := strings.IndexFunc(line, unicode.IsSpace) // i == 3
firstWord := line[:i]
j := strings.LastIndexFunc(line, unicode.IsSpace) // j == 9
_, size := utf8.DecodeRuneInString(line[j:]) // size == 3
lastWord := line[j+size:] // j + size == 12
fmt.Println(firstWord, lastWord) // Prints: rå vær

The line string is shown as characters, code points, and bytes in Figure 3.2;
the figure also shows the byte index positions and the slices used in the code
snippet.

The strings.IndexFunc() function returns the first index position in the string
given as its first argument where the function given as its second argument
(with signature func(rune) bool) returns true. The strings.LastIndexFunc() does
the same except that it works from the end of the string and returns the last in-
dex position for which the function returns true. Here we pass the unicode pack-
age’s IsSpace() function as the second argument; this function accepts a Unicode
code point (of type rune) as its sole argument and returns true if the code point
is of a whitespace character. (See Table 3.11,➤ 119.) A function’s name is a ref-

ptg7913109

3.4. Indexing and Slicing Strings 93

line[j:]

line[:i] line[j+size:] Slices

'r' 'å' ' ' 't' 'ø' 'r' 't' ' L
S' 'v' 'æ' 'r' Charac-

ters

U+0072

U+00E5

U+0020

U+0074

U+00F8

U+0072

U+0074

U+2028

U+0076

U+00E6

U+0072

Code
points

0x72

0xC3

0xA5

0x20

0x74

0xC3

0xB8

0x72

0x74

0xE2

0x80

0xA8

0x76

0xC3

0xA6

0x72 Bytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Indexes

Figure 3.2 Anatomy of a string with whitespace

erence to the function, and so can be passed wherever a function parameter is
required—so long as the named (i.e., referred to) function’s signature matches
that specified by the parameter. (See §4.1, ➤ 140.)

Using the strings.IndexFunc() function to find the first whitespace character
and slicing the string up to but excluding that character to get the first word is
easy. But when searching for the last whitespace character we must be careful
because some whitespace characters are encoded as more than a single UTF-8
byte. We solve this problem by using the utf8.DecodeRuneInString() function
to give us the number of bytes occupied by the first character in the slice of the
string that starts where the last whitespace character begins. We then add this
number to the last whitespace character’s index position to jump over the last
whitespace character—howevermany bytes are used to represent it—so thatwe
slice only the last word.

3.5. String Formatting with the Fmt Package

Go’s standard library’s fmt package provides print functions for writing data as
strings to the console, to files and other values satisfying the io.Writer interface,
and to other strings. These functions are listed in Table 3.3 (➤ 94). Some of
the print functions return an error. It is not uncommon to ignore this return
valuewhen printing to the console, but the error should alwaysbe checkedwhen
printing to files, network connections, and so on.★

The fmt package also provides various scan functions (such as fmt.Scan(),
fmt.Scanf(), and fmt.Scanln()) for reading data from the console, from files,
and from strings. Some of these functions are used in Chapter 8 (§8.1.3.2,

★Go also has two built-in print functions, print() and println(). These should not be used; they exist
purely for the convenience of Go compiler implementers and may be removed from the language.

ptg7913109

94 Chapter 3. Strings

➤ 380)—see also, Table 8.2 (➤ 383). An alternative to using the scan functions
is to split each string into fields using the strings.Fields() function and then
convert those that aren’t strings to values (e.g., numbers) using functions from
the strconv package—see Tables 3.8 and 3.9 (➤ 114–115).Recall from Chapter 1
that we can read input typed at the keyboard by creating a bufio.Reader to read
from os.Stdin and use the bufio.Reader.ReadString() function to read each line
entered (§1.7, 40 ➤).

The easiest way to output values is to use the fmt.Print() and fmt.Println()
functions (to print to os.Stdout, i.e., to the console), or the fmt.Fprint() and
fmt.Fprintf() functions to output to a given io.Writer (e.g., to a file), or the
fmt.Sprint() and fmt.Sprintln() functions to output to a string.

Table 3.3 The Fmt Package’s Print Functions

Syntax Description/result

fmt.Errorf(format,
args...)

Returns an error value containing a string created with
the format string and the args

fmt.Fprint(writer,
args...)

Writes the args to the writer each using format %v and
space-separating nonstrings; returns the number of
bytes written, and an error or nil

fmt.Fprintf(writer,
format, args...)

Writes the args to the writer using the format string; re-
turns the number of bytes written, and an error or nil

fmt.Fprintln(
writer, args...)

Writes the args to the writer each using format %v,
space-separated and ending with a newline; returns the
number of bytes written, and an error or nil

fmt.Print(args...)
Writes the args to os.Stdout each using format %v and
space-separating nonstrings; returns the number of
bytes written, and an error or nil

fmt.Printf(format,
args...)

Writes the args to os.Stdout using the format string; re-
turns the number of bytes written, and an error or nil

fmt.Println(
args...)

Writes the args to os.Stdout each using format %v, space-
separated and ending with a newline; returns the num-
ber of bytes written, and an error or nil

fmt.Sprint(args...)
Returns a string of the args, each formatted using
format %v and space-separating nonstrings

fmt.Sprintf(format,
args...)

Returns a string of the args formatted using the format
string

fmt.Sprintln(
args...)

Returns a string of the args, each formatted using
format %v, space-separated and ending with a newline

ptg7913109

3.5. String Formatting with the Fmt Package 95

Table 3.4 The Fmt Package’s Verbs

Verbs are mostly used to output single values. If a value is a slice the output is usually a
square bracket enclosed sequence of space-separated values, with each value formatted
as the verb specifies. If the value is amap only %v or %#v may be used—unless the key and
value are of the same type, in which case type-compatible verbs may also be used.

Verb Description/result

%% A literal % character

%b
An integer value as a binary (base 2) number, or (advanced) a floating-
point number in scientific notation with a power of 2 exponent

%c An integer code point value as a Unicode character

%d An integer value as a decimal (base 10) number

%e A floating-point or complex value in scientific notation with e

%E A floating-point or complex value in scientific notation with E

%f A floating-point or complex value in standard notation

%g
A floating-point or complex value using %e or %f, whichever produces the
most compact output

%G
A floating-point or complex value using %E or %f, whichever produces the
most compact output

%o An integer value as an octal (base 8) number

%p
A value’s address as a hexadecimal (base 16) number with a prefix of 0x
and using lowercase for the digits a–f (for debugging)

%q
The string or []byte as a double-quoted string, or the integer as a single-
quoted string, using Go syntax and using escapes where necessary

%s
The string or []byte as raw UTF-8 bytes; this will produce correct
Unicode output for a text file or on a UTF-8-savvy console

%t A bool value as true or false

%T A value’s type using Go syntax

%U
An integer code point value using Unicode notation defaulting to four
digits; e.g., fmt.Printf("%U", '¶') outputs U+00B6

%v
A built-in or custom type’s value using a default format, or a custom
value using its type’s String() method if it exists

%x
An integer value as a hexadecimal (base 16) number or a string or
[]byte value as hexadecimal digits (two per byte), using lowercase for
the digits a–f

%X
An integer value as a hexadecimal (base 16) number or a string or
[]byte value as hexadecimal digits (two per byte), using uppercase for
the digits A–F

ptg7913109

96 Chapter 3. Strings

Table 3.5 The Fmt Package’s VerbModifiers

Modifier Description/result

space
Makes the verb output “-” before negative numbers and a space before
positive numbers or to put spaces between the bytes printed when
using the %x or %X verbs; e.g., fmt.Printf("% X", "←") outputs E2 86 92

#

Makes the verb use an “alternative” output format:
%#o outputs octal with a leading 0
%#p outputs a pointer without the leading 0x
%#q outputs a string or []byte as a raw string (using backticks) if

possible—otherwise outputs a double-quoted string
%#v outputs a value as itself using Go syntax
%#x outputs hexadecimal with a leading 0x
%#X outputs hexadecimal with a leading 0X

+
Makes the verb output + or - for numbers, ASCII characters (with
others escaped) for strings, and field names for structs

- Makes the verb left-justify the value (the default is to right-justify)

0 Makes the verb pad with leading 0s instead of spaces

n.m
n
.m

For numbers, makes the verb output a floating-point or complex
value using n (of type int) characters (or more if necessary to avoid
truncation) and with m (of type int) digits after the decimal point(s).
For strings n specifies the minimum field width, and will result in
space padding if the string has too few characters, and .m specifies the
maximum number of the string’s characters to use (going from left to
right), and will result in the string being truncated if it is too long.
Either or both of m and n can be replaced with * in which case their
values are taken from the arguments.
Either n or .m may be omitted.

type polar struct{ radius, θ float64 }
p := polar{8.32, .49}
fmt.Print(-18.5, 17, "Elephant", -8+.7i, 0x3C7, '\u03C7', "a", "b", p)
fmt.Println()
fmt.Println(-18.5, 17, "Elephant", -8+.7i, 0x3C7, '\u03C7', "a", "b", p)

-18.5·17Elephant(-8+0.7i)·967·967ab{8.32·0.49}
-18.5·17·Elephant·(-8+0.7i)·967·967·a·b·{8.32·0.49}

For the sake of clarity,particularlywhenmultiple consecutive spacesare output,
we have put a light gray character (·) in the middle of every space shown.

Theway that fmt.Print() and fmt.Fprint() handlewhitespace is subtly different
from the fmt.Println() and fmt.Fprintln() functions. As a rule of thumb the
former aremost useful for printing a single value or for “converting” a value to a

ptg7913109

3.5. String Formatting with the Fmt Package 97

string without error checking (use the strconv packages for proper conversions;
➤ 114–115), since they only output spaces between nonstring values. The latter
are better for printing multiple values, since they output a space between each
value and add a newline at the end.

Under the hood these functions use the %v (general value) format specifier—and
they can print any built-in or custom value without formality. For example, the
print functions know nothing about the custom polar type but still manage to
print a polar value successfully.

In Chapter 6 we will see how to provide a String()method for custom types; this
allows us to output them however we like. If we want to exercise similarly fine
control over the printing of built-in types we can use the print functions that
accept a format string as their first argument.

The format string used by the fmt.Errorf(), fmt.Printf(), fmt.Fprintf(), and
fmt.Sprintf() functions consists of one or more verbs—these are format speci-
fiers of the form %MLwhere M stands for one or more optional verbmodifiers and L
stands for a particular verb letter. The verbs are listed in Table 3.4 (95 ➤). Some
of the verbscan accept one ormoremodifiers; themodifiersare listed in Table 3.5
(96 ➤).

We will now review some representative examples of format strings so that we
can get a clear understanding of how they work. In each case we will show a
tiny code snippet and then the output it produces.★

3.5.1. Formatting Booleans

Boolean values are output using the %t (truth value) verb.

fmt.Printf("%t %t\n", true, false)

true·false

If we want to output Booleans as integers we must do the conversion our-
selves:

fmt.Printf("%d %d\n", IntForBool(true), IntForBool(false))

1·0

This makes use of a tiny custom function.

func IntForBool(b bool) int {
if b {

★ C, C++, and Python 2 programmers will find Go’s format strings familiar—but with some subtle
differences. For example, Go’s %d can be used for any integer regardless of its size or signedness.

ptg7913109

98 Chapter 3. Strings

return 1
 }

return 0
}

We can convert a string back to a Boolean using the strconv.ParseBool() func-
tion. And, of course, there are similar functions for converting strings to num-
bers. (See §3.6.2, ➤ 113.)

3.5.2. Formatting Integers

Now we will look at the formatting of integers, starting with binary (base 2)
output.

fmt.Printf("|%b|%9b|%-9b|%09b|% 9b|\n", 37, 37, 37, 37, 37)

|100101|···100101|100101···|000100101|···100101|

The first format (%b) uses the %b (binary) verb and outputs an integer as a binary
number using as few digits as possible. The second format (%9b) specifiesa width
of 9 characters (which will be exceeded if necessary to avoid truncation), and
uses the default right justification. The third format (%-9b) uses the -modifier to
get left justification. The fourth format (%09b) uses 0 padding and thefifth format
(% 9b) uses space padding.

Octal formatting is similar to binary, but also supports an alternative format. It
uses the %o (octal) verb.

fmt.Printf("|%o|%#o|%# 8o|%#+ 8o|%+08o|\n", 41, 41, 41, 41, -41)

|51|051|·····051|····+051|-0000051|

The alternative format is switched on by using the # modifier and causes a
leading 0 to be output. The + modifier forces the sign to be output—without it,
positive numbers are output without a sign.

Hexadecimal formatting uses the %x and %X (hexadecimal) verbs, the choice of
which specifies whether to use lowercase or uppercase letters for the digits A–F.

i := 3931
fmt.Printf("|%x|%X|%8x|%08x|%#04X|0x%04X|\n", i, i, i, i, i, i)

|f5b|F5B|·····f5b|00000f5b|0X0F5B|0x0F5B|

For hexadecimal numbers the alternate format modifier (#) causes a leading
0x or 0X to be output. As with all numbers, if we specify a width that is wider

ptg7913109

3.5. String Formatting with the Fmt Package 99

than needed, extra spaces are output to right-justify the number in the given
width—and if the width is too small the number is output in its entirety, so
there’s no risk of digits being truncated.

Decimal integers are output using the %d (decimal) verb. The only characters
that can be used for padding are spacesand zeros, but it is easy to padwith other
characters using a custom function.

i = 569
fmt.Printf("|$%d|$%06d|$%+06d|$%s|\n", i, i, i, Pad(i, 6, '*'))

|$569|$000569|$+00569|$***569|

For the last format we use the %s (string) verb to print a string since that’s what
our Pad() function returns.

func Pad(number, width int, pad rune) string {
 s := fmt.Sprint(number)
 gap := width - utf8.RuneCountInString(s)

if gap > 0 {
return strings.Repeat(string(pad), gap) + s

 }
return s

}

The utf8.RuneCountInString() function returns the number of characters in
the given string; this is always less than or equal to the number of bytes. The
strings.Repeat() function takes a string and a count and returns a new string
that contains the given string repeated count times. We chose to pass the
padding character as a rune (i.e., as a Unicode code point) to avoid users of the
function passing a string which might contain more than one character.

3.5.3. Formatting Characters

Go characters are runes (i.e., int32s), and they can be output as numbers or as
Unicode characters.

fmt.Printf("%d %#04x %U '%c'\n", 0x3A6, 934, '\u03A6', '\U000003A6')

934·0x03a6·U+03A6·'Φ'

Here we have output the Greek capital letter Phi (‘Φ’) as decimal and hexadeci-
mal integers, as a Unicode code point using the %U (Unicode) verb, and as a Uni-
code character using the %c (character or code point) verb.

ptg7913109

100 Chapter 3. Strings

3.5.4. Formatting Floating-Point Numbers

For floating-point numbers we can specify the overall width, the number of dig-
its after the decimal place—and whether to use standard or scientific notation.

for _, x := range []float64{-.258, 7194.84, -60897162.0218, 1.500089e-8} {
 fmt.Printf("|%20.5e|%20.5f|%s|\n", x, x, Humanize(x, 20, 5, '*', ','))
}

········-2.58000e-01	············-0.25800	************-0.25800
·········7.19484e+03	··········7194.84000	*********7,194.84000
········-6.08972e+07	·····-60897162.02180	***-60,897,162.02180
·········1.50009e-08	·············0.00000	*************0.00000

Herewehave used a for…range loop to iterate over the numbers in a slice literal
of float64 items.

The custom Humanize() function returns a string representation of the number
it is given with grouping separators (for languages that use simple three-digit
groups) and padding.

func Humanize(amount float64, width, decimals int,
 pad, separator rune) string {
 dollars, cents := math.Modf(amount)
 whole := fmt.Sprintf("%+.0f", dollars)[1:] // Strip "±"
 fraction := ""

if decimals > 0 {
 fraction = fmt.Sprintf("%+.*f", decimals, cents)[2:] // Strip "±0"
 }
 sep := string(separator)

for i := len(whole) - 3; i > 0; i -= 3 {
 whole = whole[:i] + sep + whole[i:]
 }

if amount < 0.0 {
 whole = "-" + whole
 }
 number := whole + fraction
 gap := width - utf8.RuneCountInString(number)

if gap > 0 {
return strings.Repeat(string(pad), gap) + number

 }
return number

}

The math.Modf() function returns the whole and fractional parts of a float64 as
two float64s. To get the whole part as a string we use the fmt.Sprintf() function

ptg7913109

3.5. String Formatting with the Fmt Package 101

with a format that forces the sign to be output and then we immediately slice
the string to strip off the sign. We use a similar technique for the fractional
part, only this timeweuse the .m verbmodifier specifying the number of decimal
digits to use with a * placeholder. (So in this case, if decimals has the value 2 the
format effectively becomes %+.2f.) For the fractional part we strip off the leading
-0 or +0.

The grouping separators are inserted from right to left in the whole string and
then a - sign is added if the number is negative. At the end we concatenate the
whole and fractional parts and return the result—padding if required.

The %e, %E, %f, %g, and %G verbs can be used with complex numbers as well as
with floating-point numbers. The %e and %E are the scientific format (exponen-
tial) verbs, %f is the floating-point verb, and %g and %G are the general floating-
point verbs.

One factor to keep in mind, though, is that the modifiers are applied to both
the real and imaginary parts of complex numbers individually—for example,
a format of %6f will produce a result occupying at least 20 characters if the
argument is a complex number.

for _, x := range []complex128{2 + 3i, 172.6 - 58.3019i,
-.827e2 + 9.04831e-3i} {

 fmt.Printf("|%15s|%9.3f|%.2f|%.1e|\n",
 fmt.Sprintf("%6.2f%+.3fi", real(x), imag(x)), x, x, x)
}

····2.00+3.000i	(····2.000···+3.000i)	(2.00+3.00i)	(2.0e+00+3.0e+00i)
·172.60-58.302i	(··172.600··-58.302i)	(172.60-58.30i)	(1.7e+02-5.8e+01i)
··-82.70+0.009i	(··-82.700···+0.009i)	(-82.70+0.01i)	(-8.3e+01+9.0e-03i)

For the first column of complex numbers we wanted the components to have
different numbers of digits after the decimal place. To achieve thiswe formatted
the real and imaginary parts individually using fmt.Sprintf(), and then output
the result formatted as a string using a format of %15s. For the other columns
we used the %f and %e verbs directly—these always put parentheses around
complex numbers.

3.5.5. Formatting Strings and Slices

Strings can be output with a minimum field width (which the print functions
will pad with spaces if the string is too short), and with a maximum number of
characters (whichwill result in truncation for any string that’s too long).Strings
can be output as Unicode (i.e., characters), or as a sequence of code points (i.e.,
runes) or as the UTF-8 bytes that represent them.

ptg7913109

102 Chapter 3. Strings

slogan := "End Óréttlæti♥"
fmt.Printf("%s\n%q\n%+q\n%#q\n", slogan, slogan, slogan, slogan)

End Óréttlæti♥
"End Óréttlæti♥"
"End \u00d3r\u00e9ttl\u00e6ti\u2665"
`End Óréttlæti♥`

The %s verb is used to print strings; we will return to it in a moment. The %q
(quoted string) verb is used to print a string as a Go double-quoted string with
printable charactersprinted literally, andwith all other charactersoutput using
escapes (see Table 3.1, 84 ➤). If the + modifier is used, only ASCII characters
(U+0020 to U+007E) are printed literally,with the rest output using escapes. If the
modifier is used the output is a Go raw string where possible, and a double-
quoted string otherwise.

Although normally the variable corresponding to a verb is a single value of a
compatible type (e.g., an int for the %d verb or for the %x verb), the variable can
also be a slice—or amap, providing themap’s key and value are both compatible
with the verb (e.g., both strings or both numbers).

chars := []rune(slogan)
fmt.Printf("%x\n%#x\n%#X\n", chars, chars, chars)

[45·6e·64·20·d3·72·e9·74·74·6c·e6·74·69·2665]
[0x45·0x6e·0x64·0x20·0xd3·0x72·0xe9·0x74·0x74·0x6c·0xe6·0x74·0x69·0x2665]
[0X45·0X6E·0X64·0X20·0XD3·0X72·0XE9·0X74·0X74·0X6C·0XE6·0X74·0X69·0X2665]

Here we print a slice of runes—in this example, a slice of code points—as a se-
quence of hexadecimal numbers,one per code point,using the %x and %X verbs. If
the # modifier is used it forces a leading 0x or 0X to be output for each number.

For most types, slices of the type are output as a square bracket enclosed
sequence of space-separated items. An exception is []byte where no brackets or
spaces are output unless we use the %v verb.

bytes := []byte(slogan)
fmt.Printf("%s\n%x\n%X\n% X\n%v\n", bytes, bytes, bytes, bytes, bytes)

End·Óréttlæti♥
456e6420c39372c3a974746cc3a67469e299a5
456E6420C39372C3A974746CC3A67469E299A5
45·6E·64·20·C3·93·72·C3·A9·74·74·6C·C3·A6·74·69·E2·99·A5
[69·110·100·32·195·147·114·195·169·116·116·108·195·166·116·105·226·153·165]

ptg7913109

3.5. String Formatting with the Fmt Package 103

A slice of bytes—here, the UTF-8 bytes that represent a string—can be printed
as a sequence of two-digit hexadecimal numbers, one per byte. If we use the %s
verb the bytes are assumed to be UTF-8-encoded Unicode and are printed as a
string. There is no alternative hexadecimal format for []bytes, but the numbers
can be space-separated as the penultimate output line illustrates. The %v verb
outputs []bytes as a square bracket enclosed sequence of space-separated
decimal values.

Go right-aligns by default; we can left-align using the - modifier.And, of course,
we can specify a minimum field width and the maximum number of characters
to output as the next two examples illustrate.

s := "Dare to be naïve"
fmt.Printf("|%22s|%-22s|%10s|\n", s, s, s)

|······Dare·to·be·naïve|Dare·to·be·naïve······|Dare·to·be·naïve|

In this snippet, the third format (%10s) specifies a minimum field width of 10
characters, but since the string is longer than this—and the field width is a
minimum—the string is printed in full.

i := strings.Index(s, "n")
fmt.Printf("|%.10s|%.*s|%-22.10s|%s|\n", s, i, s, s, s)

|Dare·to·be|Dare·to·be·|Dare·to·be············|Dare·to·be·naïve|

Here, the first format (%.10s) specifies that a maximum of 10 characters from
the string may be output, so in this case the string is truncated to the specified
width. The second format (%.*s) expects to get two arguments—the maximum
number of characters to print and a string;here we have used the index position
of the string’s n character for themaximumwhichmeans that all the characters
up to but excluding that character are printed. The third format (%-22.10s)
specifies both a minimum field width of 22 characters and a maximum number
of characters to print of 10 characters—thismeans that only the string’s first 10
characters are printed, but in a field that is 22 characters wide. Since the field
width is greater than the number of characters to print, the field is padded with
spaces—and left-justified because of the - modifier.

3.5.6. Formatting for Debugging

The %T (type) verb is used to print a built-in or custom value’s type, and the %v
verb is used to print a built-in value’s value. In fact, %v can also print the value
of custom types, using a default format for types that do not have a String()
method defined, or using the type’s String() method if it has one.

ptg7913109

104 Chapter 3. Strings

p := polar{-83.40, 71.60}
fmt.Printf("|%T|%v|%#v|\n", p, p, p)
fmt.Printf("|%T|%v|%t|\n", false, false, false)
fmt.Printf("|%T|%v|%d|\n", 7607, 7607, 7607)
fmt.Printf("|%T|%v|%f|\n", math.E, math.E, math.E)
fmt.Printf("|%T|%v|%f|\n", 5+7i, 5+7i, 5+7i)
s := "Relativity"
fmt.Printf("|%T|\"%v\"|\"%s\"|%q|\n", s, s, s, s)

main.polar	{-83.4·71.6}	main.polar{radius:-83.4,·θ:71.6}	
bool	false	false	
int	7607	7607	
float64	2.718281828459045	2.718282	
complex128	(5+7i)	(5.000000+7.000000i)	
string	"Relativity"	"Relativity"	"Relativity"

This example shows how to output an arbitrary value’s type and value using %T
and %v. If the %v verb’s formatting is satisfactory we can simply use fmt.Print()
and similar functions since these use the %v verb’s format by default. Using the
alternative format verb modifier with %v affects only struct types and causes
them to be output with their type name and field names. For floating-point
values, %v formats like the %g verb rather than like the %f verb. The %T format is
mostly useful for debugging and includes the package name (in this case main)
for custom types. Using the %q verb for stringsputs them in quoteswhich is often
convenient when debugging.

Two of Go’s types have synonyms: byte for uint8 and rune for int32. Use int32
when handling 32-bit signed integers where int won’t do (e.g., reading/writing
binary files), and rune for Unicode code points (characters).

s := "Alias↔Synonym"
chars := []rune(s)
bytes := []byte(s)
fmt.Printf("%T: %v\n%T: %v\n", chars, chars, bytes, bytes)

[]int32: [65 108 105 97 115 8596 83 121 110 111 110 121 109]
[]uint8: [65 108 105 97 115 226 134 148 83 121 110 111 110 121 109]

As the code snippet illustrates, the %T verb always prints the original type name,
not the synonym. Since the string has a non-ASCII character it is clear that we
have a slice of runes (code points) and a slice of UTF-8-encoded bytes.

Go can also output any value’s address in memory using the %p (pointer) verb.

i := 5
f := -48.3124

ptg7913109

3.5. String Formatting with the Fmt Package 105

s := "Tomás Bretón"
fmt.Printf("|%p → %d|%p → %f|%#p → %s|\n", &i, i, &f, f, &s, s)

|0xf840000300·→·5|0xf840000308·→·-48.312400|f840001990·→·Tomás·Bretón|

The & address of operator is explained in the next chapter (§4.1, ➤ 140). If
we use the %p verb with the # modifier, the address’s leading 0x is dropped.
Outputting memory addresses like this can be useful when debugging.

Go’s ability to output slices and maps is also useful for debugging, as is the
ability to output channels—that is, the type that can be sent and received
through the channel and the channel’s memory address.

fmt.Println([]float64{math.E, math.Pi, math.Phi})
fmt.Printf("%v\n", []float64{math.E, math.Pi, math.Phi})
fmt.Printf("%#v\n", []float64{math.E, math.Pi, math.Phi})
fmt.Printf("%.5f\n", []float64{math.E, math.Pi, math.Phi})

[2.718281828459045·3.141592653589793·1.618033988749895]
[2.718281828459045·3.141592653589793·1.618033988749895]
[]float64{2.718281828459045,·3.141592653589793,·1.618033988749895}
[2.71828·3.14159·1.61803]

Using the unmodified %v verb, slices are output as square bracket enclosed
sequences of space-separated items. Usually we output them using functions
like fmt.Print() or fmt.Sprint(), but if we use a formatting output function then
the usual verb to use is %v or %#v. However, we can also use a type-compatible
verb such as %f for floating-point numbers or %s for strings.

fmt.Printf("%q\n", []string{"Software patents", "kill", "innovation"})
fmt.Printf("%v\n", []string{"Software patents", "kill", "innovation"})
fmt.Printf("%#v\n", []string{"Software patents", "kill", "innovation"})
fmt.Printf("%17s\n", []string{"Software patents", "kill", "innovation"})

["Software·patents"·"kill"·"innovation"]
[Software·patents·kill·innovation]
[]string{"Software·patents",·"kill",·"innovation"}
[·Software·patents··············kill········innovation]

Using the %q verb for outputting slices of strings is particularly useful when
the strings contain spaces since it makes each individual string identifiable—
something that doesn’t happen if we use the %v verb.

The last output might look wrong at first sight since it occupies 53 characters
(not including the enclosing square brackets) rather than 51 (three strings of

ptg7913109

106 Chapter 3. Strings

17 characters, none of which is too big). The apparent discrepancy is due to the
space separator that is output between each slice item.

In addition to debugging, the %#v verb may be useful when generating Go code
programmatically.

fmt.Printf("%v\n", map[int]string{1: "A", 2: "B", 3: "C", 4: "D"})
fmt.Printf("%#v\n", map[int]string{1: "A", 2: "B", 3: "C", 4: "D"})
fmt.Printf("%v\n", map[int]int{1: 1, 2: 2, 3: 4, 4: 8})
fmt.Printf("%#v\n", map[int]int{1: 1, 2: 2, 3: 4, 4: 8})
fmt.Printf("%04b\n", map[int]int{1: 1, 2: 2, 3: 4, 4: 8})

map[4:D·1:A·2:B·3:C]
map[int]·string{4:"D",·1:"A",·2:"B",·3:"C"}
map[4:8·1:1·2:2·3:4]
map[int]·int{4:8,·1:1,·2:2,·3:4}
map[0100:1000·0001:0001·0010:0010·0011:0100]

Maps are output as the word “map”, and then the map’s key–value pairs (in an
arbitrary order since maps are unordered). Just as with slices it is possible to
use verbs other than %v—but only if both the key and value are compatible with
the verb used, as in the example’s last statement. (Maps and slices are covered
in detail in Chapter 4.)

The fmt package’s print functions are very versatile and can be used to print
whatever output we need. The only feature not offered by the package’s func-
tions is padding with a particular character (other than zeros or spaces), but as
we saw in the custom Pad() (99 ➤) and Humanize() (100 ➤) functions, this is very
easy to do.

3.6. Other String-Related Packages

Go’s considerable support for stringsdoesn’t stop at indexing and slicing, or with
the versatile fmt package’s functions. The strings package in particular provides
very rich functionality, and the strconv, unicode/utf8, and unicode packages also
provide lots of useful functions. Examples that make use of functionality from
all these packagesare presented in this section. Regular expressions—provided
by the powerful regexp package introduced later in this section—are used in
several examples throughout the book.

There are other packages in the standard library that provide string-related
functionality, and some of them are covered elsewhere in the book either in
examples or in exercises.

ptg7913109

3.6. Other String-Related Packages 107

3.6.1. The Strings Package

A common requirement in string processing is to be able to split a string into a
slice of separate strings and then do further processing—for example, convert
strings to numbers or trim whitespace.

To get a flavor of how to use some of the strings package’s functions we will
review some tiny examples that show some of the functions in use. All the
package’s functions are listed in Tables 3.6 and 3.7 (➤ 108–109). Let’s start with
splitting strings.

names := "Niccolò•Noël•Geoffrey•Amélie••Turlough•José"
fmt.Print("|")
for _, name := range strings.Split(names, "•") {
 fmt.Printf("%s|", name)
}
fmt.Println()

|Niccolò|Noël|Geoffrey|Amélie||Turlough|José|

Here we have a bullet-separated list of names (including one blank field) which
we split using the strings.Split() function. This function takes a string to
split and a separator string to split on and does as many splits as possible. (If
we want to limit the number of splits we can use the strings.SplitN() function
instead.) If we used the strings.SplitAfter() function the output would look
like this:

|Niccolò•|Noël•|Geoffrey•|Amélie•|•|Turlough•|José|

The strings.SplitAfter() function performs the same splits as the strings.
Split() function but keeps the separator. There is also a strings.SplitAfterN()
function for when we want to split a specific number of times.

If we need to be able to split on any of two or more different characterswe can
use the strings.FieldsFunc() function.

for _, record := range []string{"László Lajtha*1892*1963",
"Édouard Lalo\t1823\t1892", "José Ángel Lamas|1775|1814"} {

 fmt.Println(strings.FieldsFunc(record, func(char rune) bool {
switch char {
case '\t', '*', '|':

return true

 }
return false

 }))
}

ptg7913109

108 Chapter 3. Strings

Table 3.6 The Strings Package’s Functions #1

Variables s and t are of type string, xs is of type []string, i is of type int, and f is a
functionwith the signature func(rune) bool. Index positions are of the first UTF-8 byte of
the matching Unicode code point (character) or string,or -1 when there isn’t a match.

Syntax Description/result

strings.Contains(s, t) true if t occurs in s

strings.Count(s, t) How many (nonoverlapping) times t occurs in s

strings.EqualFold(s, t) true if the strings are case-insensitively equal

strings.Fields(s)
The []string that results in splitting s on white-
space

strings.
FieldsFunc(s, f)

The []string that results in splitting s at every
character where f returns true

strings.HasPrefix(s, t) true if s starts with t

strings.HasSuffix(s, t) true if s ends with t

strings.Index(s, t) The index of the first occurrence of t in s

strings.IndexAny(s, t) The first index in s of any character that is in t

strings.
IndexFunc(s, f)

The index of the first character in s for which f
returns true

strings.
IndexRune(s, char)

The index of the first occurrence of character char
of type rune in s

strings.Join(xs, t)
A string containing the concatenation of all the
strings in xs, each separated by t (which can be
"")

strings.LastIndex(s, t) The index of the last occurrence of t in s

strings.
LastIndexAny(s, t)

The last index in s of any character that is in t

strings.
LastIndexFunc(s, f)

The index of the last character in s for which f
returns true

strings.Map(mf, t)
A copy of t with every character replaced or delet-
ed according to the mapping function mf with the
signature func(rune) rune (see text)

strings.NewReader(s)
A pointer to a value that provides Read(), Read-
Byte(), and ReadRune() methods that operate on s

strings.NewReplacer(...)
A pointer to a value that hasmethods for replacing
each pair of old, new strings it is given

strings.Repeat(s, i) A string consisting of i concatenations of s

ptg7913109

3.6. Other String-Related Packages 109

Table 3.7 The Strings Package’s Functions #2

Variable r of type unicode.SpecialCase is used to specify Unicode rules (advanced).

Syntax Description/result

strings.Replace(s,
old, new, i)

A copy of s with every nonoverlapping occurrence
of string old replaced by string new if i is -1, or with
at most i replacements otherwise

strings.Split(s, t) The []string that results in splitting s on t asmany
times as t occurs in s

strings.
SplitAfter(s, t)

Works like strings.Split() only the separator is
kept in the resultant strings (see text)

strings.
SplitAfterN(s, t, i)

Works like strings.SplitN() only the separator is
kept in the resultant strings

strings.SplitN(s, t, i) The []string that results in splitting s on t, i -
1 times

strings.Title(s) A copy of s with the first letter of every word title-
cased

strings.ToLower(s) A lowercased copy of s

strings.
ToLowerSpecial(r, s)

A lowercased copy of s, prioritizing the rules in
r (advanced)

strings.ToTitle(s) A title-cased copy of s

strings.
ToTitleSpecial(r, s)

A title-cased copy of s, prioritizing the rules in r
(advanced)

strings.ToUpper(s) An uppercased copy of s

strings.
ToUpperSpecial(r, s)

An uppercased copy of s, prioritizing the rules in
r (advanced)

strings.Trim(s, t) A copy of s with the characters in t removed from
both ends

strings.
TrimFunc(s, f)

A copy of s with the characters for which f returns
true removed from both ends

strings.
TrimLeft(s, t)

A copy of s with the characters in t removed from
the start

strings.
TrimLeftFunc(s, f)

A copy of s with the characters for which f returns
true removed from the start

strings.
TrimRight(s, t)

A copy of s with the characters in t removed from
the end

strings.
TrimRightFunc(s, f)

A copy of s with the characters for which f returns
true removed from the end

strings.
TrimSpace(s)

A copy of s with whitespace removed from both
ends

ptg7913109

110 Chapter 3. Strings

[László·Lajtha·1892·1963]
[Édouard·Lalo·1823·1892]
[José·Ángel·Lamas·1775·1814]

The strings.FieldsFunc() function takes a string (the record variable in this ex-
ample) and a reference to a function with the signature func(rune) bool. Since
the function is so tiny and is used only in one place, we have created it as an
anonymous function at the point it is needed. (Functions created this way are
closures, although in this particular case we make no use of the enclosed state;
see §5.6.3, ➤ 225.) The strings.FieldsFunc() function iterates over every char-
acter in the string it is given and calls the function it is passed as its second
argument with each character. If the called function returns true a split is per-
formed. Here we have said that the string should be split on tabs, stars, and
vertical bars. (Go’s switch statement is covered in §5.2.2, ➤ 195.)

We can replace all occurrences of a string within a string using the strings.
Replace() function. For example:

names = " Antônio\tAndré\tFriedrich\t\t\tJean\t\tÉlisabeth\tIsabella \t"
names = strings.Replace(names, "\t", " ", -1)
fmt.Printf("|%s|\n", names)

|·Antônio·André··Friedrich···Jean··Élisabeth·Isabella··|

The strings.Replace() function takes a string to work on, a substring to find,
a replacement string, and the number of replacements to make (-1 meaning as
many as possible), and returns a string with all the (nonoverlapping) replace-
ments performed.

When reading a string that has been entered by a human or that has come from
an external source we often want to normalize its whitespace: that is, to get rid
of any leading and trailing whitespace and replace each internal sequence of
one or more whitespace characters with a single space.

fmt.Printf("|%s|\n", SimpleSimplifyWhitespace(names))

|Antônio·André·Friedrich·Jean·Élisabeth·Isabella|

Here is a one-line SimpleSimplifyWhitespace() function.

func SimpleSimplifyWhitespace(s string) string {
return strings.Join(strings.Fields(strings.TrimSpace(s)), " ")

}

ptg7913109

3.6. Other String-Related Packages 111

The strings.TrimSpace() function returns a copy of the string it is passed with
any leading and trailing whitespace stripped off. The strings.Fields() function
splits a string on any amount of whitespace and returns a []string. And the
strings.Join() function takes a []string and a separator (which could be an
empty string, although here we have used a space), and returns a single string
with all the []string’s strings joined by the separator. By using these three
functions in this combination we get whitespace normalization.

Of course,we canmore efficiently simplify whitespace doing a single pass using
a bytes.Buffer.

func SimplifyWhitespace(s string) string {
var buffer bytes.Buffer

 skip := true

for _, char := range s {
if unicode.IsSpace(char) {

if !skip {
 buffer.WriteRune(' ')
 skip = true

 }
 } else {
 buffer.WriteRune(char)
 skip = false

 }
 }
 s = buffer.String()

if skip && len(s) > 0 {
 s = s[:len(s)-1]
 }

return s
}

The SimplifyWhitespace() function iterates over the characters in the string it
receives, skipping any leading whitespace using the unicode.IsSpace() function
(Table 3.11, ➤ 119). Then, it accumulates characters by writing them into a
bytes.Buffer and for any sequence of one or more internal whitespaces it writes
a single space. At the end any trailing space is stripped off (the algorithmallows
atmost one), and the resultant string is returned. Amuch simpler version using
regular expressions is shown later (➤ 128).

The strings.Map() function can be used to replace or remove characters from
strings. It takes two arguments, the first a mapping functionwith the signature
func(rune) rune and the second a string. The mapping function is called for
every character in the string and each character is replaced by the character
returned by the function—or deleted if themapping function returns a negative
number.

ptg7913109

112 Chapter 3. Strings

asciiOnly := func(char rune) rune {
if char > 127 {

return '?'
 }

return char
}
fmt.Println(strings.Map(asciiOnly, "Jérôme Österreich"))

J?r?me·?sterreich

Here, instead of creating themapping function at the call site aswe did with the
strings.FieldsFunc() example shown earlier (107 ➤), we have created an anony-
mous mapping function and assigned (a reference to) it to a variable (asciiOn-
ly). We have then used the strings.Map() function, passing it the variable that
refers to the mapping function and the string we want to process and printing
the result—a string with all non-ASCII characters replaced by “?”. We could, of
course,have created themapping function at the call site,but doing it separately
as we have done here is more convenient if the function being passed is long, or
if we will need to use it more than once.

It is easy to use this approach to delete non-ASCII characters and produce:

Jrme·sterreich

This is achieved by changing the mapping function to return -1 instead of ? for
non-ASCII characters.

We have mentioned previously that it is possible to iterate over every character
(Unicode code point) in a string using a for … range loop (§5.3,➤ 203). A similar
effect can be achieved when reading data from types that implement the
ReadRune() function, such as the bufio.Reader.

for {
 char, size, err := reader.ReadRune()

if err != nil { // might occur if the reader is reading a file
if err == io.EOF { // finished without incident

break

 }
panic(err) // a problem occurred

 }
 fmt.Printf("%U '%c' %d: % X\n", char, char, size, []byte(string(char)))
}

ptg7913109

3.6. Other String-Related Packages 113

U+0043·'C'·1:·43
U+0061·'a'·1:·61
U+0066·'f'·1:·66
U+00E9·'é'·2:·C3·A9

This code snippet reads a string and outputs each character’s code point, the
character itself, how many UTF-8 bytes the character occupies, and the bytes
used to represent the character. In most cases readers operate on files, so here
we might imagine that the reader variable was created by calling bufio.New-
Reader() on the reader returned by an os.Open() call—something we saw in the
first chapter’s americanise example (§1.6, 29 ➤).However, in this case the reader
was created to operate on a string:

reader := strings.NewReader("Café")

The *strings.Reader returned by strings.NewReader() offers a subset of the func-
tionality of a bufio.Reader; in particular it provides the strings.Reader.Read(),
strings.Reader.ReadByte(), strings.Reader.ReadRune(), strings.Reader.Unread-
Byte(), and strings.Reader.UnreadRune() methods. The ability to operate on val-
ues that have a particular interface (e.g., provide a ReadRune() method), rather
than on values of particular types, is a very powerful and flexible feature of Go,
and is covered much more fully in Chapter 6.

3.6.2. The Strconv Package

The strconv package provides many functions for converting strings into oth-
er types and other types into strings. The package’s functions are listed in Ta-
bles 3.8 and 3.9 (➤ 114–115; see also the fmt package’s print and scan functions,
§3.5, 93 ➤and §8.2, ➤ 383.) Here we will review a few illustrative examples.

One common requirement is to convert a string representation of a truth value
into a bool. This can be done using the strconv.ParseBool() function.

for _, truth := range []string{"1", "t", "TRUE", "false", "F", "0", "5"} {
if b, err := strconv.ParseBool(truth); err != nil {

 fmt.Printf("\n{%v}", err)
 } else {
 fmt.Print(b, " ")
 }
}
fmt.Println()

true·true·true·false·false·false
{strconv.ParseBool:·parsing·"5":·invalid·syntax}

ptg7913109

114 Chapter 3. Strings

Table 3.8 The Strconv Package’s Functions #1

Parameter bs is a []byte, base is a number base (2–36), bits is the bit size the result must
fit into (8, 16, 32, 64—or 0 for int’s size for ints; 32 or 64 for float64s), and s is a string.

Syntax Description/result

strconv.AppendBool(bs, b) bs with "true" or "false" appended depending
on bool b

strconv.AppendFloat(bs, f,
fmt, prec, bits)

bs with float64 f appended; see strconv.Format-
Float() for the other parameters

strconv.AppendInt(bs, i,
base)

bs with int64 i appended using the given base

strconv.AppendQuote(bs, s) bs with s appended using strconv.Quote()

strconv.AppendQuote-
Rune(bs, char)

bs with rune char appended using strconv.
QuoteRune()

strconv.AppendQuote-
RuneToASCII(bs, char)

bs with rune char appended using strconv.
QuoteRuneToASCII()

strconv.AppendQuote-
ToASCII(bs, s)

bs with s appended using strconv.QuoteTo-
ASCII()

strconv.AppendUInt(bs, u,
base)

bs with uint64 u appended using the given base

strconv.Atoi(s)
string s converted to an int, and an error or nil;
see also strconv.ParseInt()

strconv.CanBackquote(s) true if s can be represented in Go syntax using
backticks

strconv.FormatBool(tf) "true" or "false" depending on bool tf

strconv.FormatFloat(f,
fmt, prec, bits)

float64 f as a string. The fmt is a byte corre-
sponding to an fmt.Print() verb, 'b' for %b, 'e'
for %e, etc. (see Table 3.4, 95 ➤). The prec is the
number of digits after the decimal point for an
fmt of 'e', 'E', and 'f'; or the total number of
digits for a fmt of 'g' and 'G'—use -1 to request
the smallest number of digits that can be used
while preserving accuracy going the other way
(e.g., using strconv.ParseFloat()). The bits af-
fects rounding and is usually 64.

strconv.FormatInt(i, base) int64 i as a string in base base

strconv.FormatUInt(u, base) uint64 u as a string in base base

strconv.IsPrint(c) true if rune c is a printable character

strconv.Itoa(i)
int i as a string using base 10; see also strconv.
FormatInt()

ptg7913109

3.6. Other String-Related Packages 115

Table 3.9 The Strconv Package’s Functions #2

Syntax Description/result

strconv.ParseBool(s)
true and nil if s is "1", "t", "T", "true", "True", or "TRUE";
false and nil if s is "0", "f", "F", "false", "False", or
"FALSE"; false and an error otherwise

strconv.ParseFloat(
s, bits)

A float64 and nil if s is parseable as a floating-point
number, or 0 and an error; bits should be 64; but use 32
if converting to a float32

strconv.ParseInt(
s, base, bits)

An int64 and nil if s is parseable as an integer, or 0 and
an error; a base of 0 means the base will be deduced
from s (a leading "0x" or "0X" means base 16, a leading
"0" means base 8; otherwise base 10), or a specific base
(2–36) can be given; bits should be 0 if converting to an
int or the bit size if converting to a sized integer (e.g.,
16 for an int16)

strconv.ParseUint(
s, base, bits)

A uint64 and nil or 0 and an error—just the same as
strconv.ParseInt() apart from being unsigned

strconv.Quote(s)
A string using Go’s double-quoted string syntax to
represent string s; see also Table 3.1 (83 ➤)

strconv.QuoteRune(
char)

A string using Go’s single-quoted string syntax to
represent Unicode code point char of type rune

strconv.QuoteRune-
ToASCII(char)

A string using Go’s single-quoted string syntax to
represent Unicode code point char of type rune, using
an escape sequence for a non-ASCII character

strconv.
QuoteToASCII(s)

A string using Go’s double-quoted string syntax to rep-
resent string s, using escape sequences for non-ASCII
characters

strconv.Unquote(s)
A string that contains the Go syntax single-quoted
character or double-quoted or backtick-quoted string
in string s and an error

strconv.
UnquoteChar(s, b)

A rune (the first character), a bool (whether the first
character’sUTF-8 representation needsmore than one
byte), a string (the rest of the string), and an error;
if b is set to a single or double quote that quote must
be escaped

ptg7913109

116 Chapter 3. Strings

All the strconv conversion functions return the converted value and an error,
with the latter being nil if the conversion succeeded.

x, err := strconv.ParseFloat("-99.7", 64)
fmt.Printf("%8T %6v %v\n", x, x, err)
y, err := strconv.ParseInt("71309", 10, 0)
fmt.Printf("%8T %6v %v\n", y, y, err)
z, err := strconv.Atoi("71309")
fmt.Printf("%8T %6v %v\n", z, z, err)

·float64··-99.7·<nil>
···int64··71309·<nil>
·····int··71309·<nil>

The strconv.ParseFloat(), strconv.ParseInt(), and strconv.Atoi() (“ASCII to
int”) functions shown here work much as we would expect. The call strconv.
Atoi(s) is almost the same as strconv.ParseInt(s, 10, 0), that is, parse the given
string as a base-ten integer and return an integer, only Atoi() returns an int
and ParseInt() returns an int64. As we would expect, the strconv.ParseUint()
function converts to an unsigned integer type and will fail if there’s a lead-
ing minus sign in the string it is given. These functions will fail if there is
any leading or trailing whitespace, but we can easily eliminate this with the
strings.TrimSpace() function or by using the fmt package’s scan functions (Ta-
ble 8.2,➤ 383).Naturally, the floating-point conversions will accept strings that
use standard or exponential notation, such as "984", "424.019", and "3.916e-12".

s := strconv.FormatBool(z > 100)
fmt.Println(s)
i, err := strconv.ParseInt("0xDEED", 0, 32)
fmt.Println(i, err)
j, err := strconv.ParseInt("0707", 0, 32)
fmt.Println(j, err)
k, err := strconv.ParseInt("10111010001", 2, 32)

true
57069·<nil>
455·<nil>
1489·<nil>

The strconv.FormatBool() function returns a string representing the Boolean ex-
pression it is given as "true" or "false".The strconv.ParseInt() function converts
an integer in string form into an int64. The second argument is the base to use,
with 0 meaning use the base implied by the string’s prefix: "0x" or "0X" for hex-
adecimal,"0" for octal,anddecimal otherwise. In this snippetwehave converted
a hexadecimal and an octal number using their implied base and a binary num-
ber by specifying an explicit base of 2.Valid basesare 2 to 36 inclusivewith bases

ptg7913109

3.6. Other String-Related Packages 117

higher than 10 representing 10 with A (or a) and so on. The third argument is
the bit size (with 0 signifying the size of an int), so although the function always
returns an int64, the conversionwill only succeed if it can be converted perfectly
to an integer of the given bit size.

i := 16769023
fmt.Println(strconv.Itoa(i))
fmt.Println(strconv.FormatInt(int64(i), 10))
fmt.Println(strconv.FormatInt(int64(i), 2))
fmt.Println(strconv.FormatInt(int64(i), 16))

16769023
16769023
111111111101111111111111
ffdfff

The strconv.Itoa() (“Integer to ASCII”) function returns a string representing
its int argument in base 10. The strconv.FormatInt() function formats an int64
as a string using the given base (which must be specified, and must be between
2 and 36 inclusive).

s = "Alle ønsker å være fri."
quoted := strconv.Quote(s)
fmt.Println(quoted)
fmt.Println(strconv.Unquote(quoted))

"Alle·\u00f8nsker·\u00e5·v\u00e6re·fri."
Alle·ønsker·å·være·fri.·<nil>

The strconv.Quote() function returns the string it is given as a Go double-quoted
string and with any nonprintable ASCII characters and any non-ASCII char-
acters represented using escapes. (Go’s string escapes are shown in Table 3.1,
84 ➤.) The strconv.Unquote() function takes a string containing a Go double-
quoted string or a raw (backtick-quoted) string or a single-quoted character, and
returns the unquoted string equivalent and an error (or nil).

3.6.3. The Utf8 Package

The unicode/utf8 package provides several useful functions for querying and
manipulating strings and []bytes which hold UTF-8 bytes—many of these are
shown in Table 3.10. Earlier we saw how to use the utf8.DecodeRuneInString()
and utf.DecodeLastRuneInString() functions (91 ➤) to get the first and last
characters in a string.

ptg7913109

118 Chapter 3. Strings

Table 3.10 The Utf8 Package’s Functions

Import "unicode/utf8".Variable b is type []byte,s is of type string,and c is aUnicode code
point of type rune.

Syntax Description/result

utf8.
DecodeLastRune(b)

The last rune in b and the number of bytes it occupies, or
U+FFFD (the Unicode replacement character, ?) and 0, if b
doesn’t end with a valid rune

utf8.DecodeLast-
RuneInString(s)

The same as utf8.DecodeLastRune(), only it takes a string
as input

utf8.DecodeRune(b)
The first rune in b and the number of bytes it occupies, or
U+FFFD (the Unicode replacement character, ?) and 0, if b
doesn’t start with a valid rune

utf8.DecodeRune-
InString(s)

The same as utf8.DecodeRune(), only it takes a string
as input

utf8.EncodeRune(
b, c)

Writes c into b asUTF-8 bytes and returns the number of
bytes written (b must have enough space)

utf8.FullRune(b) true if b begins with a UTF-8-encoded rune

utf8.FullRune-
InString(b)

true if s begins with a UTF-8-encoded rune

utf8.RuneCount(b) Same as utf8.RuneCountInString() but works on a []byte

utf8.RuneCount-
InString(s)

The number of runes in s; this may be less than len(s) if
s contains non-ASCII characters

utf8.RuneLen(c) The number of bytes needed to encode c

utf8.RuneStart(x) true if byte x could be the first byte of a rune

utf8.Valid(b) true if b’s bytes represent valid UTF-8-encoded runes

utf8.ValidString(s) true if s’s bytes represent valid UTF-8-encoded runes

3.6.4. The Unicode Package

The unicode package provides functions for querying Unicode code points to
determine if they meet certain criteria—for example, whether the character
they represent is a digit or a lowercase letter. Table 3.11 shows the most com-
monly used functions. In addition to those functions we would expect, such as
unicode.ToLower() and unicode.IsUpper(), a generic unicode.Is() function is pro-
vided so that we can check whether a character is in a particular Unicode cate-
gory.

ptg7913109

3.6. Other String-Related Packages 119

Table 3.11 The Unicode Package’s Functions

Variable c is of type rune and represents a Unicode code point.

Syntax Description/result

unicode.Is(
table, c)

true if c is in the table (see text)

unicode.IsControl(c) true if c is a control character

unicode.IsDigit(c) true if c is a decimal digit

unicode.IsGraphic(c)
true if c is a “graphic” character such as a letter, num-
ber, punctuation mark, symbol, or space

unicode.IsLetter(c) true if c is a letter

unicode.IsLower(c) true if c is a lowercase letter

unicode.IsMark(c) true if c is a mark character

unicode.IsOneOf(
tables, c)

true if c is in one of the tables

unicode.IsPrint(c) true if c is a printable character

unicode.IsPunct(c) true if c is a punctuation character

unicode.IsSpace(c) true if c is a whitespace character

unicode.IsSymbol(c) true if c is a symbol character

unicode.IsTitle(c) true if c is a title-case letter

unicode.IsUpper(c) true if c is an uppercase letter

unicode.SimpleFold(c) A case-folded copy of the given c

unicode.To(
case, c)

The case version of c where case is unicode.LowerCase,
unicode.TitleCase, or unicode.UpperCase

unicode.ToLower(c) The lowercase version of c

unicode.ToTitle(c) The title-case version of c

unicode.ToUpper(c) The uppercase version of c

fmt.Println(IsHexDigit('8'), IsHexDigit('x'), IsHexDigit('X'),
 IsHexDigit('b'), IsHexDigit('B'))

true·false·false·true·true

The unicode package provides the unicode.IsDigit() function to check whether
a character is a decimal digit, but there is no similar function to check for hex-
adecimal digits, so here we have used our own custom IsHexDigit() function.

ptg7913109

120 Chapter 3. Strings

func IsHexDigit(char rune) bool {
return unicode.Is(unicode.ASCII_Hex_Digit, char)

}

This tiny function uses the generic unicode.Is() function in conjunction with
the unicode.ASCII_Hex_Digit range to determine whether the given character is
a hexadecimal digit. We could easily create similar functions to test for other
Unicode characteristics.

3.6.5. The Regexp Package

This subsection presents tables listing the regexp package’s functions and the
regular expression syntax the package supports, and includes a few illustrative
examples. Here and elsewhere in this book, we assume prior knowledge of
regular expressions, or “regexeps”.★

The regexp package is a Go implementation of Russ Cox’s RE2 regular expres-
sion engine.✪ This engine is fast and thread-safe. The RE2 engine doesn’t use
backtracking, so guarantees linear time execution O(n) where n is the length of
the matched string, whereas backtracking engines can easily take exponential
time O(n2) (see the sidebar “Big-O Notation”, 89 ➤). The superior performance
is gained at the expense of having no support for backreferences in searches.
However, it is usually straightforward towork around this constraint bymaking
good use of the regexp API.

Table 3.12 lists the regexp package’s functions, including four functions for
creating *regexp.Regexp values. These values provide the methods shown in
Tables 3.18 and 3.19 (➤ 124–125). The RE2 engine’s syntax supports the escape
sequences listed in Table 3.13 (➤ 121), the character classes listed in Table 3.14
(➤ 122), the zero-width assertions listed in Table 3.15 (➤ 122), the quantifiers
listed in Table 3.16 (➤ 123), and the flags listed in Table 3.17 (➤ 123).

The regexp.Regexp.ReplaceAll() and regexp.Regexp.ReplaceAllString() methods
support both numbered and named replacements. Numbered replacements
start at $1 for the first capturing parenthesized match. Named replacements
refer to named capture groups. Although replacements can be referred to by
number or by name (e.g., $2, $filename), it is safest to use braces as delimiters
(e.g., ${2}, ${filename}). Use $$ to include a literal $ in a replacement string.

★ A good textbook that teaches regexeps is Mastering Regular Expressions; see Appendix C. The
author’s book,Programming in Python 3,has a chapter that teaches Python regexeps (these support
a subset of regexp syntax).This chapter is available as a free download from www.informit.com/title/
9780321680563 (click the “Sample Content” link and download Chapter 13).
✪ Information on RE2, including links to documents covering its rationale, performance, and
implementation, is available from code.google.com/p/re2/ .

www.informit.com/title/9780321680563
www.informit.com/title/9780321680563

ptg7913109

3.6. Other String-Related Packages 121

Table 3.12 The Regexp Package’s Functions

Variables p and s are of type string,with p being a regexp pattern.

Syntax Description/result

regexp.Match(p, b) true and nil if p matches b of type []byte

regexp.Match-
Reader(p, r)

true and nil if p matches the text read by r of type
io.RuneReader

regexp.Match-
String(p, s)

true and nil if p matches s

regexp.QuoteMeta(s) A string with all regexp metacharacters safely quoted

regexp.Compile(p)
A *regexp.Regexp and nil if p compiles successfully; see
Tables 3.18 and 3.19 (➤ 124–125)

regexp.Compile-
POSIX(p)

A *regexp.Regexp and nil if p compiles successfully; see
Tables 3.18 and 3.19 (➤ 124–125)

regexp.Must-
Compile(p)

A *regexp.Regexp if p compiles successfully, otherwise
panics; see Tables 3.18 and 3.19 (➤ 124–125)

regexp.Must-
CompilePOSIX(p)

A *regexp.Regexp if p compiles successfully, otherwise
panics; see Tables 3.18 and 3.19 (➤ 124–125)

Table 3.13 The Regexp Package’s Escape Sequences

Syntax Description

\c Literal character c; e.g., * is a literal * rather than a quantifier

\000 Character with the given octal code point

\xHH Character with the given 2-digit hexadecimal code point

\x{HHHH} Character with the given 1–6-digit hexadecimal code point

\a ASCII bell (BEL) ≡ \007

\f ASCII formfeed (FF) ≡ \014

\n ASCII linefeed (LF) ≡ \012

\r ASCII carriage return (CR) ≡ \015

\t ASCII tab (TAB) ≡ \011

\v ASCII vertical tab (VT) ≡ \013

\Q...\E Matches the ... text literally even if it contains characters like *

ptg7913109

122 Chapter 3. Strings

Table 3.14 The Regexp Package’s Character Classes

Syntax Description

[chars] Any character in chars

[^chars] Any character not in chars

[:name:]

Any ASCII character in the name character class:
[[:alnum:]] ≡ [0-9A-Za-z] [[:lower:]] ≡ [a-z]
[[:alpha:]] ≡ [A-Za-z] [[:print:]] ≡ [-~]
[[:ascii:]] ≡ [\x00-\x7F] [[:punct:]] ≡ [!-/:-@[-`{-~]
[[:blank:]] ≡ [\t] [[:space:]] ≡ [\t\n\v\f\r]
[[:cntrl:]] ≡ [\x00-\x1F\x7F] [[:upper:]] ≡ [A-Z]
[[:digit:]] ≡ [0-9] [[:word:]] ≡ [0-9A-Za-z_]
[[:graph:]] ≡ [!-~] [[:xdigit:]] ≡ [0-9A-Fa-z]

[:^name:] Any ASCII character not in the name character class

. Any character (including newline if flag s is set)

\d Any ASCII digit: [0-9]

\D Any ASCII nondigit: [^0-9]

\s Any ASCII whitespace: [\t\n\f\r]

\S Any ASCII nonwhitespace: [^ \t\n\f\r]

\w Any ASCII “word” character: [0-9A-Za-z_]

\W Any ASCII non-“word” character: [^0-9A-Za-z_]

\pN Any Unicode character in the N one-letter character class; e.g., \pL
to match a Unicode letter

\PN
Any Unicode character not in the N one-letter character class; e.g.,
\PL to match a Unicode nonletter

\p{Name}
Any Unicode character in the Name character class; e.g., \p{Ll}
matches lowercase letters, \p{Lu} matches uppercase letters, and
\p{Greek} matches Greek characters

\P{Name} Any Unicode character not in the Name character class

Table 3.15 The Regexp Package’s Zero-Width Assertions

Syntax Description/result

^ Start of text (or start of line if flag m is set)

$ End of text (or end of line if flag m is set)

\A Start of text

\z End of text

\b Word boundary (\w followed by \W or \A or \z; or vice versa)

\B Not a word boundary

ptg7913109

3.6. Other String-Related Packages 123

Table 3.16 The Regexp Package’s Quantifiers

Syntax Description

e? or e{0,1} Greedily match zero or one occurrence of expression e

e+ or e{1,} Greedily match one or more occurrences of expression e

e* or e{0,} Greedily match zero or more occurrences of expression e

e{m,} Greedily match at least m occurrences of expression e

e{,n} Greedily match at most n occurrences of expression e

e{m,n} Greedily match at least m and atmost n occurrencesof expres-
sion e

e{m} or e{m}? Match exactly m occurrences of expression e

e?? or e{0,1}? Nongreedily match zero or one occurrence of expression e

e+? or e{1,}? Nongreedily match one or more occurrences of expression e

e*? or e{0,}? Nongreedily match zero or more occurrences of expression e

e{m,}? Nongreedily match at least m occurrences of expression e

e{,n}? Nongreedily match at most n occurrences of expression e

e{m,n}?
Nongreedily match at least m and at most n occurrences of
expression e

Table 3.17 The Regexp Package’s Flags and Groups

Syntax Description

i Match case-insensitively (the default is case-sensitive matching)

m
Multiline mode makes ^ and $ match at the start and end of
every line (the default is single-line mode)

s
Make . match any character including newlines (the default is
for . to match any character except newlines)

U

Make greedy matches nongreedy and vice versa; i.e., swap the
meaning of ? after a quantifier (the default is for matches to be
greedy unless their quantifier is followed by ? to make them
nongreedy)

(?flags)
Apply the given flags from this point on (precede the flag or flags
with - to negate)

(?flags:e)
Apply the given flags to expression e (precede the flag or flags
with - to negate)

(e) Group and capture the match for expression e

(?P<name>e) Group and capture the match for expression e using the capture
name name

(?:e) Group but don’t capture the match for expression e

ptg7913109

124 Chapter 3. Strings

Table 3.18 The *regexp.RegexpType’s Methods #1

Variable rx is of type *regexp.Regexp; s is the string to match; b is the []byte to match; r is
the io.RuneReader tomatch; and n is themaximumnumber of matches (-1meansasmany
as possible).A nil returnmeans no match(es).

Syntax Description/result

rx.Expand(...)
Performs the $ replacements done by the Replace-
All() method—rarely used directly (advanced)

rx.ExpandString(...)
Performs the $ replacements done by the ReplaceAll-
String() method—rarely used directly (advanced)

rx.Find(b) A []byte with the leftmost match or nil

rx.FindAll(b, n) A [][]byte of all nonoverlapping matches or nil

rx.FindAllIndex(b, n)
An [][]int (a slice of 2-item slices) each identifying
a match or nil; e.g., b[pos[0]:pos[1]]where pos is one
of the 2-item slices

rx.FindAllString(s, n) A []string of all nonoverlapping matches or nil

rx.FindAllString-
Index(s, n)

An [][]int (a slice of 2-item slices) each identifying
a match or nil; e.g., s[pos[0]:pos[1]]where pos is one
of the 2-item slices

rx.FindAllStringSub-
match(s, n)

A [][]string (a slice of string slices where each
string corresponds to a capture) or nil

rx.FindAllStringSub-
matchIndex(s, n)

An [][]int (a slice of 2-item int slices that corre-
spond to captures) or nil

rx.FindAllSub-
match(b, n)

A [][][]byte (a slice of slices of []bytes where each
[]byte corresponds to a capture) or nil

rx.FindAllSubmatch-
Index(b, n)

An [][]int (a slice of 2-item int slices that corre-
spond to captures) or nil

rx.FindIndex(b)
A 2-item []int identifying the leftmost match; e.g.,
b[pos[0]:pos[1]] where pos is the 2-item slice, or nil

rx.FindReaderIndex(r) A 2-item []int identifying the leftmost match or nil

rx.FindReaderSub-
matchIndex(r)

An []int identifying the leftmostmatch and captures
or nil

rx.FindString(s) The leftmost match or an empty string

rx.FindString-
Index(s)

A 2-item []int identifying the leftmost match or nil

rx.FindStringSub-
match(s)

A []string with the leftmost match and captures
or nil

rx.FindStringSub-
matchIndex(s)

An []int identifying the leftmostmatch and captures
or nil

ptg7913109

3.6. Other String-Related Packages 125

Table 3.19 The *regexp.RegexpType’s Methods #2

Variable rx is of type *regexp.Regexp; s is the string to match; b is the []byte to match.

Syntax Description/result

rx.FindSubmatch(b) A [][]byte with the leftmost match and captures
or nil

rx.FindSubmatch-
Index(b)

A [][]byte with the leftmost match and captures
or nil

rx.Literal-
Prefix()

The possibly empty prefix string that the regexp must
begin with and a bool indicating whether the whole
regexp is a literal string match

rx.Match(b) true if the regexp matches b

rx.MatchReader(r) true if the regexp matches r of type io.RuneReader

rx.MatchString(s) true if the regexp matches s

rx.NumSubexp() How many parenthesized groups the regexp has

rx.Replace-
All(b, br)

A []byte that is a copy of b with every match replaced
with br of type []byte with $ replacements (see text)

rx.ReplaceAll-
Func(b, f)

A []byte that is a copy of b with every match replaced
with the return value of a call to function f of type
func([]byte) []byte and whose argument is a match

rx.ReplaceAll-
Literal(b, br)

A []byte that is a copy of b with every match replaced
with br of type []byte

rx.ReplaceAll-
LiteralString(s, sr)

A string that is a copy of s with every match replaced
with sr of type string replacements

rx.ReplaceAll-
String(s, sr)

A string that is a copy of s with every match replaced
with sr of type string with $ replacements (see text)

rx.ReplaceAll-
StringFunc(s, f)

A string that is a copy of s with every match replaced
with the return value of a call to function f of type
func(string) string and whose argument is a match

rx.String() A string containing the regexp pattern

rx.Subexp-
Names()

A []string (which must not be modified), containing
the names of all the named subexpressions

ptg7913109

126 Chapter 3. Strings

An example that typically involves the use of replacements is where we have a
list of names of the form forename1… forenameN surname and want to change
the list to have the form surname, forename1… forenameN. Here is how we can
achieve this using the regexp package, and with correct handling of accented
and other non-English characters.

nameRx := regexp.MustCompile(`(\pL+\.?(?:\s+\pL+\.?)*)\s+(\pL+)`)
for i := 0; i < len(names); i++ {
 names[i] = nameRx.ReplaceAllString(names[i], "${2}, ${1}")
}

The names variable is of type []string and initially holds the original names.
Once the loop is complete the names variable holds the modified names.

The regexp matches one or more whitespace-separated forenames each consist-
ing of one or more Unicode letters (\pL) optionally followed by a period, followed
by whitespace and a surname of one or more Unicode letters.

Using numbered replacements can lead tomaintenanceproblems—for example,
if we inserted a new capture group in the middle, at least one of the numbers
would be wrong. The solution is to use named replacements since these aren’t
order-dependent.

nameRx := regexp.MustCompile(
`(?P<forenames>\pL+\.?(?:\s+\pL+\.?)*)\s+(?P<surname>\pL+)`)

for i := 0; i < len(names); i++ {
 names[i] = nameRx.ReplaceAllString(names[i],

"${surname}, ${forenames}")
}

Herewe have given the two capture groupsmeaningful names. This helpsmake
both the regular expression and the replacement string more understandable.

A simple regexp for matching duplicate “words” that relies on backreferences
would be written in, say, Python or Perl, as \b(\w+)\s+\1\b. Since the regexp
package doesn’t support backreferences, to achieve the same effect we must
combine a regexp with a few lines of code.

wordRx := regexp.MustCompile(`\w+`)
if matches := wordRx.FindAllString(text, -1); matches != nil {
 previous := ""

for _, match := range matches {
if match == previous {

 fmt.Println("Duplicate word:", match)
 }
 previous = match

ptg7913109

3.6. Other String-Related Packages 127

 }
}

The regexp greedily matches one or more “word” characters. The regexp.Reg-
exp.FindAllString() function returns a []string of all nonoverlapping matches.
If there was at least onematch (i.e., matches is not nil),we iterate over the string
slice and print any duplicates by comparing the current matched word with the
previous word.

Another common regexp use is to match key: value lines in configuration files.
Here is an example that populates a map based on such lines.

valueForKey := make(map[string]string)
keyValueRx := regexp.MustCompile(`\s*([[:alpha:]]\w*)\s*:\s*(.+)`)
if matches := keyValueRx.FindAllStringSubmatch(lines, -1); matches != nil {

for _, match := range matches {
 valueForKey[match[1]] = strings.TrimRight(match[2], "\t ")
 }
}

The regexp says to skip any leading whitespace and match a key which must
begin with an English letter followed by zero or more letters, digits, or under-
scores, followed by optional whitespace, a colon, optional whitespace, and then
the value—any characters up to but excluding the newline or end of the string.
Incidentally, we could have used the slightly shorter [A-Za-z] instead of [[:al-

pha:]], or if we wanted to support Unicode keys, (\pL[\pL\p{Nd}_]*), Unicode
letter followed by zero or more Unicode letters, decimal digits, or underscores.
Since the .+ expression won’t match newlines, this regexp will work on a string
that contains multiple key: value lines.

Thanks to the use of greedy matching (which is the default), the regexp will
consume any whitespace that precedes the value. But to get rid of whitespace
at the end of a value we must use a trim function since the .+ expression’s
greediness means that following it with \s* would have no effect. Nor could we
have used nongreedy matching (e.g., .+?), since that would only match the first
word of values that contain two or more space-separated words.

By using the regexp.Regexp.FindAllStringSubmatch() function we will get a
slice of slices of strings (or nil); the -1 says to match as many times as possible
(without overlaps). In this example, each match will produce a slice of exactly
three strings, the first containing the whole match, the second containing the
key, and the third containing the value. Both the key and the value will have at
least one character because their minimum quantification is one.

Although it is best to parse XML using Go’s xml.Decoder, sometimeswemay sim-
ply have XML-style attributeswhich have the form name="value" or name='val-
ue'. For these, a simple regexp is sufficient.

ptg7913109

128 Chapter 3. Strings

attrValueRx := regexp.MustCompile(regexp.QuoteMeta(attrName) +
`=(?:"([^"]+)"|'([^']+)')`)

if indexes := attrValueRx.FindAllStringSubmatchIndex(attribs, -1);
 indexes != nil {

for _, positions := range indexes {
 start, end := positions[2], positions[3]

if start == -1 {
 start, end = positions[4], positions[5]
 }
 fmt.Printf("'%s'\n", attribs[start:end])
 }
}

The attrValueRx regexpmatches a safely-escaped attribute name followed by an
equals sign and then a double- or single-quoted string. The parentheses used
for the alternation (|) would normally also capture, but in this case we don’t
want them to—since we don’t want to capture the quotes—so we have made
the parentheses noncapturing ((?:)). Just to show how it is done, instead of
retrieving the actualmatching stringswehave retrieved index positions. In this
example there will always be three pairs of ([start:end]) indexes, the first pair
for the whole match, the second pair for a double-quoted value, and the third
pair for a single-quoted value. Of course, only one of the values will match, in
which case the other’s indexes will both be -1.

Just like the previous examples we have asked to match every nonoverlapping
match in the string, and in this case we get an [][]int of index positions (or
nil). For each positions slice of ints, the whole match is the slice attribs[posi-
tions[0]:positions[1]]. The quoted string is either attribs[positions[2]:posi-
tions[3]] or attribs[positions[4]:positions[5]], depending on the type of quote
used. The code begins with the assumption that double quotes are used, but if
this isn’t the case (i.e., start == -1), then it uses the single-quote positions.

Earlier we saw how to write a SimplifyWhitespace() function (111 ➤). Here is
how to achieve the same thing using a regular expression and the strings.Trim-
Space() function.

simplifyWhitespaceRx := regexp.MustCompile(`[\s\p{Zl}\p{Zp}]+`)
text = strings.TrimSpace(simplifyWhitespaceRx.ReplaceAllLiteralString(
 text, " "))

The regexp does a single pass on the string and the strings.TrimSpace() function
only works on the ends of the string, so the combination of both doesn’t do
too much work. The regexp.Regexp.ReplaceAllLiteralString() function takes a
string to work on and a replacement text with which every match is replaced.
(The difference between regexp.Regexp.ReplaceAllString() and regexp.Regexp.
ReplaceAllLiteralString() is that the former does $ replacements and the latter

ptg7913109

3.6. Other String-Related Packages 129

does not.) So, in this case, every sequence of one or more whitespace characters
(ASCII whitespaces and Unicode line and paragraph separators) is replaced
with a single space.

For our final regexp example we will see how to do a replacement using a
function.

unaccentedLatin1Rx := regexp.MustCompile(
`[ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝàáâãäåæçèéêëìíîïñðòóôõöøùúûüýÿ]+`)

unaccented := unaccentedLatin1Rx.ReplaceAllStringFunc(latin1,
 UnaccentedLatin1)

The regexp simply matches one or more accented Latin-1 letters. The reg-
exp.Regexp.ReplaceAllStringFunc() function calls the function passed as its sec-
ond argument (with signature func(string) string) every time there is a match.
The function is given the match’s text as its argument and this text is replaced
with the text the function returns (which could be an empty string).

func UnaccentedLatin1(s string) string {
 chars := make([]rune, 0, len(s))

for _, char := range s {
switch char {
case 'À', 'Á', 'Â', 'Ã', 'Ä', 'Å':

 char = 'A'
case 'Æ':

 chars = append(chars, 'A')
 char = 'E'

// ...
case 'ý', 'ÿ':

 char = 'y'
 }
 chars = append(chars, char)
 }

return string(chars)
}

This simple function replaces every accented Latin-1 character with its unac-
cented cousin. It also replaces the æ ligature (which is a full character in some
languages) with the characters a and e. Of course, this example is rather arti-
ficial since in this case we could just as easily write unaccented := Unaccented-
Latin1(latin1) to perform the conversion.

This completes the illustrative regexp examples. Notice that in Tables 3.18
and 3.19, for every “String” regexp function, there is a corresponding function
without the “String” that operates on []bytes rather than strings. Also, a few of
the book’s other examples use the regexp package (e.g., 35 ➤and ➤ 344).

ptg7913109

130 Chapter 3. Strings

Now that we have covered Go’s strings and introduced its string-related
packages,wewill round off the chapter with an example thatmakesuse of some
of Go’s string functionality, followed as usual with some exercises.

3.7. Example: M3u2pls

In this section we will briefly review a short but complete program that reads
an arbitrary .m3u music playlist file given on the command line and outputs
an equivalent .pls playlist file. The program makes a lot of use of the strings
package and other material covered in this and previous chapters, as well as
introducing a few minor new things.

Here is an extract from an .m3u file with an ellipsis (…) used to elide most of the
songs.

#EXTM3U
#EXTINF:315,David Bowie - Space Oddity
Music/David Bowie/Singles 1/01-Space Oddity.ogg
#EXTINF:-1,David Bowie - Changes
Music/David Bowie/Singles 1/02-Changes.ogg
...
#EXTINF:251,David Bowie - Day In Day Out
Music/David Bowie/Singles 2/18-Day In Day Out.ogg

The file begins with the literal string #EXTM3U. Each song is represented by two
lines. The first line starts with the literal string #EXTINF: and is followed by the
song’s duration in seconds, then a comma,and then the song’s name. A duration
of -1 means that the length is unknown (in both formats). The second line is
the path to the file that stores the song—here we are using the open, patent-free
Vorbis Audio format in an Ogg container (www.vorbis.com), and Unix-style
path separators.

Here is an extract from an equivalent .pls file, again with an ellipsis used to
elide most of the songs.

[playlist]
File1=Music/David Bowie/Singles 1/01-Space Oddity.ogg
Title1=David Bowie - Space Oddity
Length1=315
File2=Music/David Bowie/Singles 1/02-Changes.ogg
Title2=David Bowie - Changes
Length2=-1
...
File33=Music/David Bowie/Singles 2/18-Day In Day Out.ogg
Title33=David Bowie - Day In Day Out

www.vorbis.com

ptg7913109

3.7. Example: M3u2pls 131

Length33=251
NumberOfEntries=33
Version=2

The .pls file format is slightly more elaborate than the .m3u format. The file
begins with the literal string [playlist]. Each song is represented by three
key–value entries for the filename, title, and duration in seconds. The .pls
format is actually a specialized form of .ini file (Windows initialization format)
where each key (within a square-bracket-titled section)must be unique—hence
the numbering. And the file ends with two lines of metadata.

The m3u2pls program (in file m3u2pls/m3u2pls.go) expects to be run with an .m3u
file specified on the command line and writes an equivalent .pls file to os.Stdout
(i.e., to the console). We can easily use redirection to send the .pls data into an
actual file. Here is an example of the program’s usage.

$./m3u2pls Bowie-Singles.m3u > Bowie-Singles.pls

Here we tell the program to read the Bowie-Singles.m3u file and use console
redirection to write the .pls format version to the Bowie-Singles.pls file. (Of
course, it would be nice to be able to convert the other way too—and this is
precisely what the exercise that follows this section involves.)

We will review almost the entire program, skipping only the imports.

func main() {
if len(os.Args) == 1 || !strings.HasSuffix(os.Args[1], ".m3u") {

 fmt.Printf("usage: %s <file.m3u>\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

if rawBytes, err := ioutil.ReadFile(os.Args[1]); err != nil {
 log.Fatal(err)
 } else {
 songs := readM3uPlaylist(string(rawBytes))
 writePlsPlaylist(songs)
 }
}

The main() function begins by checking to see if the program has been invoked
with an .m3u file specified on the command line. The strings.HasSuffix() func-
tion takes two strings and returns true if the first string ends with the second
string. If no .m3u file has been specified a usage message is output and the pro-
gram is terminated. The filepath.Base() function returns the basename (i.e.,
thefilename) of the given path and the os.Exit() function cleanly terminatesthe

ptg7913109

132 Chapter 3. Strings

program—for example, stopping all goroutines and closing any open files—and
returns its argument to the operating system.

If an .m3u file has been specified we attempt to read the entire file using the
ioutil.ReadFile() function. This function returns all the file’s bytes (as a []byte)
and an errorwhich will be nil if the file was readwithout incident. If a problem
occurred (e.g., the file doesn’t exist or is unreadable),weuse the log.Fatal() func-
tion to output the error to the console (actually to os.Stderr), and to terminate
the program with an exit code of 1.

If the file is successfully read we convert its raw bytes to a string—this assumes
that the bytes represent 7-bit ASCII or UTF-8 Unicode—and immediately pass
the string to a custom readM3uPlaylist() function for parsing. The function
returns a slice of Songs (i.e., a []Song). We then write the song data using a
custom writePlsPlaylist() function.

type Song struct {
 Title string
 Filename string
 Seconds int
}

Here we have defined a custom Song type using a struct (§6.4,➤ 275) to provide
convenient file-format-independent storage for the information about each
song.

func readM3uPlaylist(data string) (songs []Song) {
var song Song
for _, line := range strings.Split(data, "\n") {

 line = strings.TrimSpace(line)
if line == "" || strings.HasPrefix(line, "#EXTM3U") {

continue

 }
if strings.HasPrefix(line, "#EXTINF:") {

 song.Title, song.Seconds = parseExtinfLine(line)
 } else {
 song.Filename = strings.Map(mapPlatformDirSeparator, line)
 }

if song.Filename != "" && song.Title != "" && song.Seconds != 0 {
 songs = append(songs, song)
 song = Song{}
 }
 }

return songs
}

ptg7913109

3.7. Example: M3u2pls 133

This function accepts the entire contents of an .m3u file as a single string and
returns a slice of all the songs it is able to parse from the string. It begins by
declaring an empty Song variable called song. Thanks to Go’s practice of always
initializing things to their zero value, song’s initial contents are two empty
strings and a Song.Seconds value of 0.

At the heart of the function is a for … range loop (§5.3, ➤ 203). The
strings.Split() function is used to split the single string that holds the entire
.m3u file’s data into separate lines, and the for loop iterates over each of these
lines. If a line is empty or is the first line (i.e., starts with the string literal
"#EXTM3U"), the continue statement is reached; this simply passes control back
to the for loop to force the next iteration—or the end of the loop if there are no
more lines.

If the line begins with the "#EXTINF:" string literal, the line is passed to a
custom parseExtinfLine() function for parsing: This function returns a string
and an int which are immediately assigned to the current song’s Song.Title and
Song.Seconds fields. Otherwise, it is assumed that the line holds the filename
(including the path) of the current song.

Rather than storing the filename as is, the strings.Map() function is called with
a custom mapPlatformDirSeparator() function to convert directory separators
into those native for the platform the program is running on, and the resultant
string is stored as the current song’s Song.Filename. The strings.Map() function
is passed a mapping function with signature func(rune) rune and a string. For
every character in the string the mapping function is called with the character
replaced by the character returned by the passed-in function—which may be
the same as the original one, of course. As usual with Go, a character is a rune
whose value is the character’s Unicode code point.

If the current song’s filename and title are both nonempty, and if the song’s
duration isn’t zero, the current song is appended to the songs return value (of
type []Song) and the current song is set to its zero value (two empty strings and
0) by assigning an empty Song to it.

func parseExtinfLine(line string) (title string, seconds int) {
if i := strings.IndexAny(line, "-0123456789"); i > -1 {

const separator = ","
 line = line[i:]

if j := strings.Index(line, separator); j > -1 {
 title = line[j+len(separator):]

var err error

if seconds, err = strconv.Atoi(line[:j]); err != nil {
 log.Printf("failed to read the duration for '%s': %v\n",
 title, err)
 seconds = -1
 }

ptg7913109

134 Chapter 3. Strings

 }
 }

return title, seconds
}

This function is used to parse lines of the form: #EXTINF:duration,title and
where the duration is expected to be an integer, either -1 or greater than zero.

The strings.IndexAny() function is used to find the position of the first digit or
the minus sign. An index position of -1 means not found; any other value is the
index position of the first occurrence of any of the characters in the string given
as the strings.IndexAny() function’s second argument, in which case variable i
holds the position of the first digit of the duration (or of -).

Once we knowwhere the digits begin we slice the line to start at the digits. This
effectively discards the "#EXTINF:" that was at the start of the string, so now the
line has the form: duration,title.

The second if statement uses the strings.Index() function to get the index
position of the first occurrence of the "," string in the line—or -1 if there is no
such occurrence.

The title is the text from after the comma to the end of the line. To slice from
after the comma we need the comma’s starting position (j) and must add to
this the number of bytes the comma occupies (len(separator)). Of course, we
know that a comma is a 7-bit ASCII character and so has a length of one, but
the approach shown here will work with any Unicode character, no matter how
many bytes are used to represent it.

The duration is the number whose digits go from the start of the line up to but
excluding the j-th byte (where the comma is). We convert the number into an
int using the strconv.Atoi() function—and if the conversion fails we simply set
the duration to -1 which is an acceptable “unknown duration” value, and log the
problem so that the user is aware of it.

func mapPlatformDirSeparator(char rune) rune {
if char == '/' || char == '\\' {

return filepath.Separator
 }

return char
}

This function is called by the strings.Map() function (inside the readM3uPlay-
list() function) for every character in a filename. It replaces any directory sep-
arator with the platform-specific directory separator. And any other character
is returned unchanged.

ptg7913109

3.7. Example: M3u2pls 135

Like most cross-platform programming languages and libraries, Go uses
Unix-style directory separators internally on all platforms, even on Windows.
However, for user-visible output and for human-readable data files, we prefer
to use the platform-specific directory separator. To achieve this we can use the
filepath.Separator constant which holds the / character on Unix-like systems
and the \ character on Windows.

In this example we don’t know whether the paths we are reading use forward
slashes or backslashes, so we have had to cater for both. However, if we know
for sure that a path uses forward slashes we can use the filepath.FromSlash()
function on it: This will return the path unchanged on Unix-like systems, but
will replace forward slashes with backslashes on Windows.

func writePlsPlaylist(songs []Song) {
 fmt.Println("[playlist]")

for i, song := range songs {
 i++
 fmt.Printf("File%d=%s\n", i, song.Filename)
 fmt.Printf("Title%d=%s\n", i, song.Title)
 fmt.Printf("Length%d=%d\n", i, song.Seconds)
 }
 fmt.Printf("NumberOfEntries=%d\nVersion=2\n", len(songs))
}

This function writes out the songs data in .pls format. It writes the data to
os.Stdout (i.e., to the console), so file redirection must be used to get the output
into a file.

The function begins by writing the section header ("[playlist]"), and then for
every song it writes the song’s filename, title, and duration in seconds, each on
their own lines. Since each key must be unique a number is appended to each
one, starting from 1. And at the end the two items of metadata are written.

3.8. Exercises
There are two exercises for this chapter, the first involving the modification of
an existing command-line program, and the second requiring the creation of a
web application (optionally) from scratch.

1. The previous section’s m3u2pls program does a decent job of converting
.m3u playlist files into .pls format. But what would make the program
much more useful is if it could also perform the reverse conversion, from
.pls format to .m3u format. For this exercise copy the m3u2pls directo-
ry to, say, my_playlist and create a new program called playlist that has
the required functionality. Its usage message should be usage: playlist
<file.[pls|m3u]>.

ptg7913109

136 Chapter 3. Strings

If the program is called with an .m3u file it should do exactly what the
m3u2pls programdoes:Write the file’s data in .pls format to the console. But
if the program is called with a .pls file it should write the file’s data in .m3u
format, again to the console. The new functionality will require about 50
new lines of code. A straightforward solution is provided in the file play-
list/playlist.go.

2. Data cleaning, matching, and mining applications that involve people’s
names can often produce better results by matching names by the way they
sound rather than by how they are spelled. Many algorithms for name
matching English language names are available, but the oldest and sim-
plest is the Soundex algorithm.

The classic Soundex algorithm produces a soundex value of a capital letter
followed by three digits. For example, the names “Robert” and “Rupert”
both have the same soundex value of “R163” according to most Soundex
algorithms. However, the names “Ashcroft” and “Ashcraft” have a soundex
value of “A226” according to some Soundex algorithms (including the one
in the exercise solution), but “A261” according to others.

The exercise is to write a web application that supports two web pages.
The first page (with path /) should present a simple form through which
the user can enter one or more names to see their soundex values—this is
illustrated in Figure 3.3’s left-hand screenshot. The second page (with path
/test) should execute the application’s soundex() function on a list of strings
and compare each result to what we would expect—this is illustrated in
Figure 3.3’s right-hand screenshot.

Figure 3.3 The Soundex application on Linux

Readers who would like a jump-start could copy one of the other web
applications (statistics, statistics_ans, quadratic_ans1, quadratic_ans2) to

ptg7913109

3.8. Exercises 137

get the skeleton of the application up and running, and then just focus on
the soundex and test page functionality.

A solution is in the file soundex/soundex.go and is about 150 lines; the
soundex() function itself is 20 lines although it does rely on an []int that
maps capital letters to digits in a slightly subtle way. The solution’s algo-
rithm is based on the Python implementation shown on the Rosetta Code
web site (rosettacode.org/wiki/Soundex) which produces slightly different
results to theGo implementation shown on that site and from the one shown
on Wikipedia (en.wikipedia.org/wiki/Soundex). The test data is in the file
soundex/soundex-test-data.txt.

Naturally, readersare free to implementwhichever version of the algorithm
they prefer—or even implement a more advanced algorithm such as one of
the Metaphone algorithms—and simply adjust the tests to match.

ptg7913109

This page intentionally left blank

ptg7913109

4 Collection Types

§4.1. Values, Pointers, and Reference Types ➤ 140

§4.2. Arrays and Slices ➤ 148

§4.2.1. Indexing and Slicing Slices ➤ 153

§4.2.2. Iterating Slices ➤ 154

§4.2.3.Modifying Slices ➤ 156

§4.2.4. Sorting and Searching Slices ➤ 160

§4.3.Maps ➤ 164

§4.3.1. Creating and Populating Maps ➤ 166

§4.3.2.Map Lookups ➤ 168

§4.3.3.Modifying Maps ➤ 169

§4.3.4. Key-Ordered Map Iteration ➤ 170

§4.3.5.Map Inversion ➤ 170

§4.4. Examples ➤ 171

§4.4.1. Example: Guess Separator ➤ 171

§4.4.2. Example:Word Frequencies ➤ 174

This chapter’s first section explains Go’s values, pointers, and reference types
since an understanding of these is necessary for the rest of the chapter and
for subsequent chapters. Go’s pointers work just like those in C and C++, both
syntactically and semantically—except that Go does not support pointer arith-
metic, thus eliminating a whole category of potential bugs that can affect C and
C++ programs. Nor doesGo need free()or delete since Go has a garbage collector
and manages memory automatically.★ Values of Go’s reference types are cre-
ated in a unique and simple way and once created are used rather like Java or
Python object references. Go’s valueswork like those inmost other mainstream
languages.

This chapter’s other sections are devoted to Go’s built-in collection types. All the
built-in collection types are covered—arrays, slices, and maps. These types are

★Go’s delete() function is used to delete keys from maps as we will see later in this chapter.

139

ptg7913109

140 Chapter 4. Collection Types

so versatile and efficient that between them they comfortablymeet almost every
need. The standard library providessomeadditional,more specializedcollection
types—container/heap, container/list, and container/ring—that might be more
efficient for particular use cases. A couple of tiny examples showing a heap and
a list are presented in a later chapter (§9.4.3,➤ 421). And Chapter 6 has an ex-
ample that shows how to create a balanced binary tree (§6.5.3, ➤ 302).

4.1. Values, Pointers, and Reference Types

In this section we discuss what variables hold (values, pointers, and references
—including array values, and slice and map references), whereas in the follow-
ing sections we explain how to actually use arrays, slices, and maps.

In general, Go variables hold values. That is, we can think of a variable as
“being” the value it stores. The exceptions are variables that refer to channels,
functions, methods, maps, and slices—these hold references—and variables
that hold pointers.

Values that are passed to functions or methods are copied. This is cheap for
Booleans and numbers because they only occupy from one to eight bytes each.
Passing strings by value is also cheap because Go compilers can safely optimize
passing them so that only a small amount of data is actually passed per string,
no matter how large the string is, since Go strings are immutable. (The amount
per string is 16 bytes on 64-bit machines and 8 bytes on 32-bit machines.★) Of
course, if a passed-in string is modified (e.g., using the += operator), behind
the scenes Go must do a copy on write which is potentially expensive for large
strings—but this is a price that would have to be paid no matter what language
was being used.

Unlike C or C++, Go arrays are passed by value—so passing large arrays is
expensive. Fortunately, arrays are rarely needed in Go programming since
slices are used instead, as we will see in the next section. Passing a slice costs
much the same as passing a string (i.e., 16 bytes on 64-bit machines and 12
bytes on 32-bit machines), no matter what the slice’s length or capacity.★ Nor is
there any copy on write overhead if the slice is modified, because unlike strings,
slices are mutable (i.e., if a slice is modified the modification is visible to all the
variables—references—that refer to it).

Figure 4.1 illustrates the relationship between variables and the memory they
occupy. In the figure, memory addresses are shown in gray since they will vary,
and bold is used to indicate changes.

Conceptually, a variable is the name given to a piece of memory that holds a
value of a particular type. So if we have the short variable declaration y := 1.5,

★The sizes in bytes were measured on a 64-bit machine and on a 32-bit machine at the time of this
writing. The amounts are implementation details that may vary but will never be large.

ptg7913109

4.1. Values,Pointers,and Reference Types 141

Statement Variable Value Type Memory Address

y := 1.5 y 1.5 float64 0xf8400000f8

y++ y 2.5 float64 0xf8400000f8

y 2.5 float64 0xf8400000f8

x 2.5 float64 Modifiable copy of y in Ceil()z := math.Ceil(y)

z 3.0 float64 0xf84000000c0

Figure 4.1 Simple values in memory

Go will set aside enough memory to store a float64 (i.e., 8 bytes) and will put
the 1.5 value into this memory. From this point onward—while y remains in
scope—Go will treat the variable y as synonymous with the memory that stores
the float64 that y is associated with. So if we follow the declaration with the
statement y++, Go will increment the value that y is associated with. However,
if we pass y to a function or method, Go will pass a copy of y; in other words Go
will create a new variable that is associated with the called function or method’s
corresponding parameter nameandwill copy y’s value into thememory set aside
for the new variable.

Sometimes we want a function to modify a variable that we pass it. This can
be done without formality for reference types as we will see, but value types are
copied, so any modifications are applied to the copy and the original value is
left unchanged. Also, it can be expensive to pass some values, because they are
large (e.g., an array, or a struct with lots of fields). Furthermore, local variables
are garbage-collected if they are no longer being used (e.g., when they are not
being referred to and they go out of scope), yet in many situations we want
to create variables whose lifetime is determined by us rather than by their
enclosing scope.

Parameters that are cheap to pass, parameters that are modifiable, and vari-
ables whose lifetimes are independent of scope, can all be achieved by using
pointers. A pointer is a variable that holds another variable’s memory address.
Pointers are created to point to variables of a particular type—this ensures
that Go knows how large (i.e., howmany bytes) the pointed-to value occupies. A
variable pointed to by a pointer can be modified through the pointer, as we will
see shortly. Pointers are cheap to pass (8 bytes on 64-bit machines, 4 bytes on
32-bit machines), regardless of the size of the value they point to. And pointed-
to variablespersist inmemory for as long as there is at least one pointer pointing
to them, so their lifetime is independent of the scope in which they were creat-
ed.★

★ C and C++ programmers should be aware that although a particular Go compiler may make
internal distinctions between stack and heap memory, Go programmers never have to worry about
this since Go handles all the memory management itself internally.

ptg7913109

142 Chapter 4. Collection Types

In Go the & operator is overloaded. When used as a binary operator it performs
a bitwise AND.When used as a unary operator it returns the memory address of
its operand—and it is a memory address that a pointer stores. In Figure 4.2’s
third statement we assign the address of variable x of type int to variable pi
which has type *int (pointer to int). The unary & is sometimes called the address
of operator. The term pointer refers to the fact that a variable that holds the
memory address of another variable is considered to be “pointing to” the other
variable, as illustrated by the arrows in Figure 4.2.

The * operator is also overloaded. It multiplies its operands when used as a
binary operator. And when used as a unary operator it provides access to the
value pointed to by the variable it is applied to. So, in Figure 4.2, *pi and x
can be used interchangeably after the statement pi := &x (but not after pi is
assigned to point to a different variable). And since they are both associated
with the same int in memory, any changes to one affect the other. The unary *
is sometimes called the contents of operator or the indirection operator or the
dereference operator.

Figure 4.2 also illustrates that if we change the pointed-to value (say, using
x++), the value changes aswewould expect, andwhenwe dereference the pointer

Statement Variable Value Type Memory Address

x := 3 x 3 int 0xf840000148

y := 22 y 22 int 0xf840000150

x == 3 && y == 22

x 3 int 0xf840000148
pi := &x

pi 0xf840000148 *int 0xf840000158

*pi == 3 && x == 3 && y == 22

x 4 int 0xf840000148
x++

pi 0xf840000148 *int 0xf840000158

*pi == 4 && x == 4 && y == 22

x 5 int 0xf840000148
*pi++

pi 0xf840000148 *int 0xf840000158

*pi == 5 && x == 5 && y == 22

y y int 0xf840000150
pi := &y

pi 0xf840000150 *int 0xf840000158

*pi == 22 && x == 5 && y == 22

y 23 int 0xf840000150
*pi++

pi 0xf840000150 *int 0xf840000158

*pi == 23 && x == 5 && y == 23

Figure 4.2 Pointers and values

ptg7913109

4.1. Values,Pointers,and Reference Types 143

(*pi), it returns the new value. We can also change the value through the
pointer. For example, *pi++ means increment the pointed-to value; of course,
thiswill only compile if the value’s type supports the ++ operator, asGo’s built-in
numbers do.

A pointer doesn’t have to stay pointing to the same value all the time. For ex-
ample, toward the bottom of the figure we set the pointer to point to a different
value (pi := &y), and then change y through the pointer. We could easily have
gone on to change y directly (say, using y++), and then *pi would return y’s new
value.

It is also possible to have pointers to pointers (and pointers to pointers to
pointers, etc.). Using a pointer to refer to a value is called indirection. And if we
use pointers to pointers we are said to be using multiple levels of indirection.
This is quite common in CandC++, but not needed so often in Go because of Go’s
use of reference types. Here is a very simple example.

z := 37 // z is of type int
pi := &z // pi is of type *int (pointer to int)
ppi := &pi // ppi is of type **int (pointer to pointer to int)
fmt.Println(z, *pi, **ppi)

**ppi++ // Semantically the same as: (*(*ppi))++ and *(*ppi)++
fmt.Println(z, *pi, **ppi)

37 37 37
38 38 38

In this snippet, pi is a pointer of type *int (pointer to int) that is pointing to z
of type int, and ppi is a pointer of type **int (pointer to pointer to int) that is
pointing to pi. When dereferencing we use one * for each level of indirection,
so *ppi dereferences ppi to produce an *int, that is, a memory address, and by
applying the * operator a second time (**ppi), we get the pointed-to int.

In addition to being the multiplication and dereferencing operator, the * oper-
ator is also overloaded for a third purpose—as a type modifier. When an * is
placed on the left of a type name it changes themeaning of the name from speci-
fying a value of the given type to specifying a pointer to a value of the given type.
This is shown in Figure 4.2’s “Type” column.

Let’s look at a tiny example to illustrate some of what we’ve discussed so far.

i := 9
j := 5
product := 0
swapAndProduct1(&i, &j, &product)
fmt.Println(i, j, product)

5 9 45

ptg7913109

144 Chapter 4. Collection Types

Here we have created three variables of type int and given them initial values.
Then we have called a custom swapAndProduct1() function that takes three int
pointers andmakes sure that the first two (pointed to) integers are in ascending
order and sets the third one’s (pointed to) value to the product of the first two.
Since the function takespointers rather than values,wemust pass theaddresses
of the ints, not the ints themselves. Whenever we see the & address of operator
being used in a function call,we should assumethat the corresponding variable’s
value might be modified inside the function. Here is the swapAndProduct1() func-
tion.

func swapAndProduct1(x, y, product *int) {
if *x > *y {

*x, *y = *y, *x
 }

*product = *x * *y // The compiler would be happy with: *product=*x**y
}

The function’s parameter declaration’s *int uses the * type modifier to specify
that the parameters are all pointers to integers. This means, of course, that
we can only pass the addresses of integer variables (using the & address of
operator), not integer variables themselves or literal integer values.

Within the function we are concerned with the values that the pointers point
to, so wemust use the * dereference operator throughout. In the last executable
line wemultiply two pointed-to values together and assign the result to another
pointer’s pointed-to value. Go can distinguish when two consecutive *s mean
multiplication and dereference rather than two dereferences, based on the
context. Inside the function the pointers are called x, y, and product, but the
values they point to are the ints i, j, and product, at the function’s call site.

Writing functions in this way is common in C and older C++ code, but is less
often necessary in Go. If we have just one or a few values it ismore idiomatic in
Go to return them, and if we have lots of values it is common to pass them as a
slice or map (which can be cheaply passed without using pointers, as we will see
shortly), or in a struct passed by pointer if they are all of different types. Here
is a simpler alternative function that doesn’t use pointers:

i := 9
j := 5
i, j, product := swapAndProduct2(i, j)
fmt.Println(i, j, product)

5 9 45

And here is how we would write the corresponding swapAndProduct2() function.

ptg7913109

4.1. Values,Pointers,and Reference Types 145

func swapAndProduct2(x, y int) (int, int, int) {
if x > y {

 x, y = y, x
 }

return x, y, x * y
}

This version of the function is perhaps clearer than the first one; but without us-
ing pointers it has the disadvantage that it cannot perform the swap in-place.

In C and C++ it is common to have functionswhich accept a pointer to a Boolean
that is used to indicate success or failure. This can easily be done in Go by
including a *bool in a function’s signature; but it is much more convenient to
return a Boolean success flag (or best of all, an error value), as the last (or only)
return value, which is standard practice in Go.

In the code snippets shown so far,we have used the & address of operator to take
the address of function parameters or local variables. Thanks to Go’s automatic
memory management this is always safe, since so long as a pointer refers to a
variable, that variable will be kept in memory. This is why it is safe to return
pointers to local variables created inside functions in Go (something that is a
disastrous error in C and C++ for nonstatic variables).

In situations where we want to pass around modifiable values of nonreference
types or to pass values of large types efficiently, we need to use pointers. Go
provides two syntaxes for creating variables and at the same time acquiring
pointers to them, one using the built-in new() function and the other using the
address of operator. We will look at both syntaxes, and at how to create a plain
custom struct value, for comparison.

type composer struct {
 name string
 birthYear int
}

Given this struct definition we can create composer values or we can create
pointers to composer values, that is, variables of type *composer. And in either
casewe can take advantage of Go’s support for struct initializationwhenwe use
braces.

antónio := composer{"António Teixeira", 1707} // composer value
agnes := new(composer) // pointer to composer
agnes.name, agnes.birthYear = "Agnes Zimmermann", 1845
julia := &composer{} // pointer to composer
julia.name, julia.birthYear = "Julia Ward Howe", 1819
augusta := &composer{"Augusta Holmès", 1847} // pointer to composer

ptg7913109

146 Chapter 4. Collection Types

fmt.Println(antónio)
fmt.Println(agnes, augusta, julia)

{António Teixeira 1707}
&{Agnes Zimmermann 1845} &{Augusta Holmès 1847} &{Julia Ward Howe 1819}

WhenGo prints pointers to structs it prints the dereferenced struct but prefixed
with the & addressof operator to indicate that it is a pointer. The part of the code
snippet where the agnes and julia pointers are created illustrates the following
equivalence when the type is one that can be initialized using braces:

new(Type) ≡ &Type{}

Both these syntaxes allocate a new zeroed value of the given Type and return
a pointer to the value. If the Type isn’t a type that can be initialized using
braces then we can use only the built-in new() function. And, of course, we don’t
have to worry about the value’s lifetime or ever delete it, since Go’s memory
management system takes care of all that for us.

One advantage of using the &Type{} syntax for structs is that we can specify
initial field values as we did here when creating the augusta pointer. (We can
even specify only selected fields and leave the others at their zero values as we
will see later; §6.4, ➤ 275.)

In addition to values and pointers, Go has reference types. (Go also has inter-
faces, but for almost all practical purposes we can consider an interface to be
a kind of reference; interfaces are covered later; §6.3, ➤ 265.) A variable of a
reference type refers to a hidden value in memory that stores the actual data.
Variables holding reference types are cheap to pass (e.g., 16 bytes for a slice and
8 bytes for a map on 64-bit machines), and are used with the same syntax as a
value (i.e., we don’t need to take a reference type’s address or dereference it to
access the value it refers to).

Once we reach the stage where we need to return more than four or five values
froma function ormethod, it is best to passa slice if the valuesarehomogeneous,
or to use a pointer to a struct if they are heterogeneous. Passing a slice, or a
pointer to a struct, is cheap, and allows us to modify the data in-place. We will
look at a couple of small examples to illustrate these points.

grades := []int{87, 55, 43, 71, 60, 43, 32, 19, 63}
inflate(grades, 3)
fmt.Println(grades)

[261 165 129 213 180 129 96 57 189]

Here we perform an operation on all the numbers in a slice of ints. Maps and
slices are reference types, and any changesmade to a map or to a slice’s items—

ptg7913109

4.1. Values,Pointers,and Reference Types 147

whether directly or inside a function they have been passed to—are visible to
all the variables that refer to them.

func inflate(numbers []int, factor int) {
for i := range numbers {

 numbers[i] *= factor
 }
}

The grades slice is passed in as the parameter numbers—but unlike when we pass
values, any changes applied to numbers are reflected in grades since they both
refer to the same underlying slice.

Since we want to modify the slice’s values in-place we have used a loop counter
to access each item in turn. We didn’t use a for index, item … range loop since
that gets a copy of each item from the slice it operates on—this would result in
the copy being multiplied by the factor each time and then discarded, leaving
the original slice unchanged. We could have used a for loop familiar in other
languages (e.g., for i := 0; i < len(numbers); i++), but instead we have used the
more convenient for index := range syntax. (All the for loop syntaxesare covered
in the next chapter; §5.3, ➤ 203.)

Let’s now imagine that we have a rectangle type that stores a rectangle’s
position as its top-left and bottom-right x, y coordinates, and its fill color. We
could represent the rectangle’s data using a struct.

type rectangle struct {
 x0, y0, x1, y1 int
 fill color.RGBA
}

Nowwe can create a value of the rectangle type, print it, resize it, and then print
it again.

rect := rectangle{4, 8, 20, 10, color.RGBA{0xFF, 0, 0, 0xFF}}
fmt.Println(rect)
resizeRect(&rect, 5, 5)
fmt.Println(rect)

{4 8 20 10 {255 0 0 255}}
{4 8 25 15 {255 0 0 255}}

As we noted in the previous chapter, even though Go knows nothing of our cus-
tom rectangle type it is still able to print it in a sensible way. The output shown
below the code snippet clearly shows that the custom resizeRect() function cor-
rectly did its job. And rather than passing the whole rectangle (at least 16 bytes

ptg7913109

148 Chapter 4. Collection Types

for the ints alone),we just passed its address (8 bytes on a 64-bit system,nomat-
ter how large the struct is).

func resizeRect(rect *rectangle, Δwidth, Δheight int) {
 (*rect).x1 += Δwidth // Ugly explicit dereference
 rect.y1 += Δheight // . automatically dereferences structs
}

The function’s first statement uses an explicit dereference just to show what
is happening under the hood. The (*rect) refers to the actual rectangle value
that the pointer points to, and the .x1 refers to the rectangle’s x1 field. The
second statement shows the idiomatic way to work with struct values—or with
pointers to structs—in the latter case relying on Go to do the dereferencing for
us. Thisworks becauseGo’s . (dot) selector operator automatically dereferences
pointers to structs.★

Certain types in Go are reference types: maps, slices, channels, functions, and
methods. Unlike with pointers, there is no special syntax for reference types
since they are used just like values. It is also possible to have pointers to the ref-
erence types, although this is really only useful—and sometimes essential—for
slices. (We will see the use case for using a pointer to a slice in the next chapter;
§5.7, ➤ 244.)

If we declare a variable to hold a function, the variable actually gets a reference
to the function. Function references know the signature of the function they
refer to, so it is not possible to pass a reference to a function that doesn’t have
the right signature—thus eliminating some really nasty errors and crashes
which can occur in languages that allow functions to be passed by pointer but
that don’t guarantee that such functions have the correct signature. We have
already seen a few examples of passing function references—for example,when
we passed a mapping function to the strings.Map() function (112 ➤; 132 ➤). We
will see many more examples of pointers and reference types throughout the
rest of the book.

4.2. Arrays and Slices

AGoarray is a fixed-length sequence of itemsof the same type.Multidimension-
al arrays can be created simply by using items that are themselves arrays.

Array itemsare indexed using the [] index operator by their 0-based position, so
an array’s first item is array[0] and its last item is array[len(array) - 1]. Arrays
are mutable, so we can use the syntax array[index] on the left of an assignment

★ Go doesn’t have or need the -> dereferencing operator used in C and C++. Go’s . (dot) operator is
sufficient for most situations (e.g., to access the fields in a struct or a pointer to a struct), and where
it isn’t, we can explicitly dereference using as many * operators as there are levels of indirection.

ptg7913109

4.2. Arrays and Slices 149

to set the array’s item at the given index position. We can also use this syntax
in an expression on the right of an assignment or in a function call, to access
the item.

Arrays are created using the syntaxes:

[length]Type
[N]Type{value1, value2, …, valueN}
[…]Type{value1, value2, …, valueN}

If the ... (ellipsis) operator is used in this context, Go will calculate the array’s
length for us. (The ellipsis operator is overloaded for other purposes, as we will
see later in this chapter and in Chapter 5.) In all cases an array’s length is fixed
and unchangeable.

Here are some examples that show how to create and index arrays.

var buffer [20]byte
var grid1 [3][3]int
grid1[1][0], grid1[1][1], grid1[1][2] = 8, 6, 2
grid2 := [3][3]int{{4, 3}, {8, 6, 2}}
cities := [...]string{"Shanghai", "Mumbai", "Istanbul", "Beijing"}
cities[len(cities)-1] = "Karachi"
fmt.Println("Type Len Contents")
fmt.Printf("%-8T %2d %v\n", buffer, len(buffer), buffer)
fmt.Printf("%-8T %2d %q\n", cities, len(cities), cities)
fmt.Printf("%-8T %2d %v\n", grid1, len(grid1), grid1)
fmt.Printf("%-8T %2d %v\n", grid2, len(grid2), grid2)

Type Len Contents
[20]uint8 20 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[4]string 4 ["Shanghai" "Mumbai" "Istanbul" "Karachi"]
[3][3]int 3 [[0 0 0] [8 6 2] [0 0 0]]
[3][3]int 3 [[4 3 0] [8 6 2] [0 0 0]]

Go guarantees that all array items are initialized to their zero value if they are
not explicitly initialized—or are only partly initialized—when they are created,
as the buffer, grid1, and grid2 variables illustrate.

The length of an array is given by the len() function. Since arrays are of fixed
size their capacity is alwaysequal to their length, so for arrays the cap() function
returns the same number as the len() function. Arrays can be sliced using the
same slicing syntax as strings or slices, only the result is a slice and not an array.
And just like strings and slices, arrays can be iterated using a for … range loop
(§5.3, ➤ 203).

In general, Go’s slices are more flexible, powerful, and convenient than arrays.
Arrays are passed by value (i.e., copied)—although the cost of this can be avoid-

ptg7913109

150 Chapter 4. Collection Types

ed by passing pointers—whereas slices are cheap to pass, regardless of their
length or capacity, since they are references. (A slice is passed as a 16-byte val-
ue on 64-bit machines and as a 12-byte value on 32-bit machines, nomatter how
many items it contains.) Arrays are of fixed size whereas slices can be resized.
The functions in Go’s standard library all use slices rather than arrays in their
public APIs.★ We recommend always using slices unless there is a very specific
need to use an array in a particular case. Both arrays and slices can be sliced
using the syntaxes shown in Table 4.1 (➤ 151).

A Go slice is a variable-length fixed-capacity sequence of items of the same type.
Despite their fixed capacity, slices can be shrunk by slicing them and can be
grown using the efficient built-in append() function, as we will see later in this
section. Multidimensional slices can be created quite naturally by using items
that are themselves slices—and the lengths of the inner slices in multidimen-
sional slices may vary.

Although arrays and slices store items of the same type there is no limitation in
practice. This is because the type used could be an interface. So we could store
items of any types provided that they all met the specified interface (i.e., had
the method or methods that the interface requires).We can even make an array
or slice’s type the empty interface, interface{}, which means that we could store
any items of any types—although when we accessed an item we would need to
use a type assertion or a type switch or introspection to make use of the item.
(Interfaces are covered in Chapter 6; reflection is covered in §9.4.9, ➤ 427.)

Slices are created using the syntaxes:

make([]Type, length, capacity)
make([]Type, length)
[]Type{}
[]Type{value1, value2, …, valueN}

The built-in make() function is used to create slices, maps, and channels. When
used to create a slice it creates a hidden zero-value initialized array, and returns
a slice reference that refers to the hidden array. The hidden array, like all arrays
in Go, is of fixed length, with the length being the slice’s capacity if the first
syntax is used, or the slice’s length if the second syntax is used, or the number
of items in braces if the composite literal (third and fourth) syntax is used.

A slice’s capacity is the length of its hidden array, and its length is any amount
up to its capacity. In the first syntax the slice’s lengthmust be less than or equal
to the capacity, although normally this syntax is used when we want the initial
length to be less than the capacity. The second, third, and fourth syntaxes are
used when we want the length and capacity to be the same. The composite

★ At the time of this writing, the Go documentation often uses the term array when describing
parameters that are actually slices.

ptg7913109

4.2. Arrays and Slices 151

Table 4.1 Slice Operations

Syntax Description/result

s[n] The item at index position n in slice s

s[n:m] A slice taken from slice s from index positions n to m - 1

s[n:] A slice taken from slice s from index positions n to len(s) - 1

s[:m] A slice taken from slice s from index positions 0 to m - 1

s[:] A slice taken from slice s from index positions 0 to len(s) - 1

cap(s) The capacity of slice s; always ≥ len(s)

len(s) The number of items in slice s; always ≤ cap(s)

s = s[:cap(s)] Increase slice s’s length to its capacity if they are different

literal (fourth) syntax is very convenient, since it allows us to create a slice with
some initial values.

The syntax []Type{} is equivalent to make([]Type, 0); both create an empty slice.
This isn’t useless since we can use the built-in append() function to effectively
increase a slice’s capacity. However, for practical purposes, when we need an
initially empty slice it is almost always better to create one using make(), giving
it a length of zero and a nonzero capacity that is or approximates the number
of items we expect the slice to end up with.

Valid index positions for a slice range from 0 to len(slice) - 1. A slice can be
resliced to reduce its length,and if a slice’s capacity is greater than its length the
slice can be resliced to increase its length up to its capacity. We can also increase
a slice’s capacity using the built-in append() function;we will see examples later
in this section.

Figure 4.3 (➤ 152) provides a conceptual view of the relationship between slices
and their hidden arrays. Here are the slices it shows.

s := []string{"A", "B", "C", "D", "E", "F", "G"}
t := s[:5] // [A B C D E]
u := s[3 : len(s)-1] // [D E F]
fmt.Println(s, t, u)
u[1] = "x"
fmt.Println(s, t, u)

[A B C D E F G] [A B C D E] [D E F]
[A B C D x F G] [A B C D x] [D x F]

Since the slices s, t, and u all refer to the same underlying data, a change to one
will affect any of the others that refer to the same data.

ptg7913109

152 Chapter 4. Collection Types

0 1 2 3 4 5 6 Indexes
"A" "B" "C" "D" "E" "F" "G" Hidden array

s := []string{"A", … t := s[:5] u := s[3:len(s) - 1]

len(s) == 7 len(t) == 5 len(u) == 3

cap(s) == 7 cap(t) == 7 cap(u) == 4

Figure 4.3 A conceptual view of some slices and their hidden array

s := new([7]string)[:]
s[0], s[1], s[2], s[3], s[4], s[5], s[6] = "A", "B", "C", "D", "E", "F","G"

Using the built-in make() function or the composite literal syntax are the best
ways to create slices, but here we show an approach that is not used in practice
but thatmakes the array–slice relationship obvious. The first statement creates
a pointer to an array using the built-in new() function, and then immediately
takes a slice of the entire array. This will produce a slice with a length and
capacity equal to the array’s length, but with every item set to its zero value, in
this case an empty string. The second statement completes the setup of the slice
by setting the individual items to the initial values we want, after which this
slice s is exactly the same as the one created in the previous snippet using the
composite literal syntax.

Here are the slice-based equivalents to the array examples we saw earlier,
except that we have set the buffer’s capacity to be greater than its length just to
show how it is done.

buffer := make([]byte, 20, 60)
grid1 := make([][]int, 3)
for i := range grid1 {
 grid1[i] = make([]int, 3)
}
grid1[1][0], grid1[1][1], grid1[1][2] = 8, 6, 2
grid2 := [][]int{{4, 3, 0}, {8, 6, 2}, {0, 0, 0}}
cities := []string{"Shanghai", "Mumbai", "Istanbul", "Beijing"}
cities[len(cities)-1] = "Karachi"
fmt.Println("Type Len Cap Contents")
fmt.Printf("%-8T %2d %3d %v\n", buffer, len(buffer), cap(buffer), buffer)
fmt.Printf("%-8T %2d %3d %q\n", cities, len(cities), cap(cities), cities)
fmt.Printf("%-8T %2d %3d %v\n", grid1, len(grid1), cap(grid1), grid1)
fmt.Printf("%-8T %2d %3d %v\n", grid2, len(grid2), cap(grid2), grid2)

ptg7913109

4.2. Arrays and Slices 153

Type Len Cap Contents
[]uint8 20 60 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[]string 4 4 ["Shanghai" "Mumbai" "Istanbul" "Karachi"]
[][]int 3 3 [[0 0 0] [8 6 2] [0 0 0]]
[][]int 3 3 [[4 3 0] [8 6 2] [0 0 0]]

The buffer’s contents are only the first len(buffer) items; the other items are
inaccessible unless we reslice the buffer—something we will see how to do later
on in this section.

We created grid1 as a slice of slices with an initial length of 3 (i.e., it can contain
three slices), and a capacity of 3 (since the capacity defaults to the length if it
isn’t specified). Then we set each of the grid’s outermost slices to contain their
own 3-item slices. Naturally, we could have made the innermost slices have
different lengths if we wanted.

For grid2 we had to specify every value since we created it using the composite
literal syntax and Go would have no other way of knowing how many items we
wanted. After all, we could have created a slice of different length slices—for
example,grid2 := [][]int{{9, 7}, {8}, {4, 2, 6}},whichwouldmake grid2 a slice
of length 3 whose slices’ lengths are 2, 1, and 3.

4.2.1. Indexing and Slicing Slices

A slice is a reference to a hidden array and slices of slices are also references to
the same hidden array. Here is an example to illustrate what this means.

s := []string{"A", "B", "C", "D", "E", "F", "G"}
t := s[2:6]
fmt.Println(t, s, "=", s[:4], "+", s[4:])
s[3] = "x"
t[len(t)-1] = "y"
fmt.Println(t, s, "=", s[:4], "+", s[4:])

[C D E F] [A B C D E F G] = [A B C D] + [E F G]
[C x E y] [A B C x E y G] = [A B C x] + [E y G]

When we change the data—whether via the original s slice or from the t slice
of the s slice—the same underlying data is changed, so both slices are affected.
The code snippet also illustrates that given a slice s and an index position i (0 ≤
i ≤ len(s)), s is equal to the concatenation of s[:i] and s[i:].We saw a similar
equality in the previous chapter in reference to strings:

s == s[:i] + s[i:] // s is a string; i is an int; 0 <= i <= len(s)

ptg7913109

154 Chapter 4. Collection Types

Figure 4.4 shows slice s, including all its valid index positions and the slices
used in the code snippet. The first index position in any slice is 0 and the last is
always len(s) - 1.

s[2:6]

s[:4] s[4:] Slices

"A" "B" "C" "D" "E" "F" "G" Slice s

0 1 2 3 4 5 6

len(s)-7 len(s)-6 len(s)-5 len(s)-4 len(s)-3 len(s)-2 len(s)-1
Indexes

Figure 4.4 Anatomy of a slice

Unlike strings, slices don’t support the + or += operators. Nonetheless, it is easy
to append to slices—and also to insert and remove items, as we will see shortly
(§4.2.3, ➤ 156).

4.2.2. Iterating Slices

One frequent requirement is to iterate over all the items in a slice. If we want
to access the items without modifying them we can use a for … range loop; and
if we need to modify items we can use a for loop with a loop counter. Here is an
example of the former.

amounts := []float64{237.81, 261.87, 273.93, 279.99, 281.07, 303.17,
231.47, 227.33, 209.23, 197.09}

sum := 0.0
for _, amount := range amounts {
 sum += amount
}
fmt.Printf("Σ %.1f → %.1f\n", amounts, sum)

Σ [237.8 261.9 273.9 280.0 281.1 303.2 231.5 227.3 209.2 197.1] → 2503.0

The for … range loop assigns a 0-based loop counter, which in this case we have
discarded using the blank identifier (_), and a copy of the corresponding item
from the slice. The copy is cheap even for strings (since they are passed by
reference). This means that any changes that are applied to the item affect only
the copy, not the item in the slice.

Naturally, we can use slicing to iterate over just a portion of the slice. For
example, if we just wanted to iterate over the first five itemswe would write for
_, amount := range amounts[:5].

If we want to modify the items in the slice we must use a for loop that just
provides valid slice indexes and not copies of the slice’s items.

ptg7913109

4.2. Arrays and Slices 155

for i := range amounts {
 amounts[i] *= 1.05
 sum += amounts[i]
}
fmt.Printf("Σ %.1f → %.1f\n", amounts, sum)

Σ [249.7 275.0 287.6 294.0 295.1 318.3 243.0 238.7 219.7 206.9] → 2628.1

Here we have increased each item in the slice by 5% and accumulated their
sum.

Slices can, of course, contain custom items. Here is a custom type with a single
custommethod.

type Product struct {
 name string
 price float64
}

func (product Product) String() string {
return fmt.Sprintf("%s (%.2f)", product.name, product.price)

}

This defines the Product type as a struct with string and float64 fields. We have
also defined a String() method to control how Go prints Product items using
the %v verb. (We discussed print verbs earlier; §3.5, 93 ➤. We briefly introduced
custom types and methods in §1.5, 21 ➤; much more coverage is provided in
Chapter 6.)

products := []*Product{{"Spanner", 3.99}, {"Wrench", 2.49},
 {"Screwdriver", 1.99}}
fmt.Println(products)
for _, product := range products {
 product.price += 0.50
}
fmt.Println(products)

[Spanner (3.99) Wrench (2.49) Screwdriver (1.99)]
[Spanner (4.49) Wrench (2.99) Screwdriver (2.49)]

Here we have created a slice of pointers to Products ([]*Product), and immedi-
ately initialized the slice with three *Products. This works because Go is smart
enough to realize that a []*Product requires pointers to Products. What we have
written is really a shorthand for products := []*Product{&Product{"Spanner",
3.99}, &Product{"Wrench", 2.49}, &Product{"Screwdriver", 1.99}}. (Recall from
§4.1, 140 ➤, that we can use the &Type{} syntax to create a new value of the type
and immediately get a pointer to it.)

ptg7913109

156 Chapter 4. Collection Types

If we had not defined a Product.String() method the %v verb (which is used im-
plicitly by fmt.Println() and similar functions) would simply print the memory
addresses of the Products rather than the Products themselves. Notice also that
the Product.String() method takes a Product value, not a *Product—this isn’t
a problem, though, since Go is smart enough to dereference *Products to make
them work with custommethods that take Product values.★

We noted earlier that the for … range loop cannot be used to modify the items
it iterates over. Yet here we have successfully incremented all the prices in
the products slice. At each iteration the product variable is assigned a copy of
a *Product; this is a pointer that points to the same underlying Product as the
corresponding one in the products slice. Thus, the modification we are applying
is to the pointed-to Product value, not to the copy of the *Product pointer.

4.2.3. Modifying Slices

If we need to append to a slice we can use the built-in append() function. This
function takes the slice to be appended to and one or more individual items to
append. If we want to append a slice to a slice we must use the ... (ellipsis)
operator to tell Go to pass the slice to be added as individual values. The values
to append must be of the same type as the slice’s value type. In the case of a
string we can append its individual bytes to a byte slice by using the ellipsis
syntax.

s := []string{"A", "B", "C", "D", "E", "F", "G"}
t := []string{"K", "L", "M", "N"}
u := []string{"m", "n", "o", "p", "q", "r"}
s = append(s, "h", "i", "j") // Append individual values
s = append(s, t...) // Append all of a slice's values
s = append(s, u[2:5]...) // Append a subslice
b := []byte{'U', 'V'}
letters := "wxy"
b = append(b, letters...) // Append a string's bytes to a byte slice
fmt.Printf("%v\n%s\n", s, b)

[A B C D E F G h i j K L M N o p q]
UVwxy

The built-in append() function takes a slice and one or more values and returns
a (possibly new) slicewhich has the original slice’s contents,plus the given value
or values as its last item or items. If the original slice’s capacity is sufficient for
the new items (i.e., its length plus the number of new items is within its capac-

★ One compiler does this as follows. Whenever a method is created that operates on a value, say it
is called Method(), a wrapper method of the same name and signature is created that has a pointer
receiver—in effect, func (value *Type) Method() { return (*value).Method() }.

ptg7913109

4.2. Arrays and Slices 157

ity), append() puts the new value or values in the empty position or positions at
the end and returns the original slice with its length increased by the number
of items added. If the original slice doesn’t have sufficent capacity, the append()
function creates a new slice under the hood and copies the original slice’s items
into it, plus the new value or values at the end, and returns the new slice—hence
the need to assign append()’s return value to the original slice variable.

It sometimes occurs that we want to insert items at the front or in the middle
of a slice, not just at the end. Here are some examples that use a custom
InsertStringSliceCopy() function that takes a slice to insert into, a slice to insert,
and the index position where the insertion should be made.

s := []string{"M", "N", "O", "P", "Q", "R"}
x := InsertStringSliceCopy(s, []string{"a", "b", "c"}, 0) // At the front
y := InsertStringSliceCopy(s, []string{"x", "y"}, 3) // In the middle
z := InsertStringSliceCopy(s, []string{"z"}, len(s)) // At the end
fmt.Printf("%v\n%v\n%v\n%v\n", s, x, y, z)

[M N O P Q R]
[a b c M N O P Q R]
[M N O x y P Q R]
[M N O P Q R z]

The custom InsertStringSliceCopy() function creates a new slice (which is why
slice s is unchanged at the end of the snippet),making use of the built-in copy()
function to copy the first slice it is given and to insert the second slice.

func InsertStringSliceCopy(slice, insertion []string, index int) []string {
 result := make([]string, len(slice)+len(insertion))
 at := copy(result, slice[:index])
 at += copy(result[at:], insertion)

copy(result[at:], slice[index:])
return result

}

The built-in copy() function takes two slices (which could be portionsof the same
slice—even overlapping ones) that contain items of the same type. The function
copies the items into the first (destination) slice from the second (source) slice
and returns the number of items copied. If the source slice is empty, the copy()
function will safely do nothing. If the destination slice’s length is insufficient
to accommodate the source slice’s items, the items that don’t fit are silently
ignored. If the destination slice’s capacity is greater than its length, we can
increase its length to its capacity with the statement slice = slice[:cap(slice)],
before doing the copy.

ptg7913109

158 Chapter 4. Collection Types

The slices passed to the built-in copy() function must be of the same type—ex-
cept that if the first (destination) slice is a []byte the second (source) argument
may be a []byte or a string. If the source is a string, its bytes are copied into the
first argument. (An example of this use is shown in Chapter 6, ➤ 268.)

In the custom InsertStringSliceCopy() function, we begin by creating a new
slice (result) that is large enough to hold the items from the two slices passed
in. Then we copy a subslice of the first slice (slice[:index]) into the result slice.
Next we copy the insertion slice into the result slice starting at the position
in the result slice we have reached (at). Then we copy the rest of the first slice
(slice[index:]) into the result slice at the next positionwe have reached (at).For
this last copy we ignore the copy() function’s return value since we don’t need it.
And finally, we return the result slice.

If the index position is 0, the slice[:index] in the first copy statement will be
slice[:0] (i.e., an empty slice), so no copying is done. Similarly, if the index is
greater than or equal to the length of the slice the slice[index:] in the last copy
statement will effectively be slice[len(slice):] (i.e., an empty slice), so again,
no copying is done.

Here is a function that has almost the same behavior as the InsertStringSlice-
Copy() function, but with much shorter and simpler code. The difference is that
the InsertStringSlice() function changes the original slice (and possibly the in-
serted slice), whereas the InsertStringSliceCopy() function does not.

func InsertStringSlice(slice, insertion []string, index int) []string {
return append(slice[:index], append(insertion, slice[index:]...)...)

}

The InsertStringSlice() function appends the end of the original slice from the
index position onto the end of the insertion slice, and then appends the resultant
slice onto the end of the original slice at the index position. The returned slice is
the original slice with the insertion applied. (Recall that append() takes a slice
and one or more values, so we must use the ellipsis syntax to transform a slice
into its individual values—and in this example, we must do so twice.)

Items can be removed from the beginning and end of slices using Go’s standard
slice syntax, but removing from the middle can require a little care. We will
start by seeing how to remove from the start, end, andmiddle of a slice,working
on the slice in-place. Then we will see how to take a copy of a slice with items
removed that leaves the original slice unchanged.

s := []string{"A", "B", "C", "D", "E", "F", "G"}
s = s[2:] // Remove s[:2] from the front
fmt.Println(s)

[C D E F G]

ptg7913109

4.2. Arrays and Slices 159

Removing items from the start of a slice is easily achieved by reslicing.

s := []string{"A", "B", "C", "D", "E", "F", "G"}
s = s[:4] // Remove s[4:] from the end
fmt.Println(s)

[A B C D]

Removing items from the end of a slice is achieved by reslicing, just the same
as for removing at the start.

s := []string{"A", "B", "C", "D", "E", "F", "G"}
s = append(s[:1], s[5:]...) // Remove s[1:5] from the middle
fmt.Println(s)

[A F G]

Retrieving items from themiddle of a slice is easy—for example, to get the three
middle items of slice s, we would use the expression s[2:5]. But to remove items
from themiddle of a slice is slightly tricky. Herewehave done the removal using
the append() function to append the subslice of slice s that followswhat we want
to delete, to the subslice of slice s that precedes what we want to delete, and
assigning the resultant slice back to s.

Clearly, using append() and assigning back to the original slice to remove
items, changes the original slice. Here are some examples that use a custom
RemoveStringSliceCopy() function that returns a copy of the slice it is given, but
with the items from the start and end index positions removed.

s := []string{"A", "B", "C", "D", "E", "F", "G"}
x := RemoveStringSliceCopy(s, 0, 2) // Remove s[:2] from the front
y := RemoveStringSliceCopy(s, 1, 5) // Remove s[1:5] from the middle
z := RemoveStringSliceCopy(s, 4, len(s)) // Remove s[4:] from the end
fmt.Printf("%v\n%v\n%v\n%v\n", s, x, y, z)

[A B C D E F G]
[C D E F G]
[A F G]
[A B C D]

Since the RemoveStringSliceCopy() function copies the items, the original slice is
left intact.

func RemoveStringSliceCopy(slice []string, start, end int) []string {
 result := make([]string, len(slice)-(end-start))
 at := copy(result, slice[:start])

ptg7913109

160 Chapter 4. Collection Types

copy(result[at:], slice[end:])
return result

}

In the custom RemoveStringSliceCopy() function,we begin by creating a new slice
(result) that is large enough to hold the items it will contain. Then we copy a
subslice of the slice up to the start position (slice[:start]) into the result slice.
Next we copy the slice from the end position (slice[end:]) into the result slice at
the position we have reached (at). And finally, we return the result slice.

It is also possible to create a simpler RemoveStringSlice() function that works on
the slice it is given rather than making a copy.

func RemoveStringSlice(slice []string, start, end int) []string {
return append(slice[:start], slice[end:]...)

}

This is a generalization of the remove from the middle example that used the
built-in append() function shown earlier. The returned slice is the original slice
with the items from the start position up to (but excluding) the end position
removed.

4.2.4. Sorting and Searching Slices

The standard library’s sort package provides functions for sorting slices of ints,
float64s, and strings, for checking if such a slice is sorted, and for searching for
an item in a sorted slice using the fast binary search algorithm. There are also
generic sort.Sort() and sort.Search() functions that can easily be used with
custom data. These functions are listed in Table 4.2.

The way that Go sorts numbers holds no surprises, as we saw in an earlier chap-
ter (73 ➤). However, strings are sorted purely in terms of the bytes that repre-
sent them, as we discussed in the previous chapter (§3.2, 86 ➤). This means, for
example, that string sorting is case-sensitive. Here are a couple of string sorting
examples and the results they produce.

files := []string{"Test.conf", "util.go", "Makefile", "misc.go", "main.go"}
fmt.Printf("Unsorted: %q\n", files)
sort.Strings(files) // Standard library sort function
fmt.Printf("Underlying bytes: %q\n", files)
SortFoldedStrings(files) // Custom sort function
fmt.Printf("Case insensitive: %q\n", files)

Unsorted: ["Test.conf" "util.go" "Makefile" "misc.go" "main.go"]
Underlying bytes: ["Makefile" "Test.conf" "main.go" "misc.go" "util.go"]
Case insensitive: ["main.go" "Makefile" "misc.go" "Test.conf" "util.go"]

ptg7913109

4.2. Arrays and Slices 161

Table 4.2 The Sort Package’s Functions

Syntax Description/result

sort.Float64s(fs) Sorts fs of type []float64 into ascending order

sort.Float64sAreSorted(fs) Returns true if fs of type []float64 is sorted

sort.Ints(is) Sorts is of type []int into ascending order

sort.IntsAreSorted(is) Returns true if is of type []int is sorted

sort.IsSorted(d) Returns true if d of type sort.Interface is sorted

sort.Search(size, fn)
Returns the index position in a sorted slice in
scope of length size where function fn with the
signature func(int) bool returns true (see text)

sort.SearchFloat64s(fs, f)
Returns the index position of f of type float64 in
sorted fs of type []float64

sort.SearchInts(is, i)
Returns the index position of i of type int in
sorted is of type []int

sort.SearchStrings(ss, s)
Returns the index position of s of type string in
sorted ss of type []string

sort.Sort(d) Sorts d of type sort.Interface (see text)

sort.Strings(ss) Sorts ss of type []string into ascending order

sort.StringsAreSorted(ss) Returns true if ss of type []string is sorted

The standard library’s sort.Strings() function takes a []string and sorts the
strings in-place in ascending order in terms of their underlying bytes. If the
strings have all been encoded using the same character to bytes mappings (e.g.,
they were all created in the current program or by other Go programs), this
results in code-point ordering. The custom SortFoldedStrings() function works
in the same way, except that it sorts case-insensitively using the sort package’s
generic sort.Sort() function.

The sort.Sort() function can sort items of any type that provide the methods
in the sort.Interface, that is, items of a type that provide the Len(), Less(),
and Swap() methods, each with the required signatures. We have created a
custom type, FoldedStrings, that provides these methods. Here is the complete
implementation of the SortFoldedStrings() function, the FoldedStrings type, and
the supporting methods.

func SortFoldedStrings(slice []string) {
 sort.Sort(FoldedStrings(slice))
}

type FoldedStrings []string

func (slice FoldedStrings) Len() int { return len(slice) }

ptg7913109

162 Chapter 4. Collection Types

func (slice FoldedStrings) Less(i, j int) bool {
return strings.ToLower(slice[i]) < strings.ToLower(slice[j])

}
func (slice FoldedStrings) Swap(i, j int) {
 slice[i], slice[j] = slice[j], slice[i]
}

The SortFoldedStrings() function simply calls the standard library’s sort.Sort()
function to do the work—having (very cheaply) converted the given []string
into a FoldedStrings value using Go’s standard conversion syntax. In general,
whenever we create a custom type that is based on a built-in type we can
promote a value of that built-in type to the custom type by doing a conversion
in this way. (Custom types are covered in Chapter 6.)

The FoldedStrings type provides the three methods needed to satisfy the sort.
Interface interface. All themethodsare trivial; case-insensitivity is achieved by
using the strings.ToLower() function in the Less()method. (And if wewanted to
sort in descending order we could simply change the Less()method’s < less than
operator to a > greater than operator.)

The SortFoldedStrings() function is perfectly adequate for 7-bit ASCII (i.e., En-
glish) strings, but is unlikely to produce a satisfactory ordering for non-English
languages as we discussed in the previous chapter (§3.2, 86 ➤). Sorting Unicode
stringswith correct accounting for non-English languages is not a trivial under-
taking. It is explained in detail in the Unicode Collation Algorithm document
(unicode.org/reports/tr10).

If we want to search a slice to find the index position of a particular item (if it
contains the item), we can easily do so using a for … range loop.

files := []string{"Test.conf", "util.go", "Makefile", "misc.go", "main.go"}
target := "Makefile"
for i, file := range files {

if file == target {
 fmt.Printf("found \"%s\" at files[%d]\n", file, i)

break

 }
}

found "Makefile" at files[2]

Using a simple linear search like this is the only option for unsorted data and is
fine for small slices (up to hundreds of items). But for larger slices—especially
if we are performing searches repeatedly—the linear search is very inefficient,
on average requiring half the items to be compared each time.

ptg7913109

4.2. Arrays and Slices 163

Go provides a sort.Search() method which uses the binary search algorithm:
This requires the comparison of only log2(n) items (where n is the number of
items) each time. To put this in perspective, a linear search of 1000000 items
requires 500000 comparisons on average,with a worst case of 1000000 compar-
isons; a binary search needs at most 20 comparisons, even in the worst case.

sort.Strings(files)
fmt.Printf("%q\n", files)
i := sort.Search(len(files),

func(i int) bool { return files[i] >= target })
if i < len(files) && files[i] == target {
 fmt.Printf("found \"%s\" at files[%d]\n", files[i], i)
}

["Makefile" "Test.conf" "main.go" "misc.go" "util.go"]
found "Makefile" at files[0]

The sort.Search() function takes two arguments: the length of the slice to work
on and a function that compares an item in a sorted slice with a target item
using the >= operator for slices that are sorted in ascending order or the <=
operator for slices sorted in descending order. The function must be a closure,
that is, it must be created in the scope of the slice it is to work on since it must
capture the slice as part of its state. (Closures are covered in §5.6.3,➤ 225.) The
sort.Search() function returns an int; only if this is less than the length of the
slice and the item at that index position matches the target, can we be sure that
we have found the item we are looking for.

Here is a variation that searches a []string that has been sorted case-insensi-
tively and that assumes a lowercase target string.

target := "makefile"
SortFoldedStrings(files)
fmt.Printf("%q\n", files)
caseInsensitiveCompare := func(i int) bool {

return strings.ToLower(files[i]) >= target
}
i := sort.Search(len(files), caseInsensitiveCompare)
if i < len(files) && strings.EqualFold(files[i], target) {
 fmt.Printf("found \"%s\" at files[%d]\n", files[i], i)
}

["main.go" "Makefile" "misc.go" "Test.conf" "util.go"]
found "Makefile" at files[1]

Here, we have created the comparison function outside of the call to the
sort.Search() function. Note, though, that just like in the previous example, the

ptg7913109

164 Chapter 4. Collection Types

comparison functionmust be a closure created within the scope of the slice it is
to work on. We could have done the comparison using the code strings.ToLower(
files[i]) == target, but have used the convenient strings.EqualFold() function
which compares two strings case-insensitively, instead.

Go’s slices are such incredibly convenient, powerful, and versatile data struc-
tures that it is difficult to imagine any nontrivial Go program that didn’t make
significant use of them. We will see them in action later in this chapter (§4.4,
➤ 171).

Although slices can account formost data structureuse cases, in some situations
we need to be able to store key–value pairs with fast lookup by key. This
functionality is provided by Go’s map type, the subject of the next section.

4.3. Maps

A Gomap is an unordered collection of key–valuepairswhose capacity is limited
only by machine memory.★ Keys are unique and may only be of a type that
sensibly supports the == and != operators—so most of the built-in types can be
used as keys (e.g., int, float64, rune, string, comparable arrays and structs, and
custom types based on these, as well as pointers). Slices and noncomparable
arrays and structs (i.e., those whose items or fields don’t support == and !=), or
custom types based on them, may not be used as map keys. Pointers, reference
types, or values of any built-in or custom type can be used as values—including
maps, so it is easy to create data structures of arbitrary complexity. Go’s map
operations are listed in Table 4.3.

Maps are reference types that are cheap to pass (e.g., 8 bytes on 64-bit ma-
chines and 4 bytes on 32-bit machines), no matter how much data they hold.
Map lookups are fast—vastly faster than a linear search—although about two
orders of magnitude (i.e., 100 times) slower than direct indexing into an array
or slice, according to informal experiments.✪ This is still so fast that it makes
sense to use maps wherever they are needed, since performance is very unlike-
ly to be a problem in practice. Figure 4.5 shows a schematic of a map of type
map[string]float64.

Since slices cannot be used as map keys it would appear that we cannot use
byte slices ([]byte) for keys. However, since the conversions string([]byte) and
[]byte(string) do not change the bytes,we can safely convert []bytes into strings
to use as map keys and then convert them back to []bytes as needed.

A map’s keys must all be of the same type, and so must its values—although
the key and value types can (and often do) differ. With respect to a map’s val-

★TheGomap data structure is sometimes called a hashmap, hash table, unorderedmap, dictionary,
or associative array in other contexts.
✪No time complexity data on maps was available at the time of this writing.

ptg7913109

4.3. Maps 165

Table 4.3 MapOperations

Syntax Description/result

m[k] = v Assigns value v to map m under key k; if k is already in the
map its previous value is discarded

delete(m, k) Deletes key k and its associated value from map m, or safely
does nothing

v := m[k] Retrieves the value that corresponds to map m’s key k and
assigns it to v; or assigns the zero value for the value’s type
to v, if k isn’t in the map

v, found := m[k] Retrieves the value that corresponds to map m’s key k and
assigns it to v and true to found; or assigns the zero value for
the value’s type to v and false to found, if k isn’t in the map

len(m) The number of items (key–value pairs) in map m

"Mars" 0.11

"Venus" 0.82

"Earth" 1.00

"Mercury" 0.06

Figure 4.5 Anatomy of a map with string keys and float64 values

ues, just as with the items in a slice, there is no limitation in practice. This is
because the value type used could be an interface. So we could store values of
any types provided that they all met the specified interface (i.e., had themethod
or methods that the interface requires). We can even make a map’s value type
the empty interface, interface{}, which means that we could store any values
of any types—although when we accessed a value we would need to use a type
assertion or a type switch or introspection tomake use of it. (Interfaces are cov-
ered in Chapter 6; reflection is covered in §9.4.9, ➤ 427.)

Maps are created using the syntaxes:

make(map[KeyType]ValueType, initialCapacity)
make(map[KeyType]ValueType)
map[KeyType]ValueType{}
map[KeyType]ValueType{key1: value1, key2: value2, ..., keyN: valueN}

The built-in make() function is used to create slices, maps, and channels. When
used to create amap it createsan emptymap,and if the optional initialCapacity
is specified, themap is initialized to have enough space for that number of items.
If more items are added to the map than the initial capacity allows for, the map

ptg7913109

166 Chapter 4. Collection Types

will automatically grow to accommodate the new items. The second and third
syntaxes are exact equivalents. The last two syntaxes show how to create a map
using the composite literal syntax—this is very convenient in practice, either to
create a new empty map, or to create a map with some initial values.

4.3.1. Creating and Populating Maps

Here is an example that shows the creation and population of a mapwith string
keys and float64 values.

massForPlanet := make(map[string]float64) // Same as: map[string]float64{}
massForPlanet["Mercury"] = 0.06
massForPlanet["Venus"] = 0.82
massForPlanet["Earth"] = 1.00
massForPlanet["Mars"] = 0.11
fmt.Println(massForPlanet)

map[Venus:0.82 Mars:0.11 Earth:1 Mercury:0.06]

For smallmaps it doesn’t really matter whether we specify their initial capacity,
but for large maps doing so can improve performance. In general it is best to
specify the initial capacity if it is known (even if only approximately).

Maps use the [] index operator just like arrays and slices, only for maps the
index inside the square brackets is of the map’s key type which might not be an
int—here, for example, we have string keys.

To print the map to the console we have used the fmt.Println() function; this
uses the %v formatting verb and outputs themap’s items space-separated in key:
value form. Maps are unordered, so on a different machine the order of items
printed may be different from that shown here.

As noted earlier, pointers can be used as map keys. We will look at an example
whose keys are of type *Point and where Point is defined as follows:

type Point struct{ x, y, z int }

func (point Point) String() string {
return fmt.Sprintf("(%d,%d,%d)", point.x, point.y, point.z)

}

The Point type stores three ints. It has a String() method which ensures that
when we print a *Point Go will use the String() method rather than simply
printing the Point’s memory address.

Incidentally, we can always force Go to print a memory address by using the %p
format verb; the format verbs were covered earlier (§3.5.6, 103 ➤).

ptg7913109

4.3. Maps 167

triangle := make(map[*Point]string, 3)
triangle[&Point{89, 47, 27}] = "α"
triangle[&Point{86, 65, 86}] = "β"
triangle[&Point{7, 44, 45}] = "γ"
fmt.Println(triangle)

map[(7,44,45):γ (89,47,27):α (86,65,86):β]

Here, we have created a map with an initial capacity and populated it with
pointer keys and string values. Each Point is created using the composite literal
syntax and using the & operator so that we get a *Point rather than a Point
value. (This syntax was introduced earlier in the chapter; 145 ➤.) And thanks
to the Point.String() method, when the map is printed we see the *Point values
in human-readable form.

Using pointers asmap keysmeans that we can add two Points with the same co-
ordinates, providing that they are created separately (and so have different ad-
dresses).But what if we want the map to only store one point for any particular
set of coordinates? This can easily be done by storing Point values rather than
pointers to Points; after all, Go permits structs to be used as map keys—so long
as all their fields’ types are comparable with == and !=. Here is an example.

nameForPoint := make(map[Point]string) // Same as: map[Point]string{}
nameForPoint[Point{54, 91, 78}] = "x"
nameForPoint[Point{54, 158, 89}] = "y"
fmt.Println(nameForPoint)

map[(54,91,78):x (54,158,89):y]

The nameForPoint map’s keys are unique Points whose associated name strings
we can change at any time.

populationForCity := map[string]int{"Istanbul": 12610000,
"Karachi": 10620000, "Mumbai": 12690000, "Shanghai": 13680000}

for city, population := range populationForCity {
 fmt.Printf("%-10s %8d\n", city, population)
}

Shanghai 13680000
Mumbai 12690000
Istanbul 12610000
Karachi 10620000

For this subsection’s final example we have created an entire map using the
composite literal syntax.

ptg7913109

168 Chapter 4. Collection Types

When a for … range loop is applied to a map and there are two variables present,
the loop returns a key and a value on each iteration until every key–value item
has been returned or the loop is broken out of. If just one variable is present
only the key is returned on each iteration. Sincemaps are unordered we cannot
know what particular sequence the items will come in. In many situations we
just want to iterate over all of a map’s items to access or update them, so the
iteration order doesn’t matter. However, if we want to iterate in, say, key order,
it is easy to do as we will see shortly (§4.3.4, ➤ 170).

4.3.2. Map Lookups

Go provides two very similar syntaxes for map lookups, both of which use the []
index operator. Here are a couple of examples of the simplest syntax.

population := populationForCity["Mumbai"]
fmt.Println("Mumbai's population is", population)
population = populationForCity["Emerald City"]
fmt.Println("Emerald City's population is", population)

Mumbai's population is 12690000
Emerald City's population is 0

If we look up a key that is present in the map the corresponding value is re-
turned. But if the key is not present then the map’s value type’s zero value is
returned. So, in this example, we cannot tell whether the 0 returned for the
"Emerald City" key means that the population of Emerald City really is zero, or
that the city isn’t in the map. Go’s second map lookup syntax provides the solu-
tion to this problem.

city := "Istanbul"
if population, found := populationForCity[city]; found {
 fmt.Printf("%s's population is %d\n", city, population)
} else {
 fmt.Printf("%s's population data is unavailable\n", city)
}
city = "Emerald City"
_, present := populationForCity[city]
fmt.Printf("%q is in the map == %t\n", city, present)

Istanbul's population is 12610000
"Emerald City" is in the map == false

If we provide two variables for the map’s [] index operator to return to, the first
will get the value that corresponds to the key (or the map’s value type’s zero
value if the key isn’t present), and the second will get true (or false if the key

ptg7913109

4.3. Maps 169

isn’t present). This allows us to check for a key’s existence in the map. And as
the example’s second lookup illustrates,we can use the blank identifier to stand
for the value if all we want to know is whether a particular key is present in
the map.

4.3.3. Modifying Maps

Items, that is, key–value pairs, can be inserted into maps and deleted from
maps. And any given key’s value can be changed. Here are a few illustrative
examples.

fmt.Println(len(populationForCity), populationForCity)
delete(populationForCity, "Shanghai") // Delete
fmt.Println(len(populationForCity), populationForCity)
populationForCity["Karachi"] = 11620000 // Update
fmt.Println(len(populationForCity), populationForCity)
populationForCity["Beijing"] = 11290000 // Insert
fmt.Println(len(populationForCity), populationForCity)

4 map[Shanghai:13680000 Mumbai:12690000 Istanbul:12610000 Karachi:10620000]
3 map[Mumbai:12690000 Istanbul:12610000 Karachi:10620000]
3 map[Mumbai:12690000 Istanbul:12610000 Karachi:11620000]
4 map[Mumbai:12690000 Istanbul:12610000 Karachi:11620000 Beijing:11290000]

The syntax for inserting and updating map items is identical: If an item with
the given key isn’t present, a new item with the given key and value will be
inserted; and if an item with the given key is present, its value will be set to the
given value, and the original value will be discarded. And if we try to delete an
item which isn’t in the map, Go will safely do nothing.

Keys cannot be changed as such,but the effect of changing a key can be achieved
like this:

oldKey, newKey := "Beijing", "Tokyo"
value := populationForCity[oldKey]
delete(populationForCity, oldKey)
populationForCity[newKey] = value
fmt.Println(len(populationForCity), populationForCity)

4 map[Mumbai:12690000 Istanbul:12610000 Karachi:11620000 Tokyo:11290000]

We retrieve the old key’s value, delete the itemwhich has the old key, and create
a new item with the new key and with the old key’s value.

ptg7913109

170 Chapter 4. Collection Types

4.3.4. Key-Ordered Map Iteration

When producing data for human consumptionwe often need to present the data
in some recognizable order. Here is an example that shows how to output the
populationForCity map in alphabetical (strictly speaking, Unicode code point)
order of city.

cities := make([]string, 0, len(populationForCity))
for city := range populationForCity {
 cities = append(cities, city)
}
sort.Strings(cities)
for _, city := range cities {
 fmt.Printf("%-10s %8d\n", city, populationForCity[city])
}

Beijing 11290000
Istanbul 12610000
Karachi 11620000
Mumbai 12690000

We begin by creating a slice of type []string with zero length (i.e., empty), but
with enough capacity to hold all of the map’s keys. Then we iterate over the
map retrieving only the keys (since we have used just one variable, city, rather
than the two needed to retrieve each key–value pair), and appending each city
in turn to the cities slice. Next, we sort the slice, and then we iterate over
the slice (ignoring the int index by using the blank identifier), looking up the
corresponding city’s population at each iteration.

The algorithm shown here—create an empty slice large enough to hold all the
map’s keys, add all the map’s keys to the slice, sort the slice, and iterate over
the slice to produce ordered output—can be applied generally for key-ordered
map iteration.

An alternative to the approach taken here is to use an ordered data structure in
the first place—for example, an ordered map. We will see an example of this in
a later chapter (§6.5.3, ➤ 302).

Value ordering is also possible, for example, by doing a map inversion, aswewill
see in the next subsection.

4.3.5. Map Inversion

We can easily invert a map whose values are unique—and whose type is
acceptable for use as map keys. Here is an example.

cityForPopulation := make(map[int]string, len(populationForCity))

ptg7913109

4.3. Maps 171

for city, population := range populationForCity {
 cityForPopulation[population] = city
}
fmt.Println(cityForPopulation)

map[12610000:Istanbul 11290000:Beijing 12690000:Mumbai 11620000:Karachi]

We begin by creating the invertedmap—sowhereas populationForCity is of type
map[string]int, the cityForPopulation map is of type map[int]string. Then we
iterate over the original map and insert items into the inverted map using the
original map’s values as keys and its keys as values.

Of course, map inversion will fail if the values are not all unique—essentially
what happens is that the last occurrence of a nonunique value that is encoun-
tered is the one who’s key is stored (as a value) in the inverted map. This prob-
lem can be addressed by creating an inverted map that hasmultivalued values,
so for this example, of type map[int][]string (int keys and []string values). We
will see a practical example of this shortly (§4.4.2, ➤ 174).

4.4. Examples

In this section we will review two small examples, the first illustrating one- and
two-dimensional slices, and the second illustrating maps, including map inver-
sion where the map’s values may not be unique, as well as slices and sorting.

4.4.1. Example: Guess Separator

In some situations we might receive a whole bunch of data files for processing
where each file has one record per line, but where different files might use dif-
ferent separators (e.g., tabs or whitespace or “*”s). To be able to process such
files in bulk we need to be able to determine the separator used for each file.
The guess_separator example shown in this section (in file guess_separator/
guess_separator.go) attempts to identify the separator for the file it is given to
work on.

Here is an example of a typical run:

$./guess_separator information.dat

tab-separated

The program reads in the first five lines (or as many lines as the file contains if
fewer than five) and uses these to guess the separator that is being used.

Asusual,wewill review the main() function and the functions it calls (apart from
one that’s routine), and we will skip the imports.

ptg7913109

172 Chapter 4. Collection Types

func main() {
if len(os.Args) == 1 || os.Args[1] == "-h" || os.Args[1] == "--help" {

 fmt.Printf("usage: %s file\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 separators := []string{"\t", "*", "|", "•"}

 linesRead, lines := readUpToNLines(os.Args[1], 5)
 counts := createCounts(lines, separators, linesRead)
 separator := guessSep(counts, separators, linesRead)
 report(separator)
}

The main() function begins by checking that a file has been given on the com-
mand line, and if one hasn’t, the function outputs a usage message and termi-
nates the program.

We create a []string to hold the separatorswe are interested in; for whitespace-
separated files we will adopt the convention that the separator is "" (the emp-
ty string).

The first real processing is to read in the first five lines of the file. The readUpToN-
Lines() function isn’t shown sincewe have already seen examples of how to read
lines from a file (and will see another example in the next subsection). The only
thing that is unusual about the readUpToNLines() function is that it reads only
the number of lines specified—or fewer if the file has fewer lines—and returns
the number of lines it actually read as well as the lines themselves.

We will discuss the remaining functions that main() calls when we show their
source code, starting with the createCounts() function.

func createCounts(lines, separators []string, linesRead int) [][]int {
 counts := make([][]int, len(separators))

for sepIndex := range separators {
 counts[sepIndex] = make([]int, linesRead)

for lineIndex, line := range lines {
 counts[sepIndex][lineIndex] =
 strings.Count(line, separators[sepIndex])
 }
 }

return counts
}

The purpose of the createCounts() function is to populate amatrix that holds the
counts of each separator for each line that was read.

ptg7913109

4.4. Examples 173

The function begins by creating a slice of slices of ints with the same number
of slices as there are separators. If there are four separators, this sets counts to
the slice [nil nil nil nil]. The outer for loop replaces each nilwith an []int that
has as many items as the number of lines read. So each nil gets replaced with
[0 0 0 0 0], since Go always initializes with a type’s zero value.

The inner for loop is used to populate the counts. For each line the number of
occurrences of each separator is counted and counts is updated accordingly. The
strings.Count() function returns the number of occurrences of its second string
argument that occur in its first string argument.

For example, given a tab-separated file which had some bullets, spaces, and
stars in some of its fields we might get a counts matrix of [[3 3 3 3 3] [0 0 4 3 0]
[0 0 0 0 0] [1 2 2 0 0]]. Each counts item is an []int which contains the counts for
the corresponding separator (tab, star, bar, bullet) for each of the five lines. So
in this case every line has three tabs, a couple of lines have stars (four in one,
three in another), three lines have bullets, and no lines have vertical bars. To
us as human readers it is obvious that here the separator is a tab, but of course,
the program must discover this for itself, and it does so using the guessSep()
function.

func guessSep(counts [][]int, separators []string, linesRead int) string {
for sepIndex := range separators {

 same := true

 count := counts[sepIndex][0]
for lineIndex := 1; lineIndex < linesRead; lineIndex++ {

if counts[sepIndex][lineIndex] != count {
 same = false

break

 }
 }

if count > 0 && same {
return separators[sepIndex]

 }
 }

return ""
}

This function’s purpose is to find the first []int in the counts slices whose counts
are all the same—and nonzero.

The function iterates over each “row” in counts (one per separator), and initially
assumes that all the row’s counts are the same. It sets the initial count to the
first count, that is, to the number of times the separator occurs in the first line
that was read. Then it iterates over the rest, that is, over the separator counts
for each of the other lines that was read. If a different count is encountered the
inner for loop is broken out of and the next separator tried. If the inner for loop

ptg7913109

174 Chapter 4. Collection Types

completes without setting same to false, and the count is greater than zero, we
have found what we want and immediately return it. If no separator matches
we return an empty string—this is our convention to mean that the fields are
whitespace-separated, or not separated at all.

func report(separator string) {
switch separator {
case "":

 fmt.Println("whitespace-separated or not separated at all")
case "\t":

 fmt.Println("tab-separated")
default:

 fmt.Printf("%s-separated\n", separator)
 }
}

The report() function is trivial, writing a simple description of the separator
used by the file that was read.

This example has shown both one- and two-dimensional slices (separators, lines,
and counts) in typical use. In the next example we will look at maps, slices,
and sorting.

4.4.2. Example: Word Frequencies

Textual analysis has a variety of uses, from data mining to the study of
language itself. In this subsection we will review an example that performs one
of themost basic forms of textual analysis: It counts the frequencies of words in
the files it is given.

Frequency data can be presented in two different but equally sensible ways—as
an alphabetical list of words with their frequencies, and as an ordered list of
frequency values and the words that have the corresponding frequencies. The
wordfrequency program (in file wordfrequency/wordfrequency.go) produces both
kinds of output, as illustrated below.

$./wordfrequency small-file.txt

Word Frequency
ability 1
about 1
above 3
...
years 1
you 128
Frequency → Words

ptg7913109

4.4. Examples 175

 1 ability, about, absence, absolute, absolutely, abuse, accessible, ...
 2 accept, acquired, after, against, applies, arrange, assumptions, ...
...
128 you
151 or
192 to
221 of
345 the

Even for a small file the number of words and the number of different frequen-
cies can be quite large, so here we have elided most of the output.

Producing the first part of the output is straightforward. We can use a map of
type map[string]int with word keys and frequency values. But to get the second
part of the output we will need to invert the map—and this isn’t quite so easy
because it is likely that more than one word will have the same frequency. The
solution is to invert to amultivaluedmap of type map[int][]string, that is, amap
whose keys are frequencies and whose values are all the words that have the
corresponding frequency.

We will begin with the program’s main() function and work top-down, and as
usual, will omit the imports.

func main() {
if len(os.Args) == 1 || os.Args[1] == "-h" || os.Args[1] == "--help" {

 fmt.Printf("usage: %s <file1> [<file2> [... <fileN>]]\n",
 filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 frequencyForWord := map[string]int{} // Same as: make(map[string]int)
for _, filename := range commandLineFiles(os.Args[1:]) {

 updateFrequencies(filename, frequencyForWord)
 }
 reportByWords(frequencyForWord)
 wordsForFrequency := invertStringIntMap(frequencyForWord)
 reportByFrequency(wordsForFrequency)
}

The main() function starts by dealing with the command line and then gets down
to work.

We begin by creating the simple map that will keep track of the frequency of
each unique word in the files read in. We have used the composite literal syntax
to create the initially empty map, just to show how it is done. Once we have the
map we iterate over each filename given on the command line and for each one
attempt to update the frequencyForWord map.

ptg7913109

176 Chapter 4. Collection Types

Once the first map is complete we output the first report: an alphabetical list
of all the unique words encountered and their corresponding frequencies.
Then we create an inverted version of the map and output the second report: a
numerically ordered list of frequencies and their associated words.

func commandLineFiles(files []string) []string {
if runtime.GOOS == "windows" {

 args := make([]string, 0, len(files))
for _, name := range files {

if matches, err := filepath.Glob(name); err != nil {
 args = append(args, name) // Invalid pattern
 } else if matches != nil { // At least one match
 args = append(args, matches...)
 }
 }

return args
 }

return files
}

The commandLineFiles() function simply returns the []string it is given on Unix-
like platforms such as Linux and Mac OS X, since on these platforms the shell
automatically does file globbing (i.e., replaces, say, *.txtwith any matching text
files, e.g., README.txt, INSTALL.txt, etc.). The Windows shell (cmd.exe) does not do
file globbing, so if the user enters, say, *.txt on the command line, that is what
the program will receive. To provide reasonable cross-platform uniformity, we
do the globbing ourselves when the program is run on Windows. (Another way
to handle cross-platform differences is to have platform-specific .go files—this is
covered in a later chapter, §9.1.1.1, ➤ 410.)

func updateFrequencies(filename string, frequencyForWord map[string]int) {
var file *os.File
var err error

if file, err = os.Open(filename); err != nil {
 log.Println("failed to open the file: ", err)

return

 }
defer file.Close()

 readAndUpdateFrequencies(bufio.NewReader(file), frequencyForWord)
}

This function is used purely for the file handling. It opens the given file for
reading, defers the closing of the file to when the function returns, and passes
on the actual work to the readAndUpdateFrequencies() function. By passing the
file reader as a *bufio.Reader (produced by the bufio.NewReader() call),we ensure

ptg7913109

4.4. Examples 177

that the called function can read the file as strings line by line rather than
having to read raw bytes.

func readAndUpdateFrequencies(reader *bufio.Reader,
 frequencyForWord map[string]int) {

for {
 line, err := reader.ReadString('\n')

for _, word := range SplitOnNonLetters(strings.TrimSpace(line)) {
if len(word) > utf8.UTFMax ||

 utf8.RuneCountInString(word) > 1 {
 frequencyForWord[strings.ToLower(word)] += 1
 }
 }

if err != nil {
if err != io.EOF {

 log.Println("failed to finish reading the file: ", err)
 }

break

 }
 }
}

The first part of this function should be very familiar by now. We create an
infinite loop and read the file line by line, breaking out of the loop when we
reach the end of the file or if an error occurs (in which case we report the error
to the user).We don’t terminate the programwhenwe hit an error because there
might bemany files to read and for this programwe prefer to do asmuchwork as
possible and report any problems that were encountered rather than stopping
at the first error.

The inner for loop is where the interesting processing is done. Any given line
might have punctuation, numbers, symbols, and other nonword characters, so
we iterate word by word having split the line into words and discarding any
non-word characters using a custom SplitOnNonLetters() function. And the
string we feed that function in the first place has any whitespace trimmed off
both ends.

We only want to include words that contain at least two letters. The easiest
way to do this is to use a one-clause if statement, that is, if utf8.RuneCountIn-
String(word) > 1, which works fine.

The simple if statement just described is potentially a bit expensive because it
will parse the entire word. So in the programwe use a two-clause if statement
where the first clause takes a much cheaper approach. The first clause checks
to see if the number of bytes in the word is greater than utf8.UTFMax (which
is a constant of value 4, the maximum number of bytes required to represent
a single UTF-8 character). This is a really fast test because Go strings know

ptg7913109

178 Chapter 4. Collection Types

how many bytes they contain and Go’s binary Boolean operators (&& and ||) are
short-circuiting (§2.2, 56 ➤). Of course, words consisting of four or fewer bytes
(e.g., four 7-bit ASCII characters or a couple of 2-byte UTF-8 characters) will
fail this first check, but that isn’t a problem because the second check (the rune
count) will be fast because it will always have four or fewer characters to count.
Is it worth using the two-clause if statement in this situation? It really depends
on the input—themore words that need processing and the longer they are, the
more potential for savings. The only way to know for certain is to benchmark
using real or at least typical data.

func SplitOnNonLetters(s string) []string {
 notALetter := func(char rune) bool { return !unicode.IsLetter(char) }

return strings.FieldsFunc(s, notALetter)
}

This function is used to split a string on nonword characters. First we create
an anonymous function that has the signature required by the strings.Fields-
Func() function andwhich returns true for nonletters and false for letters. Then
we return the result of calling the strings.FieldsFunc() function with the given
string and with the notALetter() function. (We discussed the strings.Fields-
Func() function in the previous chapter; 107 ➤.)

func reportByWords(frequencyForWord map[string]int) {
 words := make([]string, 0, len(frequencyForWord))
 wordWidth, frequencyWidth := 0, 0

for word, frequency := range frequencyForWord {
 words = append(words, word)

if width := utf8.RuneCountInString(word); width > wordWidth {
 wordWidth = width
 }

if width := len(fmt.Sprint(frequency)); width > frequencyWidth {
 frequencyWidth = width
 }
 }
 sort.Strings(words)
 gap := wordWidth + frequencyWidth - len("Word") - len("Frequency")
 fmt.Printf("Word %*s%s\n", gap, " ", "Frequency")

for _, word := range words {
 fmt.Printf("%-*s %*d\n", wordWidth, word, frequencyWidth,
 frequencyForWord[word])
 }
}

Once the frequencyForWord map has been populated, the reportByWords() func-
tion is called to output its data. We want the output to be in alphabetical (ac-

ptg7913109

4.4. Examples 179

tually, Unicode code point) order, so we begin by creating an empty []string to
hold the words that is large enough to hold all the words in the map. We also
want to know the width in characters of the longest word and of the highest
frequency (i.e., how many digits it has) so that we can produce our output in
neat columns: The wordWidth and frequencyWidth variables are used to record
these widths.

The first for loop iterates over the items in the map. Each word is appended to
the words []string, a very cheap operation because words’s capacity is already
large enough so all that the append() function has to do is put the given word at
the len(words) index position and increment the words slice’s length by one.

For each word we count the number of characters it contains and set wordWidth
to this amount if it is larger than the existing value. Similarly, we count the
number of characters needed to represent the frequency—we can safely use
len() for this to count bytes since the fmt.Sprint() function takes a number and
returns a string with decimal digits all of which are 7-bit ASCII characters. So
at the end of the first for loop we have the widths of the two columns we want
to output.

Once the words slice has been populated we sort it. We don’t have to worry
about case-sensitivity because all the words are lowercase (this was done in the
readAndUpdateFrequencies() function; 177 ➤).

After sorting the words we print the two column titles. First we print “Word”,
then we print spaces so that the y of “Frequency” will be right-aligned with the
last digit of the frequencies. This is achieved by printing a single space (" ") with
a field width of gap characters using the %*s format specifier. An alternative
would be to use a format specifier of plain %s and to pass a string of spaces
produced by strings.Repeat(" ", gap). (String formatting was covered in the
previous chapter; §3.5, 93 ➤.)

And finally, we print the words and their frequencies in two columns with
appropriate widths in ascending alphabetical word order.

func invertStringIntMap(intForString map[string]int) map[int][]string {
 stringsForInt := make(map[int][]string, len(intForString))

for key, value := range intForString {
 stringsForInt[value] = append(stringsForInt[value], key)
 }

return stringsForInt
}

The function begins by creating an empty inverted map. Although we don’t
know how many items there will be, we have assumed that there will be about
the same number as in the original map—after all, there can’t be more. The
processing is straightforward:We simply iterate over the original map and use
each value as a key in the inverted map, and add each key to the inverted map’s

ptg7913109

180 Chapter 4. Collection Types

corresponding slice value. Since the newmap’s values are slices, no data is lost,
even if the original map has multiple keys with the same value.

func reportByFrequency(wordsForFrequency map[int][]string) {
 frequencies := make([]int, 0, len(wordsForFrequency))

for frequency := range wordsForFrequency {
 frequencies = append(frequencies, frequency)
 }
 sort.Ints(frequencies)
 width := len(fmt.Sprint(frequencies[len(frequencies)-1]))
 fmt.Println("Frequency → Words")

for _, frequency := range frequencies {
 words := wordsForFrequency[frequency]
 sort.Strings(words)
 fmt.Printf("%*d %s\n", width, frequency, strings.Join(words, ", "))
 }
}

This function is structurally very similar to the reportByWords() function. It
begins by creating a slice of frequencieswhich it then sorts into ascending order.
Then it computes the width needed to accommodate the largest frequency and
uses that for the first column’s width. Next, it outputs the report’s title. And
finally, it iterates over the frequencies and outputs each one with the words that
have that frequency in ascending alphabetical order, comma-separating the
words if there is more than one.

We have now reviewed this chapter’s two complete examples and gained some
insight into using pointers in Go and into the power and convenience of Go’s
slice and map types. In the next chapter, we will look at how to create custom
functions; this will complete the foundations in Go procedural programming.
Once functions have been covered we will be ready to tackle object-oriented
programming, and after that, concurrent programming.

4.5. Exercises
There are five exercises, each one requiring the creation of a small function, and
drawing on the coverage of slices and maps presented in this chapter. We have
put all five functions in the same .go file (chap4_ans/chap4_ans.go), and added a
main() function that makes use of them all to make testing easier. (Proper unit
testing is covered later, in Chapter 9, §9.1.1.3, ➤ 414.)

1. Create a function that accepts an []int and returns an []int which is a
copy of the given []int but with duplicates removed. For example, given an
argument of []int{9, 1, 9, 5, 4, 4, 2, 1, 5, 4, 8, 8, 4, 3, 6, 9, 5, 7, 5}, the
function should return []int{9, 1, 5, 4, 2, 8, 3, 6, 7}. In the chap4_ans.go
solution file the function is called UniqueInts(). The function uses composite

ptg7913109

4.5. Exercises 181

literal syntax rather than the built-in make() function and is 11 lines long.
It should be quite easy to do.

2. Create a function that accepts an [][]int (i.e., a two-dimensional slice of
ints), and returns a single []int that contains all the ints from the two-di-
mensional slice’s first slice, then from its second slice, and so on. For exam-
ple, if the function is called Flatten():

irregularMatrix := [][]int{{1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 10, 11},
 {12, 13, 14, 15},
 {16, 17, 18, 19, 20}}
slice := Flatten(irregularMatrix)
fmt.Printf("1x%d: %v\n", len(slice), slice)

1x20: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]

The Flatten() function in chap4_ans.go is a mere nine lines. The function
is slightly subtle to ensure that it works correctly even when the lengths of
the inner slices vary (as they do in the irregularMatrix), but is quite straight-
forward.

3. Create a function that accepts an []int and a column count (as an int), and
that returns an [][]int where each inner slice’s length is equal to the given
number of columns. For example, if the argument is []int{1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, here are some sample
results, each preceded by the number of columns that was passed:

3 [[1 2 3] [4 5 6] [7 8 9] [10 11 12] [13 14 15] [16 17 18] [19 20 0]]
4 [[1 2 3 4] [5 6 7 8] [9 10 11 12] [13 14 15 16] [17 18 19 20]]
5 [[1 2 3 4 5] [6 7 8 9 10] [11 12 13 14 15] [16 17 18 19 20]]
6 [[1 2 3 4 5 6] [7 8 9 10 11 12] [13 14 15 16 17 18] [19 20 0 0 0 0]]

Notice that since there are 20 ints, neither 3 nor 6 columns are exact
multiples, so we have padded the last inner slice with zeroswhen necessary
to keep all column (i.e., inner slice) lengths the same.

The Make2D() function in chap4_ans.go is 12 lines long and makes use of a
helper function that’s7 lines long. The Make2D() function and its helper need
a little bit of thought to get right, but aren’t difficult.

4. Create a function that accepts a []string containing the lines of an
.ini-style file and that returns a map[string]map[string]string whose keys
are group names and whose values are key–value maps of each group’s
keys and values. Blank lines and lines beginning with ; should be ignored.
Each group is indicated by a name in square brackets on its own line, and

ptg7913109

182 Chapter 4. Collection Types

each group’s keys and values are indicated by one or more lines of the form
key=value. Here is an example []string that the function could process.

iniData := []string{
"; Cut down copy of Mozilla application.ini file",
"",
"[App]",
"Vendor=Mozilla",
"Name=Iceweasel",
"Profile=mozilla/firefox",
"Version=3.5.16",
"[Gecko]",
"MinVersion=1.9.1",
"MaxVersion=1.9.1.*",
"[XRE]",
"EnableProfileMigrator=0",
"EnableExtensionManager=1",

}

Given this data, the function should return the following map which we
have “pretty-printed” to make it easier to see its structure.

map[Gecko: map[MinVersion: 1.9.1
 MaxVersion: 1.9.1.*]
 XRE: map[EnableProfileMigrator: 0
 EnableExtensionManager: 1]
 App: map[Vendor: Mozilla
 Profile: mozilla/firefox
 Name: Iceweasel
 Version: 3.5.16]]

The ParseIni() solution function assumes a group of “General” for any
key–values that are not within the scope of a group. It is 24 lines long and
might take a bit of care to get right.

5. Create a function that accepts a map[string]map[string]string that repre-
sents an .ini file’s data. The function should print out the data as an .ini
filewith groups in alphabetical order andkeyswithin groups in alphabetical
order, and with a blank line between each group. For example, given the
data from the previous exercise the output should be:

[App]
Name=Iceweasel
Profile=mozilla/firefox
Vendor=Mozilla

ptg7913109

4.5. Exercises 183

Version=3.5.16

[Gecko]
MaxVersion=1.9.1.*
MinVersion=1.9.1

[XRE]
EnableExtensionManager=1
EnableProfileMigrator=0

The PrintIni() solution function is 21 lines long and should be easier to do
than the previous exercise’s ParseIni() function.

ptg7913109

This page intentionally left blank

ptg7913109

5 Procedural
Programming

§5.1. Statement Basics ➤ 186

§5.1.1. Type Conversions ➤ 190

§5.1.2. Type Assertions ➤ 191

§5.2. Branching ➤ 192

§5.2.1. If Statements ➤ 192

§5.2.2. Switch Statements ➤ 195

§5.3. Looping with For Statements ➤ 203

§5.4. Communication and Concurrency Statements ➤ 205

§5.4.1. Select Statements ➤ 209

§5.5. Defer, Panic, and Recover ➤ 212

§5.5.1. Panic and Recover ➤ 213

§5.6. Custom Functions ➤ 219

§5.6.1. Function Arguments ➤ 220

§5.6.2. The init() and main() Functions ➤ 224

§5.6.3. Closures ➤ 225

§5.6.4. Recursive Functions ➤ 227

§5.6.5. Choosing Functions at Runtime ➤ 230

§5.6.6. Generic Functions ➤ 232

§5.6.7. Higher Order Functions ➤ 238

§5.7. Example: Indent Sort ➤ 244

The purpose of this chapter is to complete the coverage of Go procedural pro-
gramming that the earlier chapters began. Go can be used to write purely pro-
cedural programs, to write object-oriented programs, or to write programs that
combine both paradigms. It is important to learn procedural Go since object-
oriented Go builds on the procedural foundations, as does concurrent Go pro-
gramming.

185

ptg7913109

186 Chapter 5. Procedural Programming

The previous chapters described and illustrated Go’s built-in data types, in
the course of which many of Go’s statements and control structures were used,
and many small custom functions were created. In this chapter we will review
Go’s statements and control structures in more detail, and also look much more
closely at creating and using custom functions. Table 5.1 provides a list of Go’s
built-in functions, most of which have already been covered.★

Some of this chapter’s material has been seen less formally in earlier chapters,
and some of the material refers to aspects of Go programming that are covered
in subsequent chapters. Forward and backward cross-references are provided
where appropriate.

5.1. Statement Basics
Formally, Go’s syntax requires the use of semicolons (;) as statement termina-
tors in many contexts. However, as we have seen, very few semicolons are need-
ed in real Go programs. This is because the compiler will conveniently insert
semicolons automatically at the end of nonblank lines that end with an identifi-
er, a number literal, a character literal, a string literal, certain keywords (break,
continue, fallthrough, return), an increment or decrement operator (++ or --), or
a closing parenthesis, bracket, or brace (),], }).

Two common cases where semicolons must be manually inserted are when we
want to have two or more statements on the same line and in plain for loops
(§5.3, ➤ 203).

An important consequence of the automatic semicolon insertion is that an
opening brace cannot occur on its own line.

// Correct ✓

for i := 0; i < 5; i++ {
 fmt.Println(i)
}

// WRONG! (This won't compile.) ✗

for i := 0; i < 5; i++
{
 fmt.Println(i)
}

The right-hand code snippet won’t compile because the compiler will insert a
semicolon after the ++. Similarly, if we had an infinite loop (for) with the brace
starting on the next line, the compiler would insert a semicolon after the for,
and again the code wouldn’t compile.

The æsthetics of brace placement usually generate endless arguments—but
not in Go. This is partly because the automatic semicolons constrain brace
placement and partly because many Go users use the gofmt program which

★ Table 5.1 does not list the built-in print() and println() functions since they should not be used.
They exist for the convenience of Go compiler implementers andmay be removed from the language.
Use functions like fmt.Print() instead (§3.5, 93 ➤).

ptg7913109

5.1. Statement Basics 187

Table 5.1 Built-In Functions

Syntax Description/result

append(s, ...) The slice it was given plus the new items at the end if the
slice’s capacity is sufficient; otherwise a new slice with the
original items plus the new items at the end (see §4.2.3,
156 ➤)

cap(x) The capacity of slice x or the channel buffer capacity of chan-
nel x or the length of array (or the array pointed to by) x; see
also len() (see §4.2, 148 ➤)

close(ch) Closes channel ch (but not legal for receive-only channels).No
more data can be sent to the channel. Data can continue to be
received from the channel (e.g., any sent but not yet received
values), and when there are no more values in the channel,
receivers will get the channel data type’s zero value.

complex(r, i) A complex128 with the given r (real) and i (imaginary) parts,
both of type float64 (see §2.3.2.1, 70 ➤)

copy(dst, src)
copy(b, s)

Copies (possibly overlapping) items from the src slice into the
dst slice, truncating if there isn’t enough room; or copies s of
type string’s bytes to b of type []byte (see §4.2.3, 156 ➤and
➤ 268)

delete(m, k) Deletes the item with key k from map m or safely does nothing
if there’s no such key (see §4.3, 164 ➤)

imag(cx) The imaginary part of cx of type complex128 as a float64 (see
§2.3.2.1, 70 ➤)

len(x) The length of slice x or the number of items queued in channel
x’s buffer or the length of array (or the array pointed to by) x or
the number of items in map x or the number of bytes in string
x; see also cap() (see §4.2.3, 156 ➤)

make(T)
make(T, n)
make(T, n, m)

A reference to a slice, map, or channel of type T. If n is given
this is a slice’s length and capacity, or a hint to a map of how
many items to expect,or a channel’s buffer size. For slices only,
n and m may be given to specify the length and capacity (see
150 ➤for slices, 165 ➤for maps, and Chapter 7 for channels).

new(T) A pointer to a value of type T (see §4.1, 140 ➤)

panic(x) Raises a catchable runtime exception with value x (see §5.5.1,
➤ 213)

real(cx) The real part of cx of type complex128 as a float64 (see §2.3.2.1,
70 ➤)

recover() Catches a runtime exception (see §5.5.1, ➤ 213)

ptg7913109

188 Chapter 5. Procedural Programming

formatsGoprogramsin a standardizedway. In fact,all theGo standard library’s
source code uses gofmt which is why the code has such a consistent layout, even
though it is the product of many different programmers’ work.★

Go supports the ++ (increment) and -- (decrement) operators listed in Table 2.4
(59 ➤). They are both postfix operators, that is, they must follow the operand
they apply to, and they do not return a value. These constraints prevent the
operators from being used as expressions, and mean that they cannot be used
in semantically ambiguous contexts—for example,we cannot apply one of these
operators to an argument in a function call or write i = i++ in Go (although we
could in C and C++ where the results are undefined).

Assignments are made using the = assignment operator. Variables can be both
created and assigned by using = in conjunction with var—for example, var x = 5
creates a new variable x of type int and with value 5. (Exactly the same could
be achieved using var x int = 5 or x := 5.) The type of the variable assigned to
must be compatible with the value being assigned. If = is used without var the
variable on its left-hand side must already exist. Multiple comma-separated
variables can be assigned to, and we can use the blank identifier (_), which is
compatible with any type, to ignore any of the values being assigned. Multiple
assignments make it easy to swap two values without the need for an explicit
temporary variable—for example, a, b = b, a.

The short variable declaration operator (:=) is used to both declare a new vari-
able and assign to it in a single statement. Multiple comma-separated variables
can be used in much the same way as when using the = operator, except that
at least one nonblank variable must be new. If there is a variable that already
exists it will be assigned to without creating a new variable—unless the := is at
the start of a new scope such as in an if or for statement’s initializing statement
(see §5.2.1, ➤ 192; §5.3, ➤ 203).

a, b, c := 2, 3, 5
for a := 7; a < 8; a++ { // a is unintentionally shadowing the outer a
 b := 11 // b is unintentionally shadowing the outer b
 c = 13 // c is the intended outer c ✓

 fmt.Printf("inner: a→%d b→%d c→%d\n", a, b, c)
}
fmt.Printf("outer: a→%d b→%d c→%d\n", a, b, c)

inner: a→7 b→11 c→13
outer: a→2 b→3 c→13

★ At the time of this writing, gofmt did not support line wrapping to a maximum line width, and
in some cases gofmt will join two or more wrapped lines to make one long line. The book’s source
code was automatically extracted from live examples and test programs and inserted into the book’s
camera-ready PDF file—but this is subject to a hard 75-character-per-line limit. So, for the book’s
code, gofmt was used, and then long lines were manually wrapped.

ptg7913109

5.1. Statement Basics 189

This code snippet shows how the := operator can create “shadow” variables. In
this snippet, inside the for loop the a and b variables shadow variables from the
outer scope, and while legal, this is almost certainly a programming error. On
the other hand, there is only one c variable (from the outer scope), so its usage
is correct and as intended. Variables that shadow other variables can be very
convenient, as we will see shortly, but careless use can cause problems.

As we will discuss later in the chapter, we can write return statements in func-
tions that have one or more named return values, without specifying any re-
turn values. In such cases, the returned valueswill be the named return values,
which are initialized with their zero values on entry to the function, and which
we can change by assigning to them in the body of the function.

func shadow() (err error) { // THIS FUNCTION WILL NOT COMPILE!
 x, err := check1() // x is created; err is assigned to

if err != nil {
return // err correctly returned

 }
if y, err := check2(x); err != nil { // y and inner err are created

return // inner err shadows outer err so nil is wrongly returned!
 } else {
 fmt.Println(y)
 }

return // nil returned
}

In the shadow() function’s first statement the x variable is created and assigned
to, but the err variable is simply assigned to since it is already declared as the
shadow() function’s return value. This works because the := operator must
create at least one nonblank variable and that condition is met here. So, if err
is not nil, it is correctly returned.

An if statement’s simple statement, that is, the optional statement that follows
the if and precedes the condition, starts a new scope (§5.2.1,➤ 192).So, both the
y and the err variables are created, the latter being a shadow variable. If the
err is not nil the err in the outer scope is returned (i.e., the err declared as the
shadow() function’s return value), which is nil since that was the value assigned
to it by the call to check1(), whereas the call to check2() was assigned to the
shadowing inner err.

Fortunately, this function’s shadow problem is merely a phantom, since the Go
compiler will stop with an error message if we use a bare return when any of
the return variables has been shadowed. So, this function will not compile as
it stands.

One easy solution is to add a line at the start of the function that declares the
variables (e.g., var x, y int or x, y := 0, 0), and change := to = for the check1() and

ptg7913109

190 Chapter 5. Procedural Programming

check2() calls. (For an example of this approach see the custom americanise()
function; 35 ➤.)

Another solution is to use an unnamed return value. This forces us to return an
explicit value, so in this case the first two return statementswould both become
return err (each returning a different but correct err value), and the last one
would become return nil.

5.1.1. Type Conversions

Go provides a means of converting between different—compatible—types,
and such conversions are useful and safe. For conversions between non-
numeric types no loss of accuracy occurs. But for conversions between nu-
meric types, loss of accuracy or other effects may occur. For example, if we
have x := uint16(65000) and then use the conversion y := int16(x), since x is
outside the int16 range, y’s value is set to the unsurprising—but probably
undesirable—value of -536.

Here is the conversion syntax:

resultOfType := Type(expression)

For numbers, essentially we can convert any integer or floating-point number
to another integer or floating-point type (with possible loss of accuracy if the
target type is smaller than the source type). The same applies to converting
between complex128 and complex64 types. We discussed numeric conversions in
§2.3 (58 ➤and 69 ➤).

A string can be converted to a []byte (its underlying UTF-8 bytes) or to a []rune
(its Unicode code points), and both a []byte and a []rune can be converted to a
string. A single character is a rune (i.e., an int32), and can be converted to a one-
character string. String and character conversions were covered in Chapter 3
(87 ➤and 88 ➤; also Table 3.2, 85 ➤, and Tables 3.8 and 3.9, 114–115 ➤).

Let’s look at a tiny illustrative example, starting with a simple custom type.

type StringSlice []string

This type also has a custom StringSlice.String() function (not shown) that
returns a string representation of the string slice in the form used to create a
custom StringSlice using composite literal syntax.

fancy := StringSlice{"Lithium", "Sodium", "Potassium", "Rubidium"}
fmt.Println(fancy)
plain := []string(fancy)
fmt.Println(plain)

ptg7913109

5.1. Statement Basics 191

StringSlice{"Lithium", "Sodium", "Potassium", "Rubidium"}
[Lithium Sodium Potassium Rubidium]

The fancy StringSlice is printed using its own StringSlice.String() function.
But once we convert it to a plain []string, it is printed like any other []string.
(Creating custom types with their own methods is covered in Chapter 6.)

Conversions for other types will work if the expression and Type’s underlying
types are the same, or if the expression is an untyped constant that can be
represented by type Type, or if Type is an interface type and the expression
implements Type’s interface.★

5.1.2. Type Assertions

A type’smethod set is the set of all the methods that can be called on a value of
the type—this set is empty for types that have no methods. The Go interface{}
type is used to represent the empty interface, that is, a value of a type whose
method set includes the empty set. Since every type has a method set that
includes the empty set (nomatter howmanymethods it has), an interface{} can
be used to represent a value of any Go type. Furthermore, we can convert an
interface{} to a value of the actual type it holds using a type switch (see §5.2.2.2,
➤ 197), or a type assertion, or by doing introspection with Go’s reflect package
(§9.4.9, ➤ 427).✪

The use of variables of type interface{} (or of custom interface types) can arise
when we are handling data received from external sources, when we want to
create generic functions, and when doing object-oriented programming. To
access the underlying value, one approach is to use a type assertion using one
of these syntaxes:

resultOfType, boolean := expression.(Type) // Checked
resultOfType := expression.(Type) // Unchecked; panic() on failure

A successful checked type assertion returns the expression as a value of the
specified Type and true to indicate success. If the checked type assertion fails
(i.e., the expression’s type is not compatible with the specified Type), a zero value
of the specified Type and false are returned. Unchecked type assertions either
return the expression as a value of the specified Type or call the built-in panic()

★Other more obscure conversions are also possible; these are covered in theGo specification (golang.
org/doc/go_spec.html).
✪Python programmersmay find it helpful to think of interface{} as being like an instance of object,
and Java programmersasbeing like an instance of Object, althoughunlikeJava’sObject, interface{}
can be used to represent both custom and built-in types. For C and C++ programmers, interface{}
is rather like a void* that knows what type it is.

ptg7913109

192 Chapter 5. Procedural Programming

function which will result in program termination if the panic isn’t recovered.
(Panicking and recovery is covered later; §5.5, ➤ 212.)

Here is a tiny example to illustrate the syntaxes in use.

var i interface{} = 99
var s interface{} = []string{"left", "right"}
j := i.(int) // j is of type int (or a panic() has occurred)
fmt.Printf("%T→%d\n", j, j)
if i, ok := i.(int); ok {
 fmt.Printf("%T→%d\n", i, i) // i is a shadow variable of type int
}
if s, ok := s.([]string); ok {
 fmt.Printf("%T→%q\n", s, s) // s is a shadow variable of type []string
}

int→99
int→99
[]string→["left" "right"]

It is quite common when doing type assertions to use the same name for the
result variable as for the original variable, that is, to use shadowvariables. And,
generally, we use checked type assertions only when we expect the expression
to be of the specified type. (If the expression could be any one of a number of
types, we can use a type switch; §5.2.2.2, ➤ 197.)

Note that if we printed the original i and s variables (both of type interface{})
they would be printed as an int and a []string. This is because when the fmt
package’s print functions are faced with interface{} types, they are sensible
enough to print the actual underlying values.

5.2. Branching

Go provides three branching statements: if, switch, and select—the latter is
discussed further on (§5.4.1, ➤ 209). A branching effect can also be achieved
using a map whose keys are used to select the “branch” and whose values are
corresponding functions to call—something we will see later in the chapter
(§5.6.5, ➤ 230).

5.2.1. If Statements

Go’s if statement has the following syntax:

if optionalStatement1; booleanExpression1 {
block1

} else if optionalStatement2; booleanExpression2 {

ptg7913109

5.2. Branching 193

block2
} else {

block3
}

Theremay be zero ormore else if clauses and zero or one final else clause. Each
block consists of zero or more statements.

The braces are mandatory, but a semicolon is needed only if an optional state-
ment ispresent. The optional statement isa simplestatement inGo terminology:
Thismeans that it may be only an expression, a channel send (using the <- oper-
ator), an increment or decrement statement, an assignment, or a short variable
declaration. If variables are created in an optional statement (e.g., using the :=
operator), their scope extends from thepoint of declaration to the end of the com-
plete if statement—so they exist in the if or else if they are declared in, and in
every following branch, and cease to exist at the end of the if statement.

The Boolean expressionsmust be of type bool.Go will not automatically convert
non-bools, so wemust always use a comparison operator—for example, if i == 0.
(The Boolean and comparison operators are listed in Table 2.3, 57 ➤.)

We have already seen numerous examples of if statements in use, and will
see many more in the rest of the book. Nonetheless, we will look at two tiny
examples, the first to show the value of the optional simple statement, and the
second to illustrate a Go if statement idiom.

// Canonical ✓

if α := compute(); α < 0 {
 fmt.Printf("(%d)\n", -α)
} else {
 fmt.Println(α)
}

// Long-winded!
{

α := compute()
if α < 0 {

 fmt.Printf("(%d)\n", -α)
 } else {
 fmt.Println(α)
 }
}

These two code snippets print exactly the same thing. The right-hand snippet
must use extra braces to limit the scope of the α variable, whereas the left-hand
snippet automatically limits the variable’s scope to the if statement.

The second if statement example is the ArchiveFileList() function which is tak-
en from the archive_file_list example (in file archive_file_list/archive_file_
list.go).Later on wewill use this function’s body to compare if and switch state-
ments.

ptg7913109

194 Chapter 5. Procedural Programming

func ArchiveFileList(file string) ([]string, error) {
if suffix := Suffix(file); suffix == ".gz" {

return GzipFileList(file)
 } else if suffix == ".tar" || suffix == ".tar.gz" || suffix == ".tgz" {

return TarFileList(file)
 } else if suffix == ".zip" {

return ZipFileList(file)
 }

return nil, errors.New("unrecognized archive")
}

The example program reads the files given on the command line, and for those
archive files that it can handle (.gz, .tar, .tar.gz, .zip), it prints the name of the
archive file and an indented list of the files the archive contains.

Notice that the scope of the suffix variable created in the first if clause
extends throughout the entire if … else if …statement, so it is visible in every
branch, just like the α variable in the previous example.

The function could have been written using a final else statement, but it is very
common in Go to use the structure shown here: an if statement and zero or
more else if statements each of which ends with a return statement, with this
followed by a return statement rather than a final else statement that endswith
a return.

func Suffix(file string) string {
 file = strings.ToLower(filepath.Base(file))

if i := strings.LastIndex(file, "."); i > -1 {
if file[i:] == ".bz2" || file[i:] == ".gz" || file[i:] == ".xz" {

if j := strings.LastIndex(file[:i], ".");
 j > -1 && strings.HasPrefix(file[j:], ".tar") {

return file[j:]
 }
 }

return file[i:]
 }

return file
}

The Suffix() function is included for completeness: It takes a filename (which
may include a path), and returns the lowercased suffix—also called the exten-
sion—that is, the last part of the name that beginswith a period. If the filename
has no period, it is returned as is (but without any path); if the filename ends in
.tar.bz2, .tar.gz, or .tar.xz then this is the suffix that is returned.

ptg7913109

5.2. Branching 195

5.2.2. Switch Statements

There are two kinds of switch statement:expression switches and type switches.
Expression switcheswill be familiar to C, C++, and Java programmers,whereas
type switches are specific to Go. Both kinds are syntactically very similar, but
unlike C, C++, and Java, Go’s switch statements do not fall through (so there
is no need to put a break at the end of every case); instead we can request
fallthrough explicitly by using the fallthrough statement when it is needed.

5.2.2.1. Expression Switches

Go’s expression switch statement has the following syntax:

switch optionalStatement; optionalExpression {
case expressionList1: block1
...
case expressionListN: blockN
default: blockD
}

The semicolon is required if the optional statement is present, regardless of
whether the optional expression is present. Each block consists of zero or
more statements.

If the switch has no optional expression the compiler assumes an expression of
true. The optional statement is the same kind of simple statement that can be
used with if statements (193 ➤). If variables are created in the optional state-
ment (e.g., using the := operator), their scope extends from the point of declara-
tion to the end of the complete switch statement—so they exist in every case and
in the default case, and cease to exist at the end of the switch statement.

The most efficient way to order cases is frommost likely to least likely, although
this only really matters when there are lots of cases and the switch is executed
repeatedly. Since cases do not automatically fall through, there is no need to
put a break at the end of each case’s block. If fallthrough is wanted we simply
use a fallthrough statement. The default case is optional and if present may
appear anywhere. If no case’s expression matches, the default case is executed
if it is present; otherwise processing continues from the statement following the
switch statement.

Each case must have an expression list of one or more comma-separated
expressions whose type matches the switch statement’s optional expression’s
type. If no optional expression is present the compiler sets it to true, that is, of
type bool, in which case every expression in each case clause’s expression list
must evaluate to a bool.

If a case or default clause has a break statement, the switch statement will im-
mediately be broken out of, with control passing to the statement following the

ptg7913109

196 Chapter 5. Procedural Programming

switch statement, or—if the break statement specifies a label—to the innermost
enclosing for, switch, or select statement that has the specified label.

Here is a very simple example of a switch statement that has no optional
statement and no optional expression.

func BoundedInt(minimum, value, maximum int) int {
switch {
case value < minimum:

return minimum
case value > maximum:

return maximum
 }

return value
}

Since there is no optional expression the compiler sets the expression to true;
this means that each case clause expression must evaluate to a bool. Here both
expressions use Boolean comparison operators.

switch {
case value < minimum:

return minimum
case value > maximum:

return maximum
default:

return value
 }

panic("unreachable")

Here is an alternative body for the BoundedInt() function. The switch statement
now covers every possible case, so control can never reach the end of the
function. Nonetheless, Go expects a return at the end—or a panic(), so we have
used the latter to better express the function’s semantics.

The ArchiveFileList() function shown in the previous subsection (194 ➤) used
an if statement to determine which function to call. Here is a naïve switch
statement-based version.

switch suffix := Suffix(file); suffix { // Naïve and noncanonical!
case ".gz":

return GzipFileList(file)
case ".tar":

fallthrough

case ".tar.gz":
fallthrough

ptg7913109

5.2. Branching 197

case ".tgz":
return TarFileList(file)

case ".zip":
return ZipFileList(file)

 }

This switch statement has both a statement and an expression. In this case
the expression is of type string so each case’s expression list must contain
one or more comma-separated strings to match. We have used the fallthrough
statement to ensure that all tar files are processed by the same function.

The suffix variable’s scope extends throughout the switch statement to every
case (and would extend to the default case if one was present), and ends at the
end of the switch statement since at that point the suffix ceases to exist.

switch Suffix(file) { // Canonical ✓

case ".gz":
return GzipFileList(file)

case ".tar", ".tar.gz", ".tgz":
return TarFileList(file)

case ".zip":
return ZipFileList(file)

 }

Here is a more compact and canonical version of the preceding switch state-
ment. Instead of a statement and an expressionwehave simply used an expres-
sion: The Suffix() function (that we saw earlier; 194 ➤) returns a string. And
instead of using fallthrough statements for tar files, we have used a comma-
separated list of all the matching suffixes as that case clause’s expression list.

Go’s expression switch statements are much more versatile than those provided
by C, C++, and Java, and in many cases can be used instead of—and are more
compact than—if statements.

5.2.2.2. Type Switches

As we noted when we covered type assertions (§5.1.2, 191 ➤), when we use
variables of type interface{} we often want to access the underlying value. If
we know the type we can use a type assertion, but if the type may be any one of
a number of possible types we can use a type switch statement.

Go’s type switch statement has the following syntax:

switch optionalStatement; typeSwitchGuard {
case typeList1: block1
...
case typeListN: blockN

ptg7913109

198 Chapter 5. Procedural Programming

default: blockD
}

The optional statement is the same as in expression switches and if statements.
And the case clauses work the same way as for expression switches except that
they list one or more comma-separated types. The optional default clause and
fallthrough statements are just the same as for expression switches, and as
usual, each block consists of zero or more statements.

The type switch guard is an expression whose result is a type. If the expression
is assigned using the := operator, the variable created has the value of the value
in the type switch guard expression, but its type depends on the case clauses: In
a case clausewith one type in its type list, the variable has that type in that case,
and in case clauses that have two or more types, the variable’s type is that of the
type switch guard expression.

The kind of type testing supported by the type switch statement is generally
frowned upon by object-oriented programmers who instead prefer to rely on
polymorphism. Go supports a kind of polymorphism through duck typing (as
we will see in Chapter 6), but nonetheless there are times where explicit type
testing makes sense.

Here is an example of how we might call a simple type classifier function and
the output it produces.

classifier(5, -17.9, "ZIP", nil, true, complex(1, 1))

param #0 is an int
param #1 is a float64
param #2 is a string
param #3 is nil
param #4 is a bool
param #5's type is unknown

The classifier() function uses a simple type switch. It is a variadic function,
that is, it can accept a variable number of arguments. And since the argument
type is interface{}, the arguments can be of any types. (Functions, including
variadic functions and the ellipsis, are covered later in this chapter; §5.6,
➤ 219.)

func classifier(items ...interface{}) {
for i, x := range items {

switch x.(type) {
case bool:

 fmt.Printf("param #%d is a bool\n", i)
case float64:

 fmt.Printf("param #%d is a float64\n", i)

ptg7913109

5.2. Branching 199

case int, int8, int16, int32, int64:
 fmt.Printf("param #%d is an int\n", i)

case uint, uint8, uint16, uint32, uint64:
 fmt.Printf("param #%d is an unsigned int\n", i)

case nil:
 fmt.Printf("param #%d is nil\n", i)

case string:
 fmt.Printf("param #%d is a string\n", i)

default:
 fmt.Printf("param #%d's type is unknown\n", i)
 }
 }
}

The type switch guard used here has the same format as a type assertion, that
is, variable.(Type), but using the keyword type instead of an actual type to stand
for any type.

Sometimes we might want to access an interface{}’s underlying value as well
as its type. This can be done by making the type switch guard an assignment
(using the := operator), as we will see in a moment.

One common use case for type testing is when we are dealing with data from
external sources. For example, if we are parsing data encoded using JSON
(JavaScript Object Notation), we must somehow convert the data to the corre-
sponding Go data types. This can be done using Go’s json.Unmarshal() function.
If we give the function a pointer to a struct with fields that match the JSON
data, this functionwill populate the struct’s fields converting each item of JSON
data into the data type of its corresponding struct field. But if we do not know
the JSON data’s structure in advance we cannot give the json.Unmarshal() func-
tion a struct. In such cases we can give the function a pointer to an interface{}
which the json.Unmarshal() function will set to refer to a map[string]interface{}
whose keys are JSON field names and whose values are the corresponding val-
ues stored as interface{}s.

Here is an example that shows how we can unmarshal a raw JSON object of
unknown structure and how we can create and print a corresponding string
representation of the JSON object.

MA := []byte(`{"name": "Massachusetts", "area": 27336, "water": 25.7,
 "senators": ["John Kerry", "Scott Brown"]}`)
var object interface{}
if err := json.Unmarshal(MA, &object); err != nil {
 fmt.Println(err)
} else {
 jsonObject := object.(map[string]interface{}) ➊

ptg7913109

200 Chapter 5. Procedural Programming

 fmt.Println(jsonObjectAsString(jsonObject))
}

{"senators": ["John Kerry", "Scott Brown"], "name": "Massachusetts",
"water": 25.700000, "area": 27336.000000}

If no error occurredwhen unmarshaling, the object variable of type interface{}
will refer to a variable of type map[string]interface{} whose keys are the JSON
object’s field names. The jsonObjectAsString() function accepts a map of this
type and returns a corresponding JSON string. We use an unchecked type
assertion (199 ➤, ➊) to convert the object of type interface{} to the jsonObject
variable of type map[string]interface{}. (Note that the output shown here is
split over two lines to fit the book’s page width.)

func jsonObjectAsString(jsonObject map[string]interface{}) string {
var buffer bytes.Buffer

 buffer.WriteString("{")
 comma := ""

for key, value := range jsonObject {
 buffer.WriteString(comma)

switch value := value.(type) { // shadow variable ➊

case nil: ➋

 fmt.Fprintf(&buffer, "%q: null", key)
case bool:

 fmt.Fprintf(&buffer, "%q: %t", key, value)
case float64:

 fmt.Fprintf(&buffer, "%q: %f", key, value)
case string:

 fmt.Fprintf(&buffer, "%q: %q", key, value)
case []interface{}:

 fmt.Fprintf(&buffer, "%q: [", key)
 innerComma := ""

for _, s := range value {
if s, ok := s.(string); ok { // shadow variable ➌

 fmt.Fprintf(&buffer, "%s%q", innerComma, s)
 innerComma = ", "
 }
 }
 buffer.WriteString("]")
 }
 comma = ", "
 }
 buffer.WriteString("}")

return buffer.String()
}

ptg7913109

5.2. Branching 201

This function converts a map representing a JSON object and returns a corre-
sponding string of the object’s data in JSON format. JSON arrays inside maps
representing JSON objects are themselves represented by the []interface{}
type. The function makes one simplifying assumption regarding JSON arrays:
It assumes that they have only string items.

To access the data we use a for … range loop (§5.3, ➤ 203) over the map’s keys
and values and use a type switch to access and handle each different value type.
The switch’s type switch guard (200 ➤,➊) assigns the value (of type interface{})
to a new variable called value which has the type of the matching case. This is
a situation where it makes sense to shadow a variable (although we are free to
create a new variable if we wish). So, if the interface{} value’s type is bool, the
inner value will be a bool and will match the second case, and similarly for the
other cases.

To write the values to the buffer we have used the fmt.Fprintf() function since
this is more convenient than writing, say, buffer.WriteString(fmt.Sprintf(…))
(200 ➤, ➋). The fmt.Fprintf() function writes to the io.Writer passed as its first
argument. A bytes.Buffer is not an io.Writer—but a *bytes.Buffer is,which is
why we pass the buffer’s address. This matter is covered more fully in Chap-
ter 6, but in brief, io.Writer is an interface that can be fulfilled by any value
that provides a suitable Write() method. The bytes.Buffer.Write() method
takes a pointer receiver (i.e., a *bytes.Buffer, not a bytes.Buffer value), so only a
*bytes.Buffer fulfills the interface, which means that we must pass the buffer’s
address to the fmt.Fprintf() function, not the buffer value itself.

If the JSON object contains JSON arrays, we use an inner for … range loop to
iterate over each of the []interface{}’s items and use a checked type assertion
(200 ➤, ➌) which means that we add items to our output only if they really are
strings. Again, we use a shadow variable (this time s of type string), since we
don’t want the interface{}, but rather the value it refers to. (Type assertions
were covered earlier; §5.1.2, 191 ➤.)

Of course, if we knew the original JSON object’s structure in advance we could
simplify the code a great deal. We would need a struct to hold the data and a
method for outputting it in string form. Here is the code to unmarshal and print
in such cases.

var state State
if err := json.Unmarshal(MA, &state); err != nil {
 fmt.Println(err)
}
fmt.Println(state)

{"name": "Massachusetts", "area": 27336, "water": 25.700000,
"senators": ["John Kerry", "Scott Brown"]}

ptg7913109

202 Chapter 5. Procedural Programming

This code looks very similar to the codewe had before. However, there is no need
for a jsonObjectAsString() function; instead we need to define a State type and
a corresponding State.String()method. (Once again, we had to split the output
over two lines to fit the book’s page width.)

type State struct {
 Name string
 Senators []string
 Water float64
 Area int
}

The struct is similar to ones we have seen before. Note, though, that each
field must begin with an uppercase letter to make it exported (public) since the
json.Unmarshal() function can only populate exported fields. Also, although Go’s
encoding/json package does not distinguish between different numeric types—it
treats all JSON numbers as float64s—the json.Unmarshal() function is smart
enough to populate fields of other numeric types as necessary.

func (state State) String() string {
var senators []string
for _, senator := range state.Senators {

 senators = append(senators, fmt.Sprintf("%q", senator))
 }

return fmt.Sprintf(
`{"name": %q, "area": %d, "water": %f, "senators": [%s]}`,

 state.Name, state.Area, state.Water, strings.Join(senators, ", "))
}

This method returns a State value as a JSON data string.

Most Go programs should not need type assertions and type switches; and even
when they are needed, their use should be fairly rare. One use case is where
we are passing values that satisfy one interface and want to check if they
also satisfy another. (This topic is covered in Chapter 6; e.g., §6.5.2, ➤ 289.)
Another use case is when data from external sourcesmust be converted into Go
data types. For ease of maintenance, it is almost always best that such code is
isolated from the rest of the program. This allows the programtoworkwholly in
terms of Go data types andmeans that any maintenance needed due to changes
to the format or types received from external sources can be localized.

ptg7913109

5.3. Looping with For Statements 203

5.3. Looping with For Statements

Go uses two kinds of for statements for looping, plain for statements and for …
range statements. Here are their syntaxes:

for { // Infinite loop
block

}

for booleanExpression { // While loop
block

}

for optionalPreStatement; booleanExpression; optionalPostStatement { ➊

block
}

for index, char := range aString { // String per character iteration ➋

block
}

for index := range aString { // String per character iteration ➌

block // char, size := utf8.DecodeRuneInString(aString[index:])
}

for index, item := range anArrayOrSlice { // Array or slice iteration ➍

block
}

for index := range anArrayOrSlice { // Array or slice iteration ➎

block // item := anArrayOrSlice[index]
}

for key, value := range aMap { // Map iteration ➏

block
}

for key := range aMap { // Map iteration ➐

block // value := aMap[key]
}

for item := range aChannel { // Channel iteration
block

}

The braces are mandatory, but a semicolon is only needed if an optional pre-
or post-statement is used (➊); both statements must be simple statements. If
variables are created in an optional statement or to capture the values produced
by a range clause (e.g., using the := operator), their scope extends from the point
of declaration to the end of the complete for statement.

ptg7913109

204 Chapter 5. Procedural Programming

The Boolean expression in the plain for loop syntax (203 ➤, ➊) must be of
type bool since Go will not automatically convert non-bools. (The Boolean and
comparison operators are listed in Table 2.3, 57 ➤.)

The second for … range over a string syntax (203 ➤,➌) gives byte offset indexes.
For a 7-bit ASCII string s, of value "XabYcZ", this produces indexes 0, 1, 2, 3, 4,
5. But for a UTF-8 string s, of value "XαβYγZ", the indexes produced are 0, 1, 3, 5,
6, 8. The first for … range over a string syntax (203 ➤, ➋) is almost always more
convenient than the second (203 ➤, ➌).

The second for … range over an array or slice syntax (203 ➤, ➎) produces item
indexes from 0 to len(slice) - 1 for nonempty slices or arrays. This syntax and
the first for … range over an array or slice syntax (203 ➤, ➍) are often useful.
These two syntaxes in particular account for why fewer plain for loops (203 ➤,
➊) are needed in Go programs.

The for … range loops over map key–value items (203 ➤, ➏) and over map keys
(203 ➤, ➐) produce the items or keys in an arbitrary order. If sorted order is
required one solution is to use the second syntax (203 ➤,➐) and populate a slice
with the keys and then sort the slice—we saw an example of this in the previous
chapter (§4.3.4, 170 ➤). Another solution is to use an ordered data structure in
the first place—for example, an ordered map. We will see an example of this in
the next chapter (§6.5.3, ➤ 302).

If any of the syntaxes (203 ➤, ➋–➐) are used on an empty string, array, slice, or
map, the for loop harmlessly does nothing and the flow of control continues at
the following statement.

A for loop can be broken out of at any time with a break statement,with control
passing to the statement following the for loop, or—if the break statement
specifies a label—to the innermost enclosing for, switch, or select statement
that has the specified label. It is also possible to make the flow of control return
to the for loop’s condition or range clause to force the next iteration (or the end
of the loop), by using a continue statement.

We have already seen numerous examples of for statements in use; these in-
clude for … range loops (89 ➤, 172 ➤, and 180 ➤), infinite loops (23 ➤and 45 ➤),
and the plain for loop (100 ➤) that is needed less frequently in Go since the other
loops are often more convenient. And we will, of course, see many more for loop
examples in the rest of the book, including some later in this chapter; so here we
will confine ourselves to one small example.

Suppose that we have two-dimensional slices (e.g., of type [][]int), and want
to search them to see if they contain a particular value. Here are two ways we
can perform the search. Both use the second for … range over an array or slice
syntax (203 ➤, ➎).

ptg7913109

5.3. Looping with For Statements 205

found := false

for row := range table {
for column := range table[row] {

if table[row][column] == x {
 found = true

break

 }
 }

if found {
break

 }
}

found := false

FOUND:
for row := range table {

for column := range table[row] {
if table[row][column] == x {

 found = true

break FOUND
 }
 }
}

A label is an identifier followed by a colon. Both code snippets achieve the
same thing but the right-hand snippet is shorter and clearer because as soon
as the searched-for value (x) is found, it breaks to the outer loop by using a
break statement that specifies a label. The advantages of breaking to a label
are even greater if we are in a deeply nested series of loops (e.g., iterating over
three-dimensional data).

Labels can be applied to for loops, switch statements, and select statements.
Both break and continue statements can specify labels and can be used inside
for loops. It is also possible to use break statements—either bare or specifying
a label—inside switch and select statements.

Labels can also appear as statements in their own right in which case they may
be the targets of goto statements (using the syntax goto label). If a goto state-
ment jumps past any statement that creates a variable, the Go program’s be-
havior is undefined—if we are lucky it will crash, but probably it will continue
to run and produce spurious results. One use case for goto statements is when
automatically generating code,since in this circumstancegoto can be convenient
and the concerns about spaghetti code don’t necessarily apply. Although, at the
time of this writing,more than 30 of Go’s source files use goto statements, none
of the book’s examples use the goto statement, and we advocate avoiding it.★

5.4. Communication and Concurrency
Statements

Go’s communication and concurrency features are covered in Chapter 7, but for
completeness of our coverage of procedural programming we will describe their
basic syntax here.

★ goto statements have been generally despised since Edsger Dijkstra’s famous 1968 letter titled
“Go-to statement considered harmful” (www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF).

www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF

ptg7913109

206 Chapter 5. Procedural Programming

A goroutine is a function or method invocation that executes independently and
concurrently in relation to any other goroutines in a program. Every Go pro-
gram has at least one goroutine, the main goroutine in which the main pack-
age’s main() function executes. Goroutines are rather like lightweight threads
or coroutines, in that they can be created in large numbers (whereas even small
numbers of threads can consume a huge amount of machine resources). Go-
routines all share the same address space, and Go provides locking primitives
to allow data to be safely shared across goroutines. However, the recommended
approach to concurrent Go programming is to communicate data, rather than to
share it.

A Go channel is a bidirectional or unidirectional communication pipe that
can be used to communicate (i.e., send and receive) data between two or more
goroutines.

Between them, goroutines and channels provide a means of lightweight (i.e.,
scalable) concurrency that does not use shared memory and so does not require
locking. Nonetheless, as with all other approaches to concurrency, care must be
exercised when creating concurrent programs andmaintenance is usually more
challenging than for nonconcurrent programs. Most operating systems are ex-
cellent at running multiple programs at the same time, so exploiting this can
reduce maintenance—for instance, by running multiple programs (or multiple
copies of the same program) each operating on different data. Good program-
mers write concurrent programs only when the approach has clear advantages
that outweigh the increased maintenance burden.

A goroutine is created using the go statement with the following syntaxes:

go function(arguments)
go func(parameters) { block }(arguments)

Wemust either call an existing function or call an anonymous function created
on the spot. The function may have zero or more parameters just like any other
function, and if it has parameters, corresponding argumentsmust be passed the
same as with any other function call.

Execution of the called function begins immediately—but in a separate
goroutine—and execution of the current goroutine (i.e., the one that has the go
statement) resumes immediately from the next statement. So, after a go state-
ment, there are at least two goroutines running, the original one (initially the
main goroutine), and the newly created one.

In rare cases it is sufficient to start off a bunch of goroutines and wait for them
all to finish, with no communication necessary. In most situations, though,
goroutines need to work cooperatively together, and this can best be achieved by
giving them the ability to communicate. Here are the syntaxes used for sending
and receiving data:

ptg7913109

5.4. Communication and Concurrency Statements 207

channel <- value // Blocking send
<-channel // Receive and discard
x := <-channel // Receive and store
x, ok := <-channel // As above & check for channel closed & empty

Nonblocking sends are possible using the select statement, and to some extent
using buffered channels.

Channels are created with the built-in make() function with these syntaxes:

make(chan Type)
make(chan Type, capacity)

If no buffer capacity is specified the channel is synchronous, so it will block until
the sender is ready to send and the receiver is ready to receive. If a capacity is
given the channel is asynchronous and communication will progress without
blocking so long as there is unused capacity for sends and there is data in the
channel to be received.

Channels are bidirectional by default, but we can make them unidirectional
if we want to—for example, to better express our semantics in a way that
the compiler can enforce. In Chapter 7 we show how to create unidirectional
channels, and from then on use unidirectional channels whenever appropriate.

Let’s put all the syntax just discussed in context with a tiny example.★ We will
write a createCounter() function which will return a channel that will send
an int whenever we ask to receive from it. The first value received will be the
start value that we pass to the createCounter() function and each subsequent
value will be one more than the one before. Here is how we might create two
independent counter channels (each operating in its own goroutine), and the
results they produce.

counterA := createCounter(2) // counterA is of type chan int
counterB := createCounter(102) // counterB is of type chan int
for i := 0; i < 5; i++ {
 a := <-counterA
 fmt.Printf("(A→%d, B→%d) ", a, <-counterB)
}
fmt.Println()

(A→2, B→102) (A→3, B→103) (A→4, B→104) (A→5, B→105) (A→6, B→106)

We have shown the receives in two different ways just to show how it is done.
The first receive assigns the received value to a variable, and the second passes
the received value as an argument to a function.

★ This example was inspired by Andrew Gerrand’s blog, nf.id.au/concurrency-patterns-a-source-of
-unique-numbe. (There really isn’t an “r” on the end.)

ptg7913109

208 Chapter 5. Procedural Programming

The two calls to the createCounter() function are made in the main goroutine,
and the two other goroutines, each one created by createCounter(), are both
initially blocked. In the main goroutine, as soon as we attempt to receive from
one of the channels a send takes place and we receive the value. Then the
sending goroutine is blocked again, waiting for a new receive request. The two
channels are “infinite”, in that they can always send a value. (Of course, if we
reach the int limit the next value will wrap.) Once the five valueswe want have
been received from each channel the channels are again blocked and ready for
use later on.

How can we get rid of the goroutines that we are using for the counter channels
if they are no longer needed? This requires us to get them to break out of their
infinite loops, so that they stop sendingmore data,and then to close the channels
they are using. We will see one way to do this in the following subsection—and,
of course, Chapter 7 which is devoted to concurrency has much more coverage.

func createCounter(start int) chan int {
 next := make(chan int)

go func(i int) {
for {

 next <- i
 i++
 }
 }(start)

return next
}

This function accepts a starting value and creates a channel for sending and
receiving ints. It then begins executing an anonymous function in a new go-
routine, passing it the start value. The function has an infinite loop that simply
sends an int and then increments the int at each iteration. Because the chan-
nel was created with zero capacity the send blocks until a receive is requested
from the channel. The blocking only affects the anonymous function’s goroutine,
so the rest of the program’s goroutines can continue to run unconcerned. Once
the goroutine has been set running (and, of course, at this point it immediately
blocks), the function’s following statement is immediately executed, and this re-
turns the channel to its caller.

In some situations we may have multiple goroutines executing, each with its
own communication channel. We can monitor their communications using a
select statement.

ptg7913109

5.4. Communication and Concurrency Statements 209

5.4.1. Select Statements

Go’s select statement has the following syntax:★

select {
case sendOrReceive1: block1
...
case sendOrReceiveN: blockN
default: blockD
}

In a select statementGo evaluates each send or receive statement in order from
first to last. If any of these statements can proceed (i.e., is not blocked), then
of those that can proceed, an arbitrary choice is made as to which one to use. If
none can proceed (i.e., if they are all blocked), there are two possible scenarios.
If a default case is present, the default case is executed and execution resumes
from the statement following the select; but if there is no default case the select
will block until at least one communication can proceed.

A consequence of the select statement’s logic is as follows. A select with no
default case is blocking and will only complete when one communication case
(receive or send) has occurred. A select with a default case is nonblocking and
executes immediately, either because a communication case occurred, or if no
communication channel is ready, by executing the default case.

To get to grips with the syntax we will review two short examples. The first ex-
ample is rather contrived but does give a good idea of how the select statement
works. The second example shows a more realistic approach to use.

channels := make([]chan bool, 6)
for i := range channels {
 channels[i] = make(chan bool)
}
go func() {

for {
 channels[rand.Intn(6)] <- true

 }
}()

In this snippet we have created six channels which can send and receive
Booleans. Wehave then created a single goroutine that hasan infinite loopwith-
in which one of the channels is chosen at random and sent a true value on every
iteration. The goroutine immediately blocks, of course, since the channels are
unbuffered and we have not yet tried to receive from any of them.

★ Go’s select statement has nothing to do with the POSIX select() function used to monitor file
descriptors—for that, use the syscall package’s Select() function.

ptg7913109

210 Chapter 5. Procedural Programming

for i := 0; i < 36; i++ {
var x int
select {
case <-channels[0]:

 x = 1
case <-channels[1]:

 x = 2
case <-channels[2]:

 x = 3
case <-channels[3]:

 x = 4
case <-channels[4]:

 x = 5
case <-channels[5]:

 x = 6
 }
 fmt.Printf("%d ", x)
}
fmt.Println()

6 4 6 5 4 1 2 1 2 1 5 5 4 6 2 3 6 5 1 5 4 4 3 2 3 3 3 5 3 6 5 2 2 3 6 2

In this snippet we use the six channels to simulate rolls of a fair die (strictly
speaking, a pseudo-random die).★ The select statement waits for one of the
channels to have something to send—the select blocks since we have not pro-
vided a default case—and as soon as one or more channels are ready to send one
case is chosen pseudo-randomly. Since the select is inside a plain for loop it is
executed a fixed number of times.

Now we will look at a more realistic example. Suppose that we want to perform
the same expensive computation on two separate data sets and that the compu-
tation produces a sequence of results. Here is a skeleton of a function that per-
forms such a computation.

func expensiveComputation(data Data, answer chan int, done chan bool) {
// setup ...

 finished := false

for !finished {
// computation ...

 answer <- result
 }
 done <- true

}

★For proper pseudo-random numbers see the math/rand and crypto/rand packages.

ptg7913109

5.4. Communication and Concurrency Statements 211

The function is given some data to work on, and two channels. The answer
channel is used to send each result to the monitoring code and the done channel
is used to notify the monitoring code that the computation has finished.

// setup ...
const allDone = 2
doneCount := 0
answerα := make(chan int)
answerβ := make(chan int)
defer func() {

close(answerα)
close(answerβ)

 }()
done := make(chan bool)
defer func() { close(done) }()
go expensiveComputation(data1, answerα, done)
go expensiveComputation(data2, answerβ, done)
for doneCount != allDone {

var which, result int
select {
case result = <-answerα:

 which = 'α'
case result = <-answerβ:

 which = 'β'
case <-done:

 doneCount++
 }

if which != 0 {
 fmt.Printf("%c→%d ", which, result)
 }
}
fmt.Println()

α→3 β→3 α→0 β→9 α→0 β→2 α→9 β→3 α→6 β→1 α→0 β→8 α→8 β→5 α→0 β→0 α→3

Here is the code that sets up the channels, starts the expensive computations,
monitors progress, and cleans up at the end—and there isn’t a lock in sight.

We begin by creating two channels to accept results, answerα and answerβ, and
a channel to keep track of when the computations are finished, done. We create
anonymous functions in which the channels are closed and call these in defer
statements so that they will be closed when they are no longer needed, that is,
when the enclosing function returns. Next, we start off the expensive computa-
tions (in their own goroutines), giving each one its own unique data to work on,
and for communications, its own unique answer channel, and the done channel
that is shared.

ptg7913109

212 Chapter 5. Procedural Programming

We could have given both expensive computations the same answer channels,
but if we did that we would not know which one had given which result (which
might not matter, of course). If we wanted to use the same channel and wanted
to identify the origin of any particular result we could make a single answer
channel that operated on a struct—for example, type Answer struct{ id, answer
int }.

With the expensive computations started in their goroutines (but blocked,
since their channels are unbuffered), we are ready to receive their results. The
for loop starts with fresh which and result values on every iteration, and the
blocking select statement executes an arbitrary case from those that are ready
to proceed. If an answer is ready we set which to indicate its origin and print the
origin and the result. If the done channel is ready we increment the doneCount
counter—and when this reaches the number of expensive computations we
started we know that they are all finished and the for loop ends.

Once outside the for loopwe know that both expensive computations’ goroutines
will no longer send any data on the channels (since they broke out of their own
infinite for loops when they were finished; 210 ➤). When the function returns
the channels are closed by the defer statements and any resources they use
are released. After this the garbage collector is free to get rid of the goroutines
themselves since they are no longer executing and the channels they were using
are closed.

Go’s communication and concurrency features are very flexible and versatile;
Chapter 7 is devoted to the subject.

5.5. Defer, Panic, and Recover

The defer statement is used to defer the execution of a function or method (or
of an anonymous function created on the spot) until just before the enclosing
function or method returns, but after the return values (if any) have been
evaluated. This makes it possible to modify a function’s named return values
inside a deferred function (e.g., by assigning to them using the = assignment
operator). If more than one defer statement is used in a function ormethod, they
are executed in LIFO (Last In First Out) order.

The most common uses of a defer statement are to ensure that a successfully
opened file is closed when we are finished with it, to close channels that are no
longer needed, or to catch panics.

var file *os.File
var err error

if file, err = os.Open(filename); err != nil {
 log.Println("failed to open the file: ", err)

return

ptg7913109

5.5. Defer,Panic,and Recover 213

 }
defer file.Close()

This is an extract from the wordfrequency program’s updateFrequencies() function
that was discussed in the previous chapter (176 ➤). It shows a typical pattern
for opening a file and deferring closing the file if the open succeeded.

This pattern of creating a value and deferring some kind of close function that
cleans up the value (e.g., freeing up any resources the value uses), prior to the
value being garbage-collected, is standard in Go.★ We can, of course, apply this
pattern to our own types by providing themwith a Close() or Cleanup() function
that can be the subject of a defer statement, although this is rarely needed
in practice.

5.5.1. Panic and Recover

Go provides an exception handling mechanism through the use of its built-in
panic() and recover() functions. These functions could be used to provide a
general-purpose exception handling mechanism, similar to those available in
some other languages (e.g., C++, Java, and Python): But to do so is considered to
be poor Go style.

Go distinguishes between errors—things that might go wrong and that a
program should handle gracefully (e.g., a file that could not be opened)—and
exceptions—something that “cannot” happen (e.g., a precondition which should
always be true that’s actually false).

The idiomaticway to handle errors inGo is to return an error as the last (or only)
return value from functions and methods and to always check any returned
errors. (The one casewhere it is common to ignore returned error values iswhen
printing to the console.)

For “cannot happen” situationswe can call the built-in panic() functionwith any
value we like (e.g., a string that explains the invariant that has been broken). In
other languageswemight use an assertion for these situations, but in Gowe call
panic(). During early development and prior to any releases the simplest and
probably the best approach is to call panic() to terminate the program to force
problems to be impossible to ignore so that they get fixed. Once we start deploy-
ing our application it is best to avoid termination when problems occur if at all
possible, and this can be done while still leaving any remaining panic() calls in
place by adding deferred recover() calls in our packages. During recovery we
can catch and log any panics (so that they remain as visible problems), and re-
turn non-nil errors to callers who can then try to restore the program to a sane
state from which it can safely continue to run.

★ In C++ destructors are used to clean up values. In Java and Python cleanup is problematic since
they cannot guarantee when or even if their finalizer()/__del__()method will be called.

ptg7913109

214 Chapter 5. Procedural Programming

When the built-in panic() function is called normal execution of the enclosing
function or method stops immediately. Then, any deferred functions or methods
are called—just as they would have been had the function returned normally.
And, finally, control is returned to the caller—as if the called function or method
had called panic(), so the process is then repeated in the caller: Execution stops,
deferreds are called, and so on. When main() is reached there is no caller to
return to, so at this point the program is terminated with a stack trace dumped
to os.Stderr including the value that was given to the original panic() call.

If a panic occurstheprocess just described isnormallywhat unfolds. However, if
one of the deferred functions or methods contains a call to the built-in recover()
function (which may be called only inside a deferred function or method), the
panic is stopped in its tracks. At this point we can respond to the panic any way
we like. One solution is to ignore the panic, in which case control will pass to the
caller of the function with the deferred recover() call which will then continue
to execute normally. This approach is not recommended, but if used, at the very
least the panic should be logged so that the problem isn’t completely hidden. An-
other solution is to do whatever cleanup we like and then call panic() ourselves
to continue the propagation of the problem. Amore common solution is to create
an error value and set that as the (or one of the) return values of the function
with the deferred recover() call, thus turning the exception (i.e., a panic()) into
an error (i.e., an error).

In almost every case, the Go standard library uses error values rather than
panics. For our own custom packages, it is best not to use panic(); or, rather,
not to allow panic()s to leave the custom package by using recover() to capture
panics and to return errors instead, just like the standard library does.

An illustrative example is Go’s basic regular expression package, regexp. This
has a few functions for creating regular expressions, including regexp.Compile()
and regexp.MustCompile(). The first of these returns a compiled regular expres-
sion and nil, or, if the string passed to it isn’t a valid regular expression, nil and
an error. The second of these returns a compiled regular expression or it panics.
The first function is ideal for when the regular expression comes from an exter-
nal source (e.g., is entered by the user or read from a file). The second function
is best when the regular expression is hard-coded into the program since it will
ensure that when we run the program, if we made a mistake with a regular ex-
pression the program will immediately terminate due to the panic.

When should we allow panics to terminate our programs and when should
we stop them with recover()? There are two competing interests that we must
consider. As programmerswe want our programs to crash as soon as possible if
there is a logical error so that we can identify and fix the problem. But we don’t
want our programs to crash at all once they have been deployed.

For problems that can be caught just by running the program (e.g., invalid
regular expressions), we should use panic() (or functions that panic such as

ptg7913109

5.5. Defer,Panic,and Recover 215

regexp.MustCompile()) since we would never deploy an application that crashes
as soon as it is run. We must be careful that we do this only in functions we
are certainwill be called simply by running the program—for example, the main
package’s init() function (if it has one), the main package’s main() function, and
any init() functions in our custom packages that our program imports—plus,
of course, any functions or methods that these functions call. If we use a test
suite we can, of course, extend our use of panics to any function or method that
the test suite causes to be invoked. Naturally, we must also be sure that such
potential panic cases are always exercised no matter what the program’s flow
of control.

For functions and methods that may or may not be called during any particular
run we should use recover() if we call panic() ourselves or if we call functions
or methods that panic, and turn panics into errors. Ideally recover()s should
be used as close to the panic()s they handle as possible, and where possible
and appropriate they should restore the program to a sane state before setting
their enclosing function or method’s error return value. For the main package’s
main() function we could put in a top-level “catchall” recover() that logs any
caught panics—but unfortunately, the program would then terminate after the
deferred recover() had been handled. This can be worked around, as we will
see shortly.

Wewill look at two examples, the first demonstrating how to convert panics into
errors, and the second showing how to make programsmore robust.

Imagine we have the following function buried deep within a package we are
using, but which we cannot change because it is from a third party over whom
we have no control.

func ConvertInt64ToInt(x int64) int {
if math.MinInt32 <= x && x <= math.MaxInt32 {

return int(x)
 }

panic(fmt.Sprintf("%d is out of the int32 range", x))
}

This function safely converts an int64 to an int or panics if the conversionwould
produce an invalid result.

Why would a function like this use panic() in the first place? We might want to
force a crash as soon as something goes wrong so as to flush out programming
errors as early as possible. Another use case is where we have a function that
calls one or more other functions and so on, but where if anything goes wrong
we want to immediately return control to the original function—so we make
the called functions panic if they hit a problem, and catch the panic (wherever
it came from) using recover(). Normally, we want packages to report problems
as errors rather than to panic, so it is fairly common to use panic()s inside a

ptg7913109

216 Chapter 5. Procedural Programming

package, and to use recover()s to ensure that the panics don’t leak out and are
reported as errors. And another use case is to put calls like panic("unreachable")
in places that our logic says cannot be reached (e.g., at the end of a function
which always returns by using return statements before reaching the end), or
calling panic() if a pre- or post-condition is broken. Doing this ensures that if
we ever break the logic of such functions we will soon know about it.

If none of the above reasons apply then we ought to avoid panicking and return
a non-nil error when problems occur. So, in this example, we want to return an
int and nil if a conversion succeeds and int and an error if a conversion fails.
Here is a wrapper function that achieves what we want:

func IntFromInt64(x int64) (i int, err error) {
defer func() {

if e := recover(); e != nil {
 err = fmt.Errorf("%v", e)
 }
 }()

 i = ConvertInt64ToInt(x)
return i, nil

}

When this function is called, as usual, Go automatically sets the return values
to the zero values for their types, in this case 0 and nil. If the call to the custom
ConvertInt64ToInt() function returns normally, we assign its result to the i
return value, and return i along with nil to signify that no error occurred. But
if the ConvertInt64ToInt() function panics, we catch the panic in the deferred
anonymous function and set err to be an error with its text set to the textual
representation of the panic it caught.

As the IntFromInt64() function shows, it is straightforward to convert panics
into errors.

For our second example we will consider how to make a web server robust
in the face of panics. Back in Chapter 2 we reviewed the statistics example
(§2.4, 72 ➤). If wemade a programming error in that server—for example, if we
accidentally passed nil as an image.Image value and called a method on it—we
would get a panic that without a call to recover() would terminate the program.
This is, of course, a very unsatisfactory situation if the web site is important to
us, especially if we want it to run unattended some of the time. What we want
is for the server to continue running even if a panic occurs, and to log any panics
so that we can track them down and fix them at our leisure.

We have created a modified version of the statistics example (in fact, of the
statistics_ans solution), in file statistics_nonstop/statistics.go. One modifica-
tion that we havemade is to add an extra button to the web page,Panic!, that can

ptg7913109

5.5. Defer,Panic,and Recover 217

be clicked to make a panic occur for testing purposes. Themost important mod-
ification is that we have made the server able to survive panics. And to help us
see what is going on, we also log whenever a client is successfully served, when
we get a bad request, and if the server was restarted. Here is a tiny sample of
a typical log.

[127.0.0.1:41373] served OK
[127.0.0.1:41373] served OK
[127.0.0.1:41373] bad request: '6y' is invalid
[127.0.0.1:41373] served OK
[127.0.0.1:41373] caught panic: user clicked panic button!
[127.0.0.1:41373] served OK

We have told the log package not to use timestamps simply to make the log
output more attractive for the book.

Before looking at the changes we have made, let us briefly remind ourselves of
the original code.

func main() {
 http.HandleFunc("/", homePage)

if err := http.ListenAndServe(":9001", nil); err != nil {
 log.Fatal("failed to start server", err)
 }
}

func homePage(writer http.ResponseWriter, request *http.Request) {
// ...

}

This web site has only one page, although the techniquewewill present can just
as easily be applied to sites with multiple pages. If a panic occurs that is not
caught by a recover(), that is, if a panic reaches the main() function, the server
will terminate, so this is what we must protect against.

func homePage(writer http.ResponseWriter, request *http.Request) {
defer func() { // Needed for every page

if x := recover(); x != nil {
 log.Printf("[%v] caught panic: %v", request.RemoteAddr, x)
 }
 }()

// ...
}

For a web server to be robust in the face of panicswemust make sure that every
page handler function has a deferred anonymous function that calls recover().

ptg7913109

218 Chapter 5. Procedural Programming

This will stop any panic from being propagated. However, it cannot stop the
page handler from returning (since deferred statements are executed just be-
fore a function returns), but that doesn’t matter since the http.ListenAndServe()
function will call the page handler afresh whenever the page it handles is re-
quested.

Of course, for a large web site with lots of page handlers, adding a deferred
function to catch and log panics involves a lot of code duplication and is easy
to forget. This can be solved by creating a wrapper function that has the code
needed by each page handler. Using the wrapper we can omit the recover code
from the page handlers, so long as we change the http.HandleFunc() calls.

http.HandleFunc("/", logPanics(homePage))

Here we have the original homePage() function (i.e., one that does not have a de-
ferred function that calls recover()), relying instead on the logPanics() wrapper
function to take care of panics.

func logPanics(function func(http.ResponseWriter,

*http.Request)) func(http.ResponseWriter, *http.Request) {
return func(writer http.ResponseWriter, request *http.Request) {

defer func() {
if x := recover(); x != nil {

 log.Printf("[%v] caught panic: %v", request.RemoteAddr, x)
 }
 }()
 function(writer, request)
 }
}

This function takes an HTTP handler function as its sole argument and creates
and returns an anonymous function that includes a deferred (also) anonymous
function that catches and logs panics, and that calls the passed-in handler func-
tion. This has the same effect as adding the deferred panic catcher and logger
that we saw in the modified homePage() function, but is much more convenient
since we don’t have to add the deferred function to any page handler; instead we
pass each page handler function to the http.HandleFunc() using the logPanics()
wrapper.

A version of the statistics program that uses this technique is in file statis-
tics_nonstop2/statistics.go. Anonymous functions are covered in the next sec-
tion’s subsection on closures (§5.6.3, ➤ 225).

http.ListenAndServe()
http.HandleFunc()
http.HandleFunc()

ptg7913109

5.6. Custom Functions 219

5.6. Custom Functions
Functions are the bedrock of procedural programming and Go provides first-
class support for them. Go methods (covered in Chapter 6) are very similar to
Go functions, so this section is relevant for both procedural and object-oriented
programming.

Here are the fundamental syntaxes for function definitions:

func functionName(optionalParameters) optionalReturnType {
body

}

func functionName(optionalParameters) (optionalReturnValues) {
body

}

A function can take zero or more parameters. If there are no parameters the
parentheses are empty. If there is one or more, they are written params1 type1,
…, paramsN typeN, where params1 is either a single parameter name or a comma-
separated list of two or more parameter names of the given type. Parameters
must be passed in the order given:There is no equivalent to Python’s named pa-
rameters, although a similar effect can be achieved aswewill see later (§5.6.1.3,
➤ 222).

The very last parameter’s type may be preceded by an ellipsis (...). Such
functions are called variadic; this means that the function will accept zero or
more values of that type as that parameter’s value and inside the function that
parameter will be of type []type.

A function may return zero or more values. If there are none the open brace
follows the parameter’s closing parenthesis. If there is one unnamed return
value it can be written as type. If there are two or more unnamed return values,
parentheses must be used and they are written as (type1, …, typeN). If there
are one or more named return values, parentheses must be used and they are
written as (values1 type1, …, valuesN typeN), where values1 is either a single
return value name or a comma-separated list of two ormore return value names
of the given type. Function return values may all be unnamed or all be named,
but not a mixture of both.

Functions that have one or more return values must have at least one return
statement—or have a call to panic() as their final statement. If return values
are unnamed, the return statement must specify as many values as there are
return values, each with a typematching the corresponding return value. If the
return values are named the return statement can either specify values just like
in the unnamed case or be bare (i.e., giving no explicit values to return). Note
that although bare returns are legal, they are considered poor style—none of the
book’s examples uses them.

ptg7913109

220 Chapter 5. Procedural Programming

If a function has one or more return values its last executable statement must
be a return or a panic(). Go compilers are smart enough to realize that a func-
tion that ends with a panic won’t return normally and so doesn’t need a return
statement at that point. Unfortunately, current Go compilers don’t understand
that if a function ends with an if statement that has an unconditional else
statement that ends with a return statement, or a switch statement that has a
default case that ends with a return statement, no additional return is needed
afterward. A common practice in such cases is to either not end with an else or
default case and put the return statement after the if or switch, or simply put a
panic("unreachable") statement at the end—we saw examples of both approach-
es earlier (196 ➤).

5.6.1. Function Arguments

We have already seen many examples of custom Go functions that accept a
fixed number of arguments of specified types. By using a parameter type of
interface{} we can create functions that take arguments of any type. And
by using a parameter type that is an interface type—either our own custom
interface or one from the standard library—we can create functions that take
arguments of any type that has a specific set of methods:We will look at these
issues in Chapter 6 (§6.3, ➤ 265).

In this subsection we will look at other possibilities regarding function argu-
ments. In the first subsubsectionwewill see how to use functions’ return values
directly asargumentsto other functions. In the second subsubsectionwewill see
how to create functions that accept a variable number of arguments. And in the
final subsubsection we will discuss a technique that makes it possible to create
functions that can accept optional arguments.

5.6.1.1. Function Calls as Function Arguments

If we have a function or method that accepts one or more parameters,we can, of
course, call it with corresponding arguments. And in addition, we can call the
function with another function or method—providing that the other function
returns exactly the number of arguments required (and of the right types).

Here is an example of a function that takes the lengths of the sides of a triangle
(as three ints) and outputs the triangle’s area using Heron’s formula.

for i := 1; i <= 4; i++ {
 a, b, c := PythagoreanTriple(i, i+1)

Δ1 := Heron(a, b, c)
Δ2 := Heron(PythagoreanTriple(i, i+1))

 fmt.Printf("Δ1 == %10f == Δ2 == %10f\n", Δ1, Δ2)
}

ptg7913109

5.6. Custom Functions 221

Δ1 == 6.000000 == Δ2 == 6.000000
Δ1 == 30.000000 == Δ2 == 30.000000
Δ1 == 84.000000 == Δ2 == 84.000000
Δ1 == 180.000000 == Δ2 == 180.000000

First we obtain the lengths using Euclid’s formula for Pythagorean triples,
then we apply Heron’s formula using the Heron() function which takes exactly
three int arguments. Then we repeat the computation, only this time we use
the PythagoreanTriple() function directly as the Heron() function’s argument,
leaving Go to convert the PythagoreanTriple()’s three return values into the
Heron() function’s three arguments.

func Heron(a, b, c int) float64 {
α, β, γ := float64(a), float64(b), float64(c)

 s := (α + β + γ) / 2
return math.Sqrt(s * (s - α) * (s - β) * (s - γ))

}

func PythagoreanTriple(m, n int) (a, b, c int) {
if m < n {

 m, n = n, m
 }

return (m * m) - (n * n), (2 * m * n), (m * m) + (n * n)
}

The Heron() and PythagoreanTriple() functions are shown for completeness. We
have used named return values for the PythagoreanTriple() function purely as a
supplement to the function’s documentation.

5.6.1.2. Variadic Functions

A variadic function is one that can accept zero or more arguments for its last
(or only) parameter. Such functions are indicated by placing an ellipsis (...)
immediately before the type of the last or only parameter. Inside the function
this parameter becomes a slice of the given type. For example, if we had a
function with signature Join(xs ...string) string, the xs parameter would be of
type []string.

Here is a tiny example that shows the use of a variadic function; in this case one
which returns the minimum of the ints it is passed. We will start by looking at
how it is called and the output it produces.

fmt.Println(MinimumInt1(5, 3), MinimumInt1(7, 3, -2, 4, 0, -8, -5))

3 -8

ptg7913109

222 Chapter 5. Procedural Programming

The MinimumInt1() function can be passed one or more ints and returns the
smallest of them.

func MinimumInt1(first int, rest ...int) int {
for _, x := range rest {

if x < first {
 first = x
 }
 }

return first
}

We could easily require a minimum of zero ints—for example, MinimumInt0(ints
...int); or require at least two ints—for example,MinimumInt2(first, second int,
rest ...int).

If we already have a slice of ints we can still use the MinimumInt1() function to
find the minimum.

numbers := []int{7, 6, 2, -1, 7, -3, 9}
fmt.Println(MinimumInt1(numbers[0], numbers[1:]...))

-3

The MinimumInt1() function requiresa single int and then zero ormoreadditional
ints. When calling a variadic function or method we may place an ellipsis after
a slice, and this will effectively turn the slice into a sequence of zero or more
arguments each corresponding to an item in the slice. (We discussed this earlier
when discussing the built-in append() function; §4.2.3, 156 ➤.) So, here, we have
turned numbers[1:]... at the call site into the individual parameters 6, -2, -1, 7,
-3, 9 inside the variadic function—and these are all stored in the rest slice. If
we had the MinimumInt0() function just mentioned, we could simplify the call to
MinimumInt0(numbers...).

5.6.1.3. Functions with Multiple Optional Arguments

Go does not have any direct support for creating functions with multiple
optional arguments of different types. However, it is very easy to achieve this
by using a function-specific struct and relying on Go’s guarantee that all values
are initialized to their zero value.

Suppose that we have a function for processing some custom data where the
default behavior is simply to process all the data, but where on some occasions
we would like to be able to specify the first and last items to be processed,
whether to log the function’s actions, and to provide an error handling function
for invalid items.

ptg7913109

5.6. Custom Functions 223

One way to do this is to create a function with signature ProcessItems(items
Items, first, last int, audit bool, errorHandler func(item Item)). In this scheme,
a last value of 0 is taken to mean the last item whatever its index, and the
errorHandler function would only be called if present (i.e., if not nil). This would
mean that for every call where we wanted the default behavior we would have
to write ProcessItems(items, 0, 0, false, nil).

A much nicer way of doing things would be to have a signature of Process-
Items(items Items, options Options), where the custom Options struct type held
the other parameter values all of which default to their zero value. This would
reduce the most common call to ProcessItems(items, Options{}). Then, on those
occasions when we needed to specify one or more of the additional parameters,
we could do so by specifying their values for particular Options fields. (Full cov-
erage of structs is given later; §6.4,➤ 275.) Let’s see what this looks like in code,
starting with the Options struct.

type Options struct {
 First int // First item to process
 Last int // Last item to process (0 means process all from First)
 Audit bool // If true all actions are logged
 ErrorHandler func(item Item) // Called for each bad item if not nil
}

A struct can aggregate or embed one or more fields of any types we like. (The
difference between aggregation and embedding is covered in Chapter 6.) Here,
the Options struct aggregates two int fields, a bool field, and a function (i.e.,
function reference) field with the signature func(Item) where Item is some
custom type (in this case the type of one item in the custom Items type).

ProcessItems(items, Options{})
errorHandler := func(item Item) { log.Println("Invalid:", item) }
ProcessItems(items, Options{Audit: true, ErrorHandler: errorHandler})

This snippet shows two calls to the custom ProcessItems() function. The first call
processes the items using the default options (i.e., processes all items, does not
log any actions, and does not call an error handler function for invalid records).
In the second call an Options value is created that has zero values for First and
Last (and so tells the function to processall the items),and overrides the zero val-
ues for the Audit and ErrorHandler fields so that the function will log its actions
and will call the error handler whenever an invalid item is encountered.

This technique of passing a struct for optional arguments is used in the stan-
dard library—for example, by the image.jpeg.Encode() function. Wewill also see
the technique in use later on in Chapter 6 (§6.5.2, ➤ 289).

ptg7913109

224 Chapter 5. Procedural Programming

5.6.2. The init() and main() Functions

Go reserves two function names for special purposes: init() (in all packages)
and main() (only in package main). These two functions must always be defined
as taking no arguments and returning nothing. A package may have as many
init() functions as we like. However, at the time of this writing, at least one Go
compiler supports only a single init() function per package, so we recommend
using at most one init() function in each package.

Go automatically calls init() functions in packages and the main package’s
main() function, so these should not be called explicitly. For programs and
packages init() functions are optional; but every program must have a single
main() function in package main.

The initialization and execution of a Go program always begins with the main
package. If there are imports, each imported package is imported in turn. Pack-
ages are imported only once even if more than one package has an import state-
ment for the same package. (For example, several packages might import the
fmt package, but after it has been imported once it will not be imported again
since there is no need.) When a package is imported, if it has its own imports,
these are performed first. Then, the package’s package-level constants and
variables are created. And then the package’s init() functions are called (if it
has any). Eventually, all the packages imported in the main package (and their
imports and so on) are finished, at which point the main package’s constants and
variables are created and the main package’s init() functions are called (if it has
any).And finally, the main package’s main() function is called and programexecu-
tion proper begins. This sequence of events is illustrated in Figure 5.1.

main

import pkg1

const ...

var ...

init()

main()

pkg1

import pkg2

const ...

var ...

init()

pkg2

import pkg3

const ...

var ...

init()

pkg3

const ...

var ...

init()

Figure 5.1 Program startup sequence

It is possible to put go statements in init() functions, but keep in mind that
these run before main.main() is called and so must not depend on anything
created in main().

ptg7913109

5.6. Custom Functions 225

Let’s look at an example (taken fromChapter 1’s americanise/americanise.go file)
to see how things work in practice.

package main

import (
"bufio"
"fmt"
// ...
"strings"

)

var britishAmerican = "british-american.txt"

func init() {
 dir, _ := filepath.Split(os.Args[0])
 britishAmerican = filepath.Join(dir, britishAmerican)
}

func main() {
// ...

}

Go beginswith the main package and since there are imports it does themfirst, in
order, startingwith the bufio package. The bufio packagehas its own imports,so
these are performed next: In each case the imported package’s own imports are
performed first, then its package-level constants and variables are created and
then its init() functions are called. Once the bufio package has been imported,
the fmt package is imported—thispackage imports the strings package, so when
Go reaches the main package’s strings package import the import is skipped
since it has already been done.

When the imports have been completed the package-level britishAmerican vari-
able is created. Then the main package’s init() function is called. And finally,
the main package’s main() function is called and the program begins executing.

5.6.3. Closures

A closure is a function which “captures” any constants and variables that are
present in the same scope where it is created, if it refers to them. This means
that a closure is able to access such constants and variables when the closure is
called, even if it is called far away from the placewhere it was created. It doesn’t
matter if any captured constants or variables have gone out of scope—so long
as a closure refers to them they are kept alive for the closure to use.

In Go, every anonymous function (or function literal,as they are called in the Go
specification) is a closure.

ptg7913109

226 Chapter 5. Procedural Programming

A closure is created using almost the same syntax as for a normal function,
but with one key difference: The closure has no name (so the keyword func is
immediately followed by an opening parenthesis). To make use of a closure we
normally assign it to a variable or put it in a data structure (such as a map
or slice).

We have already seen several examples of closures—for example, when we use
defer or go statements with anonymous functions these functions are closures.
We also created closures in other contexts, for example, the makeReplacerFunc-
tion() used in the americanise example (§1.6, 29 ➤), and when we passed anony-
mous functions to the strings.FieldsFunc() and the strings.Map() functions in
Chapter 3 (§3.6.1, 107 ➤), and the createCounter() (207 ➤) and logPanics()
(218 ➤) functions quoted earlier in this chapter. Nonetheless, we will review a
few tiny examples here.

One use of closures is to provide a wrapper function that predefines one or more
of the arguments for the wrapped function. For example, suppose we want
to add different suffixes to lots of different filenames. Essentially we want to
wrap the string + concatenation operator so that one argument varies (i.e., the
filename), but the other is fixed (i.e., the suffix).

addPng := func(name string) string { return name + ".png" }
addJpg := func(name string) string { return name + ".jpg" }
fmt.Println(addPng("filename"), addJpg("filename"))

filename.png filename.jpg

Both addPng and addJpg are variables that hold references to anonymous func-
tions (i.e., to closures). Such references can be called just like normal named
functions as the code snippet illustrates.

In practice,whenwewant to createmany similar functions, rather thanmaking
each one individually, we often use a factory function, that is, a function that
returns a function. Here is a factory function that returns functions that add a
suffix to a filename—but only if the suffix isn’t already present.

func MakeAddSuffix(suffix string) func(string) string {
return func(name string) string {

if !strings.HasSuffix(name, suffix) {
return name + suffix

 }
return name

 }
}

The MakeAddSuffix() factory function returns a closure which has captured
the suffix variable at the time the closure was created. The returned closure

ptg7913109

5.6. Custom Functions 227

takes one string argument (e.g., a filename), and returns a string which is the
filename with the captured suffix.

addZip := MakeAddSuffix(".zip")
addTgz := MakeAddSuffix(".tar.gz")
fmt.Println(addTgz("filename"), addZip("filename"), addZip("gobook.zip"))

filename.tar.gz filename.zip gobook.zip

This snippet shows the creation of two closures, addZip() and addTgz(), and some
calls to them.

5.6.4. Recursive Functions

A recursive function is a function that calls itself, and mutually recursive func-
tions are functions that call each other. Go fully supports recursive functions.

Recursive functions generally have the same structure: an “outcase” and a
“body”. The outcase is usually a conditional statement such as an if statement
that is used to stop the recursion based on one of the arguments passed in. The
body is where the function does some processing and includes at least one call
to itself (or to itsmutually recursive partner)—this call must pass an argument
that is changed from one it received and that will be checked in the outcase to
ensure that the recursion will ultimately finish.

Recursive functions make it easy to work with recursive data structures (such
as binary trees), but they can be inefficient for, say, numerical computations.

We will start with a very simple (and inefficient) example, just to show how
recursion is done. First we will see a call to a recursive function and its output,
then we will see the recursive function itself.

for n := 0; n < 20; n++ {
 fmt.Print(Fibonacci(n), " ")
}
fmt.Println()

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

The Fibonacci() function returns the n-th Fibonacci number.

func Fibonacci(n int) int {
if n < 2 {

return n
 }

return Fibonacci(n-1) + Fibonacci(n-2)
}

ptg7913109

228 Chapter 5. Procedural Programming

The if statement serves as the outcase, and it guarantees that the function
will (eventually) stop recursing. This works because whatever n we give to the
function in the first place, each recursive call in the function’s body (i.e., in the
return statement) works on a value less than n, so n will always be less than 2 at
some point.

For example, if we were to call Fibonacci(4) the outcase would not be triggered
and the function would return the sum of the two recursive calls, Fibonacci(3)
and Fibonacci(2). The first of these would in turn call Fibonacci(2) (which in
turn would call Fibonacci(1) and Fibonacci(0)) and Fibonacci(1), and the second
would call Fibonacci(1) and Fibonacci(0).Once n goes below 2 it is returned. The
sequence of calls is illustrated in Figure 5.2.

Fibonacci(4)

Fibonacci(3) Fibonacci(2)

Fibonacci(2) Fibonacci(1) Fibonacci(1) Fibonacci(0)

Fibonacci(1) Fibonacci(0)

1 + 0 + 1 + 1 + 0 ➝ 3

Figure 5.2 Recursive Fibonacci

Clearly the Fibonacci() function is doing a lot of repeated calculations, even for
a tiny input value like 4.We will see how to avoid this later (§5.6.7.1, ➤ 241).

The Hofstadter Female and Male sequences are integer sequences that are
based on mutually recursive functions. Here is some code that prints the first
20 values in each sequence, followed by the values themselves:

females := make([]int, 20)
males := make([]int, len(females))
for n := range females {
 females[n] = HofstadterFemale(n)
 males[n] = HofstadterMale(n)
}
fmt.Println("F", females)
fmt.Println("M", males)

F [1 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12]
M [0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12]

ptg7913109

5.6. Custom Functions 229

Here are the two mutually recursive functions that produce the sequences.

func HofstadterFemale(n int) int {
if n <= 0 {

return 1
 }

return n - HofstadterMale(HofstadterFemale(n-1))
}

func HofstadterMale(n int) int {
if n <= 0 {

return 0
 }

return n - HofstadterFemale(HofstadterMale(n-1))
}

As usual we begin each function with the outcase to ensure that the recursion
will terminate, and in the body where the recursion occurswe always recurse on
a reduced value so that eventually the outcase will be satisfied.

Some languages would have a problem with the Hofstadter functions—they
would trip up on the fact that the HofstadterFemale() function is defined before
the HofstadterMale() function and yet calls the HofstadterMale() function. Such
languages would require us to predeclare the HofstadterMale() function. Go has
no such limitation since it allows functions to be defined in any order.

Let’s look at one last recursion example, a function which determines whether
a word is a palindrome (i.e., is the same if its characters are reversed, such as
"PULLUP" and "ROTOR").

func IsPalindrome(word string) bool {
if utf8.RuneCountInString(word) <= 1 {

return true

 }
 first, sizeOfFirst := utf8.DecodeRuneInString(word)
 last, sizeOfLast := utf8.DecodeLastRuneInString(word)

if first != last {
return false

 }
return IsPalindrome(word[sizeOfFirst : len(word)-sizeOfLast])

}

This function startswith the outcase: If the word has zero or one character then
it is a palindrome so we return true and are finished. The algorithm we use for
the body is to compare the first and last characters: If they are different then
the word isn’t a palindrome so we can finish immediately by returning false.

ptg7913109

230 Chapter 5. Procedural Programming

But if the first and last characters are the same then we recursively examine a
substring of the word that has the first and last characters chopped off.

In the case of "PULLUP", the function compares 'P' and 'P', then calls itself
recursively with the string "ULLU" and compares 'U' and 'U', then calls itself
with "LL" comparing 'L' and 'L', and finally calls itself with an empty string.
For "ROTOR", the function compares 'R' and 'R', then calls itself recursively with
"OTO" and compares 'O' and 'O', and then calls itself with "T". So in both of these
cases the function returns true. But for "DECIDED", the function compares 'D' and
'D', then calls itself recursively with "ECIDE" and compares 'E' and 'E', then
calls itself on "CID" and compares 'C' and 'D', at which point it returns false.

Recall from Chapter 3 (§3.6.3, 117 ➤) that the utf8.DecodeRuneInString() func-
tion returns the first character (as a rune) in the string it is given and howmany
bytes that character occupies. The utf8.DecodeLastRuneInString() works simi-
larly but for the string’s last character. We can safely slice string word using the
two sizes thus obtained because we know that they will slice the string between
characters (i.e., we won’t accidentally chop a multibyte character in two).

When a function uses tail recursion, that is, when its last statement is a recur-
sive call, we can usually convert it into a simple loop. Using a loop saves the
overhead of repeated function calls; although the additional problem of limited
stack space that can affect deeply recursive functions in some languages ismuch
less common in Go programsbecause of theway Gomanagesmemory. (Inciden-
tally, there is an opportunity to transform the recursive IsPalindrome() function
into one that uses a simple loop in the exercises.) Of course, in some situations
recursion is the best way to express an algorithm—we will see an example of
this in Chapter 6 when we look at the omap.insert() function (➤ 307).

5.6.5. Choosing Functions at Runtime

Since Go functions are first-class values, it is possible to store them (i.e., refer-
ences to them) in variables—and thismakes it possible to choose which function
to execute at runtime. Furthermore, Go’s ability to create closures means that
we can in effect create functions at runtime—so we could have two or more dif-
ferent implementations of the same function (each using a different algorithm),
and create just one of them to be used. We will look at both approaches in this
subsection.

5.6.5.1. Branching Using Maps and Function References

In two earlier subsections (§5.2.1, 192 ➤and §5.2.2.1, 195 ➤) we presented ex-
tracts from custom ArchiveFileList() functions for calling a particular func-
tion based on a filename’s suffix. The first version of the function used an if
statement that spanned seven lines; the canonical version’s switch statement
spanned just five lines. But what happens if the number of different file suffix-
es we want to handle grows? For the if version we would need to add an extra

ptg7913109

5.6. Custom Functions 231

two lines for each additional else if clause; and for the switch version we would
need to add one extra line for every new case (or two lines if we format our cases
with gofmt). If the function were for a file manager it could easily be required to
handle hundreds of suffixes, making the function very long indeed.

var FunctionForSuffix = map[string]func(string) ([]string, error){
".gz": GzipFileList, ".tar": TarFileList, ".tar.gz": TarFileList,
".tgz": TarFileList, ".zip": ZipFileList}

func ArchiveFileListMap(file string) ([]string, error) {
if function, ok := FunctionForSuffix[Suffix(file)]; ok {

return function(file)
 }

return nil, errors.New("unrecognized archive")
}

This version of the function makes use of a map whose keys are strings (file
suffixes), and whose values are functions with the signature func(string)
([]string, error). (All of the custom functions, GzipFileList(), TarFileList(),
and ZipFileList(), are of this type.)

The function uses the [] index operator to retrieve the function thatmatches the
given suffix and to set ok to true; or to return nil and false if the suffix isn’t a
map key. If there is amatching function the function is calledwith the filename,
and its results returned.

This function is more scalable than using an if or switch statement since no
matter how many file suffix–function items we add to the FunctionForSuffix
map, the function remains unchanged. And unlike a big if or switch statement,
map lookup speeds don’t really degrade as the number of items increases.★ In
addition, using a map in this way can make things clearer and also makes it
possible to add new items to the map dynamically.

5.6.5.2. Dynamic Function Creation

Another scenario that involves choosing a function at runtime is when we have
two or more functions that implement the same functionality using different
algorithms and we don’t want to commit to any of them when the program is
compiled (e.g., to allow us to choose dynamically for benchmarking or regression
testing).

For example, if we use strings that contain only 7-bit ASCII characters we can
write a much simpler version of the IsPalindrome() function we saw earlier
(229 ➤), and at runtime create only the version that our programactually needs.

★On a lightly loaded AMD-64 quad-core 3GHzmachine we found that using a mapwas consistently
faster than a switch once there were 50 or more cases to consider.

ptg7913109

232 Chapter 5. Procedural Programming

One way to do this is to declare a package-level variable with the function’s
signature and then to create the appropriate function in an init() function.

var IsPalindrome func(string) bool // Holds a reference to a function

func init() {
if len(os.Args) > 1 &&

 (os.Args[1] == "-a" || os.Args[1] == "--ascii") {
 os.Args = append(os.Args[:1], os.Args[2:]...) // Strip out arg.
 IsPalindrome = func(s string) bool { // Simple ASCII-only version

if len(s) <= 1 {
return true

 }
if s[0] != s[len(s)-1] {

return false

 }
return IsPalindrome(s[1 : len(s)-1])

 }
 } else {
 IsPalindrome = func(s string) bool { // UTF-8 version

// ... same as earlier ...
 }
 }
}

We have made the choice of IsPalindrome() implementation dependent on a
command-line argument. If the argument is given,we strip it out of the os.Args
slice (so the rest of the programdoesn’t have to know or care about it), and create
a 7-bit ASCII version of the IsPalindrome() function. The stripping out is slight-
ly subtle since we want os.Args to have its first string and its third and subse-
quent strings but not its second string (which is "-a" or "--ascii").We can’t use
os.Args[0] in the append() call because the first argument must be a slice, so we
use os.Args[:1]which is a one-item slice containing os.Args[0] (§4.2.1, 153 ➤). If
the ASCII argument isn’t present, we create the same version as we saw earlier
that works correctly on both 7-bit ASCII andUTF-8Unicode strings. In the rest
of the program the IsPalindrome() function can be called normally,but the actual
code that gets executed will vary depending on which version was created. (The
source code for this example is in palindrome/palindrome.go.)

5.6.6. Generic Functions

Earlier in the chapter we created a function for finding the smallest of the int
arguments it was passed (221 ➤). The algorithm used in that function could
also be applied to other numeric types, or even to strings, since it works for any
type that supports the < less than operator. In C++, for cases like this, we would
create a generic function that is parameterized by type which would result in

ptg7913109

5.6. Custom Functions 233

the compiler creating as many versions of the function as we need (i.e., one
per type used). In Go, at the time of this writing, there is no support for type
parameterization, so to get the same effect as C++ achieves we must manually
create the functionswe need (e.g., MinimumInt(), MinimumFloat(), MinimumString()).
Thisway we end upwith one function per type used (just like in C++, except that
in Go each function must have a unique name).

Go offers various alternative approaches which avoid the need to create func-
tions that are the same except for the types they operate on, at the cost of some
runtime efficiency. For small functions that are not used often or which are
more than fast enough already, the alternative approaches can be convenient.

Here are some examples that use a generic Minimum() function.

i := Minimum(4, 3, 8, 2, 9).(int)
fmt.Printf("%T %v\n", i, i)
f := Minimum(9.4, -5.4, 3.8, 17.0, -3.1, 0.0).(float64)
fmt.Printf("%T %v\n", f, f)
s := Minimum("K", "X", "B", "C", "CC", "CA", "D", "M").(string)
fmt.Printf("%T %q\n", s, s)

int 2
float64 -5.4
string "B"

The function returnsa value of type interface{}whichwe convert to the built-in
type we expect using an unchecked type assertion (§5.1.2, 191 ➤).

func Minimum(first interface{}, rest ...interface{}) interface{} {
 minimum := first

for _, x := range rest {
switch x := x.(type) {
case int:

if x < minimum.(int) {
 minimum = x
 }

case float64:
if x < minimum.(float64) {

 minimum = x
 }

case string:
if x < minimum.(string) {

 minimum = x
 }
 }
 }

ptg7913109

234 Chapter 5. Procedural Programming

return minimum
}

This function takes at least one value (first) and zero or more other values
(rest).We use the interface{} type since that can be used for any type in Go. We
initially assume that the first value is the smallest and then iterate over the
rest of the values. Whenever we find a value that is smaller than the current
minimum we set the minimum to this value. And at the end we return the
minimum—as an interface{}, hence the need to convert it to a built-in type at the
Minimum() function’s call site using an unchecked type assertion.

We still have duplicate code—in each case’s if statement’s block—but if there
were a lot of duplicate code we could simply set a Boolean in each case (e.g.,
change = true), and then follow the switch with an if change statement that
contained all the common code.

Clearly, using this Minimum() function is less efficient than having type-specific
minimum functions. However, it is worth knowing the technique because it is
useful for cases where the type testing overheads and conversion inconvenience
are outweighed by the advantage of having to define the function only once.

The problem of duplicate code within a generic function isn’t so easy to work
around if one or more of the interface{} arguments are actually slices. For
example, here is a function that, given a slice and an item of the same type as
the slice’s items, returns the index position of the first occurrence of the item in
the slice—or −1 if the item isn’t in the slice.

func Index(xs interface{}, x interface{}) int {
switch slice := xs.(type) {
case []int:

for i, y := range slice {
if y == x.(int) {

return i
 }
 }

case []string:
for i, y := range slice {

if y == x.(string) {
return i

 }
 }
 }

return -1
}

ptg7913109

5.6. Custom Functions 235

We have only bothered to implement the int and string cases—both of which
contain essentially the same code.

Here is an example of the Index() function in use and the output it produces.
(The code is taken from the contains/contains.go test program.)

xs := []int{2, 4, 6, 8}
fmt.Println("5 @", Index(xs, 5), " 6 @", Index(xs, 6))
ys := []string{"C", "B", "K", "A"}
fmt.Println("Z @", Index(ys, "Z"), " A @", Index(ys, "A"))

5 @ -1 6 @ 2
Z @ -1 A @ 3

What we really need to be able to do is treat the slice generically—that way
we could have just one loop and do the type-specific testing inside it. Here is a
function that achieves this—and it produces the same output as the above code
snippet if we replace calls to Index() with calls to IndexReflectX().

func IndexReflectX(xs interface{}, x interface{}) int { // Long-winded way
if slice := reflect.ValueOf(xs); slice.Kind() == reflect.Slice {

for i := 0; i < slice.Len(); i++ {
switch y := slice.Index(i).Interface().(type) {
case int:

if y == x.(int) {
return i

 }
case string:

if y == x.(string) {
return i

 }
 }
 }
 }

return -1
}

The function begins by using Go’s reflection support (provided by the reflect
package; §9.4.9, ➤ 427), to convert the xs interface{} into a slice-typed re-
flect.Value. Such values provide the methods we need to traverse the slice’s
items and to extract any items we are interested in. Here, we access each item
in turn and use the reflect.Value.Interface() function to pull out the value as
an interface{} which we immediately assign to y inside a type switch. This en-
sures that y has the item’s actual type (e.g., int or string) which can be directly
compared with the unchecked type-asserted x value.

ptg7913109

236 Chapter 5. Procedural Programming

In fact, the reflect package can take on far more of the work, so we can simplify
this function considerably.

func IndexReflect(xs interface{}, x interface{}) int {
if slice := reflect.ValueOf(xs); slice.Kind() == reflect.Slice {

for i := 0; i < slice.Len(); i++ {
if reflect.DeepEqual(x, slice.Index(i)) {

return i
 }
 }
 }

return -1
}

Here we rely on the reflect.DeepEqual() function to do the comparison for us.
This versatile reflection function can also be used to compare arrays, slices, and
structs.

Here is a type-specific function for finding the index of an item in a slice.

func IntSliceIndex(xs []int, x int) int {
for i, y := range xs {

if x == y {
return i

 }
 }

return -1
}

This is much nicer and simpler than the generic versions but requires us to
create one function like this per typewewant towork on—with the only changes
being their names and the types specified in the functions’ signatures.

We can combine the benefits of a generic approach—implementing one algo-
rithm—with the simplicity and efficiency of type-specific functionsby using cus-
tom types, a topic that is covered more thoroughly in the next chapter.

Here is a type-specific function for finding the index position of an item in an
[]int and the generic function it uses to do the actual work.

func IntIndexSlicer(ints []int, x int) int {
return IndexSlicer(IntSlice(ints), x)

}

func IndexSlicer(slice Slicer, x interface{}) int {
for i := 0; i < slice.Len(); i++ {

if slice.EqualTo(i, x) {

ptg7913109

5.6. Custom Functions 237

return i
 }
 }

return -1
}

The IntIndexSlicer() function takes an []int to search and an int to find and
passes these on to the generic IndexSlicer() function. The IndexSlicer() func-
tion operates in terms of a Slicer value—the Slicer type is a custom interface
that ismet by any value that provides the Slicermethods (Slicer.EqualTo() and
Slicer.Len()).

type Slicer interface {
 EqualTo(i int, x interface{}) bool
 Len() int
}

type IntSlice []int

func (slice IntSlice) EqualTo(i int, x interface{}) bool {
return slice[i] == x.(int)

}
func (slice IntSlice) Len() int { return len(slice) }

The Slicer interface specifies the twomethodswe need to implement the generic
IndexSlicer() function.

The IntSlice type is based on an []int (which is why the IntIndexSlicer()
function can convert the []int it is passed into an IntSlice without formali-
ty), and implements the two methods required to fulfill the Slicer interface.
The IntSlice.EqualTo() method takes a slice index position and a value and re-
turns true if the item at the given index is equal to the value. The Slicer inter-
face specifies the value as a generic interface{} rather than an int so that the
Slicer interface can be implemented by other slice types (e.g., FloatSlice and
StringSlice), so we must convert the value to the actual type. In this case we
can safely use an unchecked type assertion because we know that the value ul-
timately comes from a call to the IntIndexSlicer() function which has a corre-
sponding int argument.

We can implement other custom slice types that satisfy the Slicer interface and
can then be used with the generic IndexSlicer() function.

type StringSlice []string

func (slice StringSlice) EqualTo(i int, x interface{}) bool {
return slice[i] == x.(string)

}

ptg7913109

238 Chapter 5. Procedural Programming

func (slice StringSlice) Len() int { return len(slice) }

The only difference between the StringSlice and the IntSlice is the underlying
slice’s type ([]string rather than []int) and the unchecked type assertion’s type
(string vs. int). The same applies to the FloatSlice (which uses []float64 and
float64).

This last example uses techniques that we saw earlier when we discussed
custom sorting (§4.2.4, 160 ➤), and are used to implement the standard library’s
sort package’s sort functions. Full coverage of custom interfaces and custom
types is provided in Chapter 6.

When working with slices (or maps) it is often possible to create generic func-
tions that don’t need to do type testing or type assertions, and that don’t need to
use custom interfaces. Instead,we can make our generic functions higher order
functions that abstract away all the type-specific aspects, as we will see in the
next subsection.

5.6.7. Higher Order Functions

A higher order function is a function that takes one or more other functions as
arguments and uses them in its own body.

Let’s look at a very short and simple higher order function—but one whose
functionality may not be immediately apparent.

func SliceIndex(limit int, predicate func(i int) bool) int {
for i := 0; i < limit; i++ {

if predicate(i) {
return i

 }
 }

return -1
}

This is a generic function that returns the index position of an item in a slice for
which the predicate() function returns true. So, this function can do exactly the
same job as the Index(), IndexReflect(), IntSliceIndex(), and IntIndexSlicer()
functions discussed in the previous subsection—but with no code duplication
and no type switching or type assertions.

The SliceIndex() function doesn’t know or care about the slice’s or the item’s
types—indeed, the function knows nothing of the slice or the item it (indirect-
ly) operates on. The function expects its first argument to be the length of the
slice and the second argument to be a function that returns a Boolean for any
given index position in the slice indicating whether the desired item is at that
position.

ptg7913109

5.6. Custom Functions 239

Here are four example calls and their results.

xs := []int{2, 4, 6, 8}
ys := []string{"C", "B", "K", "A"}
fmt.Println(
 SliceIndex(len(xs), func(i int) bool { return xs[i] == 5 }),
 SliceIndex(len(xs), func(i int) bool { return xs[i] == 6 }),
 SliceIndex(len(ys), func(i int) bool { return ys[i] == "Z" }),
 SliceIndex(len(ys), func(i int) bool { return ys[i] == "A" }))

-1 2 -1 3

The anonymous functions passed as second arguments to the SliceIndex()
function are, of course, closures—so the slices they refer to (xs and ys) must be
in scopewhen these functions are created. (The technique used here is the same
as Go’s standard library uses for the sort.Search() function.)

In fact, the SliceIndex() function is a general-purpose function that need not
have anything to do with slices.

i := SliceIndex(math.MaxInt32,
func(i int) bool { return i > 0 && i%27 == 0 && i%51 == 0 })

fmt.Println(i)

459

In this snippet we have used the SliceIndex() function to find the least nat-
ural number that is divisible by both 27 and 51. The way this works is slight-
ly subtle. The SliceIndex() function iterates from 0 to the given limit (in this
case math.MaxInt32), and at each iteration it calls the anonymous function (the
predicate). As soon as the predicate returns true, the SliceIndex() function re-
turns, passing back the index position that was reached. In this case the “index
position” is actually the natural number we were looking for.

In addition to searching unsorted slices it is often useful to filter them to discard
items that are no longer of interest. Here is a simple higher order filtering
function in action. The function filters an []int using the function it is passed
to determine which ints are kept and which are dropped.

readings := []int{4, -3, 2, -7, 8, 19, -11, 7, 18, -6}
even := IntFilter(readings, func(i int) bool { return i%2 == 0 })
fmt.Println(even)

[4 2 8 18 -6]

Here, we have filtered out odd numbers from the readings slice.

ptg7913109

240 Chapter 5. Procedural Programming

func IntFilter(slice []int, predicate func(int) bool) []int {
 filtered := make([]int, 0, len(slice))

for i := 0; i < len(slice); i++ {
if predicate(slice[i]) {

 filtered = append(filtered, slice[i])
 }
 }

return filtered
}

The IntFilter() function takes an []int and a predicate filter function that is
used to decide which items are kept and which are dropped. The IntFilter()
function returns a new slice that contains those ints from the given slice for
which the predicate() function returns true.

Filtering a slice is quite a common requirement so it is a pity that the IntFilter()
function can only operate on []ints. Fortunately, it is perfectly possible to create
a generic filter function using the same techniques as we used for the SliceIn-
dex() function.

func Filter(limit int, predicate func(int) bool, appender func(int)) {
for i := 0; i < limit; i++ {

if predicate(i) {
 appender(i)
 }
 }
}

Just like the SliceIndex() function, the Filter() function knows nothing about
what it operates on beyond the given limit. The Filter() function relies on
the predicate() and appender() functions it is passed to do the filtering and
appending.

readings := []int{4, -3, 2, -7, 8, 19, -11, 7, 18, -6}
even := make([]int, 0, len(readings))
Filter(len(readings), func(i int) bool { return readings[i]%2 == 0 },

func(i int) { even = append(even, readings[i]) })
fmt.Println(even)

[4 2 8 18 -6]

This code does exactly the same processing as the earlier snippet, only here we
must create the new even slice outside the Filter() function. The first anony-
mous function we pass to Filter() is the filter function—it takes an index posi-
tion in the slice and returns true if the item at that position is even. The second
anonymous function appends the item at the given index position in the original

ptg7913109

5.6. Custom Functions 241

slice to the new slice. Both slices must be in scope when the anonymous func-
tions (closures) passed to the Filter() function are created, since the slicesmust
be captured by the anonymous functions so as to be accessible.

parts := []string{"X15", "T14", "X23", "A41", "L19", "X57", "A63"}
var Xparts []string
Filter(len(parts), func(i int) bool { return parts[i][0] == 'X' },

func(i int) { Xparts = append(Xparts, parts[i]) })
fmt.Println(Xparts)

[X15 X23 X57]

This second example of use is purely to emphasize the type genericity of the
Filter() function—here working on strings rather than ints.

var product int64 = 1
Filter(26, func(i int) bool { return i%2 != 0 },

func(i int) { product *= int64(i) })
fmt.Println(product)

7905853580625

This final filter snippet illustrates that just like the SliceIndex() function, the
Filter() function doesn’t have to be used on slices at all. Here we have used
the Filter() function to compute the product of the odd natural numbers in the
range [1, 25].

5.6.7.1. Memoizing Pure Functions

A pure function is a function which always produces the same result for a giv-
en argument or arguments—and that has no side effects. If a pure function
is expensive to compute and frequently used with the same arguments, we can
use memoization to reduce the processing overhead—at the price of using more
memory. Thememoization technique iswherewe store the results of a computa-
tion so that when the same computation is next requested we are able to return
the stored results rather than perform the computation all over again.

The recursive Fibonacci algorithm is expensive and involves repeatedly com-
puting the same things as we saw earlier in Figure 5.2 (228 ➤). In this case the
easiest solution is to use a nonrecursive algorithm, but just to show how we can
use memoization, we will create a recursive memoized Fibonacci function.

type memoizeFunction func(int, ...int) interface{}

var Fibonacci memoizeFunction

func init() {

ptg7913109

242 Chapter 5. Procedural Programming

 Fibonacci = Memoize(func(x int, xs ...int) interface{} {
if x < 2 {

return x
 }

return Fibonacci(x-1).(int) + Fibonacci(x-2).(int)
 })
}

The Memoize() functionwhichwewill review in amomentmemoizesany function
that takes at least one int and that returns an interface{}. For convenience we
have created the memoizeFunction type which specifies such functions, and then
declared Fibonacci to be a variable that stores a function of this type. Then, in
the program’s init() function, we have created an anonymous function to per-
form the Fibonacci calculation—and immediately passed this function to the
Memoize() function. In turn, the Memoize() function returns a function of type
memoizeFunction which we assign to the package’s Fibonacci variable.

In this particular example we only need to pass a single argument to the
Fibonacci function, so we ignore any extra ints (i.e., we ignore xs—which should
be an empty slice in this case). Also, when we sum the results of the recursive
calls we must be sure to use unchecked type assertions to convert the returned
interface{}s to their underlying ints.

Nowwe can use Fibonacci() like any other function, and thanks to thememoiza-
tion it will not repeat any calculations.

fmt.Println("Fibonacci(45) =", Fibonacci(45).(int))

Fibonacci(45) = 1134903170

Here is an example of the recursive memoized Fibonacci() function in use, and
the output it produces. We have used an unchecked type assertion on its return
value to convert the returned interface{} to an int. (Strictly speaking there is no
need to do the conversion here since the fmt package’s print functions are smart
enough to do this themselves, but this way we can see a realistic use.)

func Memoize(function memoizeFunction) memoizeFunction {
 cache := make(map[string]interface{})

return func(x int, xs ...int) interface{} {
 key := fmt.Sprint(x)

for _, i := range xs {
 key += fmt.Sprintf(",%d", i)
 }

if value, found := cache[key]; found {
return value

 }

ptg7913109

5.6. Custom Functions 243

 value := function(x, xs...)
 cache[key] = value

return value
 }
}

The Memoize() function we have used here is very basic. It takes a memoizeFunc-
tion function as argument (with the signature func(int, ...int) interface{})
and returns a function with the same signature.

Weuse amap to cacheprecomputed resultswith string keysand interface{} val-
ues. Themap is capturedby the anonymous function (closure) that the Memoize()
function returns. The key ismade up of all the integer arguments joined togeth-
er in a single comma-separated string. (Go maps require keys that have fully
defined == and != operators—strings meet this requirement, but slices do not;
§4.3, 164 ➤.) Once the key has been computed we see if there is a corresponding
key–value pair in the map—if there is we don’t need to recompute anything and
can simply return the cached value. Otherwise we perform the computation by
calling the function that we were given to memoize with the integer argument
or arguments. We then cache the result in themap so that we will never need to
recompute for these particular arguments, and finally, we return the computed
value.

Memoization is useful for relatively expensive pure functions (whether or not
they are recursive) that are called lots of times with the same arguments. For
example, if we were converting large numbers of integers into roman numerals
and lots of the numbers were repeated it might make sense to use the Memoize()
function to avoid repeated computations. Naturally, it is best to time expensive
operations (e.g., by using the time package or a profiler) to see if memoization
(or any other potential optimization) is worthwhile.

var RomanForDecimal memoizeFunction

func init() {
 decimals := []int{1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1}
 romans := []string{"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X",

"IX", "V", "IV", "I"}
 RomanForDecimal = Memoize(func(x int, xs ...int) interface{} {

if x < 0 || x > 3999 {
panic("RomanForDecimal() only handles integers [0, 3999]")

 }
var buffer bytes.Buffer
for i, decimal := range decimals {

 remainder := x / decimal
 x %= decimal

if remainder > 0 {

ptg7913109

244 Chapter 5. Procedural Programming

 buffer.WriteString(strings.Repeat(romans[i], remainder))
 }
 }

return buffer.String()
 })
}

The RomanForDecimal() function is declared globally (well, inside its package; see
Chapter 9) as a memoizeFunction and created in the init() function. The decimals
and romans slices are local to the init() function, but are kept alive so long as the
RomanForDecimal() function is used since it is a closure that has captured them.

Go functions (and methods) are incredibly flexible and powerful, and offer
several different ways to achieve genericity when that is required.

5.7. Example: Indent Sort

In this section we will review a custom function that sorts a slice of strings.
Whatmakes this function special (andwhy the standard library’ssort.Strings()
function is insufficient on its own) is that the strings are sorted hierarchically,
that is, within their level of indentation. (The function is in the book’s source
code in the file indent_sort/indent_sort.go.)

Note that the algorithm used for the SortedIndentedStrings() function makes
a critical simplifying assumption: A string’s indentation is measured by the
number of leading spaces or tabs it has, so we are able to work in terms of
single bytes rather than having to concern ourselveswith multibyte whitespace
characters. (If we really want to handle multibyte whitespace characters, one
easy solution is to replace each such character with a single space or tab in the
stringsbefore feeding them to the SortedIndentedStrings() function, for example,
using the strings.Map() function.)

Let’s begin with a program that calls the function and outputs some unsorted
indented strings and the sorted strings, side by side for comparison (➤ 245).

Between them, the SortedIndentedStrings() function and its helper functions
and types use recursive functions, function references, and pointers to slices.
So, although what the function does is easy to see, the implementation of the
solution requires some thought. The solution uses some important Go function
features that were introduced in this chapter, as well as some ideas and tech-
niques that were covered in Chapter 4 and which are explained more fully in
Chapter 6.

The keys to our solution are the custom Entry and Entries types. For each string
in the original slice we will create an Entry whose key field will be used for
sorting,whose value field is the original string, andwhose children field is a slice

ptg7913109

5.7. Example: Indent Sort 245

func main() {
 fmt.Println("| Original | Sorted |")
 fmt.Println("|-------------------|-------------------|")
 sorted := SortedIndentedStrings(original) // original is a []string

for i := range original { // set in a global var
 fmt.Printf("|%-19s|%-19s|\n", original[i], sorted[i])
 }
}

Original	Sorted
Nonmetals	Alkali Metals
Hydrogen	Lithium
Carbon	Potassium
Nitrogen	Sodium
Oxygen	Inner Transitionals
Inner Transitionals	Actinides
Lanthanides	Curium
Europium	Plutonium
Cerium	Uranium
Actinides	Lanthanides
Uranium	Cerium
Plutonium	Europium
Curium	Nonmetals
Alkali Metals	Carbon
Lithium	Hydrogen
Sodium	Nitrogen
Potassium	Oxygen

of the string’s child Entrys (which could be empty, but if not, whose own Entrys
could have children, and so on, recursively).

type Entry struct {
 key string
 value string
 children Entries
}
type Entries []Entry

func (entries Entries) Len() int { return len(entries) }

func (entries Entries) Less(i, j int) bool {
return entries[i].key < entries[j].key

}

ptg7913109

246 Chapter 5. Procedural Programming

func (entries Entries) Swap(i, j int) {
 entries[i], entries[j] = entries[j], entries[i]
}

The sort.Interface interfacedefined in the sort package specifies threemethods,
Len(), Less(), and Swap(), with the same signatures as the Entriesmethods of the
same names. This means that we can trivially sort an Entries value using the
standard library’s sort.Sort() function.

func SortedIndentedStrings(slice []string) []string {
 entries := populateEntries(slice)

return sortedEntries(entries)
}

This is the exported (public) function that does the work, although we have
refactored it to pass on everything to helper functions. The populateEntries()
function takes a []string and returns a corresponding Entries (of underlying
type []Entry). The sortedEntries() function takes the Entries and returns a
corresponding []string hierarchically (by indentation) sorted.

func populateEntries(slice []string) Entries {
 indent, indentSize := computeIndent(slice)
 entries := make(Entries, 0)

for _, item := range slice {
 i, level := 0, 0

for strings.HasPrefix(item[i:], indent) {
 i += indentSize
 level++
 }
 key := strings.ToLower(strings.TrimSpace(item))
 addEntry(level, key, item, &entries)
 }

return entries
}

The populateEntries() function begins by obtaining what signifies one level
of indent in the given slice as a string (e.g., a string of four spaces) and the
indent’s size (the number of bytes one level of indent occupies). It then creates
an empty Entries value and iterates over every string in the slice. For each
string it determines the string’s level of indentation, and then creates a sort key.
Next, the function calls the custom addEntry() function, passing it the string’s
level, the key, the string itself (item), and the address of the entries so that the
addEntry() function can create a new Entry and add it to the entries in the right
way. And at the end the entries are returned.

ptg7913109

5.7. Example: Indent Sort 247

func computeIndent(slice []string) (string, int) {
for _, item := range slice {

if len(item) > 0 && (item[0] == ' ' || item[0] == '\t') {
 whitespace := rune(item[0])

for i, char := range item[1:] {
if char != whitespace {

return strings.Repeat(string(whitespace), i), i
 }
 }
 }
 }

return "", 0
}

This function is used to determine what character (space or tab) is used for
indentation, and how many of these characters are used to signify one level
of indent.

The function must potentially iterate over all the strings, because top-level
stringshave no indentation. But as soon as it finds one string with a leading tab
or space it returns a string representing one level of indent and a count of how
many characters are used for one level of indent.

func addEntry(level int, key, value string, entries *Entries) {
if level == 0 {

*entries = append(*entries, Entry{key, value, make(Entries, 0)})
 } else {
 addEntry(level-1, key, value,
 &((*entries)[entries.Len()-1].children))
 }
}

This is a recursive function that creates each new Entry and adds it to the entries
either directly or as the child of another Entry if the value string is indented.

We must parameterize the function with an *Entries rather than pass the
entries by reference (which is the default for slices), since we want to append
to the entries and appending to a reference would produce a useless local copy
leaving the original data untouched.

If level is 0 then we have a top-level entry that must be added directly to the
*entries. In fact, the situation is subtler—the level is relative to the given
*entries, which is initially the top-level Entries, but if this function is called
recursively, could be another Entry’s child Entries. The new Entry is added using
the built-in append() function, and using the * contents of operator to access the
underlying entries value that is being pointed to. This ensures that any changes

ptg7913109

248 Chapter 5. Procedural Programming

are visible to the caller. The new Entry that is added has the given key and value,
and its own empty children Entries. This is the function’s recursive outcase.

If the level is greater than 0 we have an indented entry that must be added as
a child of the first preceding entry that has one less level of indentation. The
code to do this is a single recursive call to the addEntry() function and the last
argument is probably the most complicated expression we have seen so far.

The subexpression entries.Len() - 1 produces an int that is the index position
of the last item in the Entries value that *entries points to. (The Entries.Len()
method takes an Entries value rather than an *Entries, but Go is smart enough
to automatically dereference the entries pointer and call the method on the
pointed-to Entries value.) The complete expression (apart from the outer &(…)
part) accesses the last Entry in the Entries’ children field (which itself is of type
Entries). So, if we consider the expression as a whole we are taking the address
of the last Entry in the Entries children field—this is of type *Entries which is
exactly what’s needed for the recursive call.

To help clarify what is happening, here is some less compact code that does
exactly the same thing as the addEntry() function’s recursive call to itself in the
else block.

 theEntries := *entries
 lastEntry := &theEntries[theEntries.Len()-1]
 addEntry(level-1, key, value, &lastEntry.children)

First, we create the theEntries variable to hold the value pointed to by the *en-
tries pointer—this is cheap since no actual copying is done; in effect, theEntries
is set as an alias to the pointed-to Entries value. Next we take the address of
(i.e., a pointer to) the last entry. If we didn’t take the addresswewould get a new
entry that is a copy of the last entry—and a copy is of no use here. Finally, we
do the recursive addEntry() call, passing the address of the last entry’s children
field.

func sortedEntries(entries Entries) []string {
var indentedSlice []string

 sort.Sort(entries)
for _, entry := range entries {

 populateIndentedStrings(entry, &indentedSlice)
 }

return indentedSlice
}

When this sortedEntries() function is called, the structure of the Entries reflects
that of the “Original” strings that the program outputs, with indented strings
being children of their parent (as children of type Entries fields), and so on
(245 ➤).

ptg7913109

5.7. Example: Indent Sort 249

Once the Entries value hasbeen populated, the SortedIndentedStrings() function
calls this function to create a corresponding sorted []string. The function begins
by creating an empty []string which it will use to hold the results. It then sorts
the entries—thanks to the Entries’ support of the sort.Interface methods the
sort.Sort() function can be used without formality and the sorting is by each
Entry’s key field since that is how the Entries.Less() method is implemented
(245 ➤). The sort applies only to the top-level Entrys, of course, and has no effect
on their unsorted children.

To sort the children, and their children, recursively, the function iterates
over the top-level entries and for each one calls the populateIndentedStrings()
function. The call is made with the Entry and with a pointer to the []string we
want to populate.

Slices can be passed to functions to be updated (e.g., to have items replaced), but
here we need to append to the slice. The built-in append() function sometimes
returns a reference to a new slice (if the original’s capacity is insufficient). The
way we handle this here is to pass a pointer to a slice and set the contents that
the pointer points to, to the slice returned by append(). (If we didn’t use a pointer
we would simply get a local slice which would not be visible to the caller.) An
alternative approach is to pass in the slice value, and return the appended slice
which must then be assigned to the original slice (e.g., slice = function(slice));
however, this can be tricky to get right with recursive functions.

func populateIndentedStrings(entry Entry, indentedSlice *[]string) {

*indentedSlice = append(*indentedSlice, entry.value)
 sort.Sort(entry.children)

for _, child := range entry.children {
 populateIndentedStrings(child, indentedSlice)
 }
}

This function appends the given entry value to the slice that is being built up,
sorts the entry’s children, and then calls itself recursively for every child. This
has the effect of sorting every entry’s children, and their children, and so on, so
that the entire indented slice of strings is sorted.

We have now completed our coverage of Go’s built-in data types and procedural
programming support. In the next chapter we will build on all this to present
Go’s object-orientedprogramming facilities,and in the chapter after thatwewill
study Go’s support for concurrent programming.

ptg7913109

250 Chapter 5. Procedural Programming

5.8. Exercises
There are four exercises for this chapter. The first involves changing one of the
examples, some of whose code was shown in the chapter, and the others require
the creation of new functions. All the exercises are very short—the first is easy,
the second is straightforward, but the third and fourth are quite challenging!

1. Copy the archive_file_list directory to, say, my_archive_file_list. Then
modify the archive_file_list/archive_file_list.go file: Remove all the code
for supporting different ArchiveFileList() functions except for Archive-
FileListMap() which should be renamed ArchiveFileList(). Then add the
capability of handling .tar.bz2 (tarballs compressed with bzip2) files. This
involves deleting about 11 lines from main(), deleting four functions, import-
ing an additional package, adding one entry to the FunctionForSuffix map,
and adding a few lines to the TarFileList() function. A solution is given in
archive_file_list_ans/archive_file_list.go.

2. Create nonrecursive versions of the recursive IsPalindrome() functions
shown earlier in the chapter (229 ➤and 232 ➤). In the palindrome_ans/pal-
indrome.go solution file thenonrecursiveASCII-only function is 10 lines long
and is radically different in structure to the recursive version. On the other
hand, the nonrecursive UTF-8 function is 14 lines long and is very similar
to the recursive version—although it does require some care.

3. Create a CommonPrefix() function that takes a []string argument and re-
turns a string with the common prefix (which might be an empty string) of
all the strings passed in. A solution is given in common_prefix/common_pre-
fix.go; the solution is 22 lines long and uses a [][]rune to hold the strings
to ensure that when iterating we work in terms of whole characters even if
the strings have non-ASCII characters. The solution builds up the result in
a bytes.Buffer. Despite being very short, this function is by no means easy!
(Some examples follow the next exercise.)

4. Create a CommonPathPrefix() function that takes a []string of paths and re-
turns a string with the common prefix (which might be an empty string) of
all the paths passed in—the prefix must consist of zero or more complete
path components. A solution is given in common_prefix/common_prefix.go;
the solution is 27 lines long and uses a [][]string to hold the paths and the
filepath.Separator to identify the platform-specific path separator. The so-
lution builds up the result in a []string and joins them together as a single
path at the end using the filepath.Join() function. Despite being really
short, this function is challenging! (Some examples follow.)

Here is the output of the common_prefix program that exercises the functions
referred to in Exercises 3 and 4.The first of each pair of lines is a slice of strings
and the second line has the common prefix produced by the CommonPrefix() and
CommonPathPrefix() functionswith an indication of whether the common prefixes
are the same.

ptg7913109

5.8. Exercises 251

$./common_prefix

["/home/user/goeg" "/home/user/goeg/prefix" "/home/user/goeg/prefix/extra"]
char × path prefix: "/home/user/goeg" == "/home/user/goeg"

["/home/user/goeg" "/home/user/goeg/prefix" "/home/user/prefix/extra"]
char × path prefix: "/home/user/" != "/home/user"

["/pecan/π/goeg" "/pecan/π/goeg/prefix" "/pecan/π/prefix/extra"]
char × path prefix: "/pecan/π/" != "/pecan/π"

["/pecan/π/circle" "/pecan/π/circle/prefix" "/pecan/π/circle/prefix/extra"]
char × path prefix: "/pecan/π/circle" == "/pecan/π/circle"

["/home/user/goeg" "/home/users/goeg" "/home/userspace/goeg"]
char × path prefix: "/home/user" != "/home"

["/home/user/goeg" "/tmp/user" "/var/log"]
char × path prefix: "/" == "/"

["/home/mark/goeg" "/home/user/goeg"]
char × path prefix: "/home/" != "/home"

["home/user/goeg" "/tmp/user" "/var/log"]
char × path prefix: "" == ""

ptg7913109

This page intentionally left blank

ptg7913109

6 Object-Oriented
Programming

§6.1. Key Concepts ➤ 254

§6.2. Custom Types ➤ 256

§6.2.1. Adding Methods ➤ 258

§6.2.2. Validated Types ➤ 263

§6.3. Interfaces ➤ 265

§6.3.1. Interface Embedding ➤ 270

§6.4. Structs ➤ 275

§6.4.1. Struct Aggregation and Embedding ➤ 275

§6.5. Examples ➤ 282

§6.5.1. Example: FuzzyBool—A Single-Valued Custom Type ➤ 282

§6.5.2. Example: Shapes—A Family of Custom Types ➤ 289

§6.5.3. Example: Ordered Map—A Generic Collection Type ➤ 302

The aim of this chapter is to show how to do object-oriented programming the
Goway. Programmerscoming froma procedural background (e.g.,C) shouldfind
everything in this chapter builds nicely on what they already know and what
the earlier chapters covered. But programmers coming from an inheritance-
based object-oriented background (e.g.,C++, Java,Python)will need to put aside
many of the concepts and idioms they are used to—in particular, those relating
to inheritance—since Go takes a radically different approach to object-oriented
programming.

Go’s standard library mostly provides packages of functions, although where
appropriate it also provides custom types that have methods. In earlier chap-
ters we created values of some custom types (e.g., regexp.Regexp and os.File)
and called methods on them. Furthermore, we even created our own simple
custom types and correspondingmethods—for example, to support printing and
sorting—so the basic use of Go types and calling their methods is already fa-
miliar.

The chapter’s very short first section introduces some key concepts in Go object-
oriented programming. The second section covers the creation of methodless
custom types, with subsections on adding methods to custom types and on cre-

253

ptg7913109

254 Chapter 6. Object-Oriented Programming

ating construction functions and validating field data to provide all the funda-
mentals needed to create fully fledged custom types. The third section covers
interfaces—these are fundamental to Go’s approach to type-safe duck typing.
The fourth section covers structs, introducing many new details that have not
been seen earlier.

The chapter’s long final section presents three complete examples of custom
types that draw onmost of thematerial covered in the chapter’s earlier sections
and a fair amount of material from earlier chapters. The first of these examples
is a simple custom single-valued data type, the second is a small family of data
types, and the third is a generic collection type.

6.1. Key Concepts

What makes Go object orientation so different from, say, C++, Java, and (to a
lesser extent) Python, is that it does not support inheritance. When object-ori-
ented programming first became popular inheritance was touted as one of its
biggest advantages. But now, after a few decades of experience, it has turned
out that this feature has some significant drawbacks,especially when it comes to
maintaining large systems. Instead of using both aggregation and inheritance
like most other object-oriented languages, Go supports aggregation (also called
composition)and embedding exclusively. To see the difference between aggrega-
tion and embedding let’s look at a tiny code snippet.

type ColoredPoint struct {
 color.Color // Anonymous field (embedding)
 x, y int // Named fields (aggregation)
}

Here, color.Color is a type from the image/color package and x and y are ints. In
Go terminology, color.Color, x, and y are all fields in the ColoredPoint struct. The
color.Color field is anonymous (since it has no variable name) and is therefore
an embeddedfield. The x and y fields are named aggregatedfields. If we created
a ColoredPoint value (e.g., point := ColoredPoint{}), the fields would be accessed
as point.Color, point.x, and point.y. Notice also that when accessing a field of
a type from another package we only use the last component of the name, that
is, Color and not color.Color. (We will discuss these matters in more detail in
§6.2.1.1, ➤ 261, §6.3, ➤ 265, and §6.4, ➤ 275.)

The terms “class”, “object”, and “instance” are so well established in convention-
al inheritance-hierarchy-style object orientation, that in Go we avoid them al-
together. Instead, we talk about “types” and “values”, where values of custom
types may have methods.

Without inheritance there are no virtual functions. Go’s answer to this is to
support type-safe duck typing. In Go, parameters can be specified as concrete

ptg7913109

6.1. Key Concepts 255

types (e.g., int, string, *os.File, MyType), or as interfaces—that is, values that
provide the methods that fulfill the interface. For a parameter specified as an
interfacewe can passany value—so long as it has themethods that the interface
requires. For example, if we have a value that providesamethodwith the signa-
ture Write([]byte) (int, error) we can pass that value as an io.Writer (i.e., as a
value that satisfies the io.Writer interface) to any function that hasan io.Writer
parameter, no matter what the value’s actual type is. This is incredibly flexible
and powerful, especially when combined with Go’s clever support for accessing
the methods of embedded values.

One advantage of inheritance is that some methods need only be implemented
once in a base class for all the subclasses to benefit. Go provides two solutions
for this. One solution is to use embedding. If we embed a type, the method
need be created only once for the embedded type and is available to all those
types that include the embedded type.★ Another solution is to provide separate
versions of the method for all the types we want to have it—but to make these
thin wrappers (typically one-liners) that simply pass on the work to a single
function that all the methods make use of.

Another unusual aspect of Go object-oriented programming is that interfaces,
values, and methods are kept separate. Interfaces are used to specify method
signatures, structs are used to specify aggregated and embedded values,
and methods are used to specify operations on custom types (which are often
structs). There is no explicit connection between a custom type’s methods and
any particular interface—but if the type’smethods fulfill one or more interfaces,
values of the type can be used wherever values of those interfaces are expected.
Of course, every type fulfills the empty interface (interface{}), so any value can
be used where the empty interface is specified.

Oneway of thinking about theGo approach is to consider that is-a relationships
are defined by interfaces, that is, purely in terms of method signatures. So,
a value that satisfies the io.Reader interface (i.e., that has a method with the
signature Read([]byte) (int, error)) isn’t a reader because of what it is (a file,
a buffer, or some custom type), but because of what methods it provides, in this
case Read(). This is illustrated in Figure 6.1 (➤ 256). The has-a relationship
is expressed by using structs in which we aggregate or embed values of the
particular types we need as the constituents of a custom type.

Although it isn’t possible to add methods to built-in types, it is very easy to
create custom types based on built-in types and to add any methods we like to
them. Values of such types can call the methodswe have provided, and can also
be used with any functions, methods, or operators that their underlying type
provides. For example, if we have type Integer int,we can add values of this type
using the int + operator without formality. And once we have a custom type,we

★ In some other languages, what in Go terminology is called embedding, is known as delegation.

ptg7913109

256 Chapter 6. Object-Oriented Programming

Abstract Interfaces

io.ReadWriter

io.Reader

Read([]byte) (int, error)

io.Writer

Write([]byte) (int, error)

Concrete Types
*os.File // is-a io.ReadWriter

*bytes.Buffer // is-a io.ReadWriter

*zlib.Writer // is-a io.Writer

*bufio.Writer // is-a io.Writer

*bufio.Reader // is-a io.Reader

*strings.Reader // is-a io.Reader

*tar.Reader // is-a io.Reader

…

Figure 6.1 Interfaces and types for reading and writing byte slices

can also add custom methods—for example, func (i Integer) Double() Integer
{ return i * 2 }, as we will see shortly (§6.2.1, ➤ 258).

Not only are custom types based on built-in types easy to create, they are also
very efficient to use. Converting to or from a built-in type has no runtime cost
since the conversion is effectively done at compile time. In view of this it is en-
tirely practical to “promote” values of built-in types to a custom type to use the
custom type’s methods, and to “demote” such values to the underlying built-in
type when we want to pass them to functions whose parameters are of built-in
types. We saw an example of promotion earlier when we converted a []string to
a FoldedStrings (162 ➤), and we will see an example of demotion when we first
look at the Count type later in this chapter (➤ 259).

6.2. Custom Types

Custom types are created using Go’s type statement with the following syntax:

type typeName typeSpecification

The typeName can be any valid Go identifier that is unique to the enclosing
package or function. The typeSpecification can be any built-in type (such as
a string, int, slice, map, or channel), an interface (see §6.3, ➤ 265), a struct
(seen in earlier chapters, with more coverage later in this one, §6.4,➤ 275), or a
function signature.

In some situations creating a custom type is sufficient, while in others we need
to add methods to the custom type to make it really useful. Here are some
examples of methodless custom types.

type Count int
type StringMap map[string]string
type FloatChan chan float64

ptg7913109

6.2. Custom Types 257

None of these customtypes look particularly useful on their own,althoughusing
types like this can improve a program’s readability and can also make it possi-
ble to change the underlying type later on, so they serve as a basic abstraction
mechanism.

var i Count = 7
i++
fmt.Println(i)
sm := make(StringMap)
sm["key1"] = "value1"
sm["key2"] = "value2"
fmt.Println(sm)
fc := make(FloatChan, 1)
fc <- 2.29558714939
fmt.Println(<-fc)

8
map[key2:value2 key1:value1]
2.29558714939

Types like Count, StringMap, and FloatChan that are based directly on a built-in
type can be used in the same way as the built-in type—for example, we can use
the built-in append() function on a custom type StringSlice []string type—but
we must convert them (at no cost because it is done at compile time) to the un-
derlying built-in type if we need to pass them to a function that expects their un-
derlying type. And sometimes we need to do the reverse and promote the value
of a built-in type to a custom type to benefit from the custom type’smethods. We
saw an example of thiswhen we converted a []string to a FoldedStrings value in
the SortFoldedStrings() function (162 ➤).

type RuneForRuneFunc func(rune) rune

When working with higher order functions (§5.6.7, 238 ➤) it is often convenient
to define custom types that specify the signatures of the functions we want to
pass. Here we have specified the signature of a function that takes and returns
a single rune.

var removePunctuation RuneForRuneFunc

The removePunctuation variable is created to refer to a function of type RuneFor-
RuneFunc (i.e., with the signature func(rune) rune). Like all Go variables it is au-
tomatically initialized to its zero value, so in this case to nil.

phrases := []string{"Day; dusk, and night.", "All day long"}
removePunctuation = func(char rune) rune {

ptg7913109

258 Chapter 6. Object-Oriented Programming

if unicode.Is(unicode.Terminal_Punctuation, char) {
return -1

 }
return char

}
processPhrases(phrases, removePunctuation)

Here we have created an anonymous function that matches the RuneForRuneFunc
signature and passed it to the custom processPhrases() function.

func processPhrases(phrases []string, function RuneForRuneFunc) {
for _, phrase := range phrases {

 fmt.Println(strings.Map(function, phrase))
 }
}

Day dusk and night
All day long

Using RuneForRuneFunc as a type rather than the underlying func(rune) rune is
more meaningful for human readers; it also provides some abstraction. (The
strings.Map() function was covered in Chapter 3, 111 ➤.)

Creating custom types based on built-in types or function signatures can be
useful, but doesn’t get us very far. What we need are custom methods, the
subject of the next subsection.

6.2.1. Adding Methods

A method is a special kind of function that is called on a value of a custom type
and that is (usually) passed the value it is called on. The value is passed as a
pointer or value depending on how the method is defined. The syntax for defin-
ing methods is almost identical to that for defining functions, except that be-
tween the func keyword and themethod’s namewemust write the receiver—this
is written in parentheses, either as the type of value that the method belongs
to or as a variable name and the type. When the method is called, the receiver’s
variable (if present) is automatically set to the value or pointer that themethod
was called on.

We can add one or more methods to any custom type. A method’s receiver is
always a value of the type or a pointer to a value of the type. However, ev-
ery method name must be unique for any given type. One consequence of the
unique name requirement is that we cannot have two methods of the same
name where one takes a pointer and the other a value. Another consequence is
that there is no support for overloaded methods, that is, methods with the same
name but different signatures. Oneway to provide the equivalent of overloaded

ptg7913109

6.2. Custom Types 259

methods is to use variadicmethods (i.e.,methods that take a variable number of
arguments; see §5.6, 219 ➤and §5.6.1.2, 221 ➤); however, the Go way is to use
uniquely named functions. For example, the strings.Reader type provides three
different read methods: strings.Reader.Read(), strings.Reader.ReadByte(), and
strings.Reader.ReadRune().

type Count int

func (count *Count) Increment() { *count++ }
func (count *Count) Decrement() { *count-- }
func (count Count) IsZero() bool { return count == 0 }

This simple int-based custom type supports three methods, of which the first
two are declared to accept pointer receivers since both modify the value they are
called on.★

var count Count
i := int(count)
count.Increment()
j := int(count)
count.Decrement()
k := int(count)
fmt.Println(count, i, j, k, count.IsZero())

0 0 1 0 true

This snippet shows the Count type in action. It doesn’t look like much, but we
will use it in this chapter’s fourth section (➤ 278).

Let’s look at a slightly more elaborate custom type, this time based on a struct.
(We will return to this example in §6.3.1, ➤ 270.)

type Part struct {
 Id int // Named field (aggregation)
 Name string // Named field (aggregation)
}

func (part *Part) LowerCase() {
 part.Name = strings.ToLower(part.Name)
}

func (part *Part) UpperCase() {
 part.Name = strings.ToUpper(part.Name)
}

★ In C++ and Java receivers are always called this and in Python self ; in Go the practice is to give
them more meaningful type-specific names.

ptg7913109

260 Chapter 6. Object-Oriented Programming

func (part Part) String() string {
return fmt.Sprintf("«%d %q»", part.Id, part.Name)

}

func (part Part) HasPrefix(prefix string) bool {
return strings.HasPrefix(part.Name, prefix)

}

We have made the String() and HasPrefix() methods accept a value receiver
purely to showhow it is done. Of course,methods that accept values rather than
pointers cannot modify the value they are called on.

part := Part{5, "wrench"}
part.UpperCase()
part.Id += 11
fmt.Println(part, part.HasPrefix("w"))

«16 "WRENCH"» false

When custom types are based on structs we can create values of them using the
type name and a brace-enclosed list of initializing values. (And as we will see
in the next subsection, Go also has a syntax whereby we can provide just those
values we want to, and rely on Go to zero-initialize the rest.)

Once the part value is created we can call methods on it (e.g., Part.UpperCase()),
access its exported (public) fields (e.g., Part.Id), and print it, safe in the knowl-
edge that Go’s print functions are intelligent enough to use the custom type’s
String() method if it has one.

A type’smethod set is the set of all the methods that can be called on a value of
the type.

If we have a pointer to a value of a custom type, itsmethod set consists of all the
methods defined for the type—whether they accept a value or a pointer. If we
call a method that takes a value, on a pointer,Go is smart enough to dereference
the pointer and pass the underlying value as the method’s receiver.

If we have a value of a custom type, its method set consists of all those methods
defined for the type that accept a value receiver—but not those methods that
accept a pointer receiver. This isn’t as limiting as it sounds, since if we have
a value we can still call a method that has a pointer receiver and rely on Go
to pass the value’s address—providing the value is addressable (i.e., it is a
variable, a dereferenced pointer, an array or slice item, or an addressable field
in a struct). So, given the call value.Method() where Method() requires a pointer
and value is an addressable value, Go will treat the code as if we had written
(&value).Method().

ptg7913109

6.2. Custom Types 261

The *Count type’s method set consists of the three methods, Increment(), Decre-
ment(), and IsZero(); whereas the Count type’s method set is the single method,
IsZero(). All these methods can be called on a *Count—and also on a Count value,
providing that it is addressable, as we saw in the snippet shown earlier (259 ➤).
The *Part type’s method set consists of the four methods, LowerCase(), Upper-
Case(), String(), and HasPrefix();while the Part type’smethod set consists of just
the String() and HasPrefix()methods. However, the LowerCase() and UpperCase()
methods can also be used on addressable Part values, as the earlier code snippet
illustrates (260 ➤).

Defining methods that accept value receivers works well for types that are
small, such as numbers. Such methods cannot modify the value they are called
on since they get a copy of the value as their receiver. If we have values of large
types or values we want to modify we need to use methods that accept pointer
receivers. This makes method calls as cheap as possible (since the receiver is
passed as a 32- or 64-bit pointer, no matter how large the value the method is
called on is).

6.2.1.1. Overriding Methods

As we will see later in this chapter, it is possible to create struct types that
include one or more types (including interface types) as embedded fields (§6.4.1,
➤ 275). A particular convenience of this approach is that any methods on the
embedded type can be called on the custom struct as if they were the struct’s
own methods, and they will be passed the embedded field as their receiver.

type Item struct {
 id string // Named field (aggregation)
 price float64 // Named field (aggregation)
 quantity int // Named field (aggregation)
}

func (item *Item) Cost() float64 {
return item.price * float64(item.quantity)

}

type SpecialItem struct {
 Item // Anonymous field (embedding)
 catalogId int // Named field (aggregation)
}

Here, the SpecialItem embeds an Item type. This means that we can call the
Item’s Cost() method on a SpecialItem.

special := SpecialItem{Item{"Green", 3, 5}, 207}
fmt.Println(special.id, special.price, special.quantity, special.catalogId)
fmt.Println(special.Cost())

ptg7913109

262 Chapter 6. Object-Oriented Programming

Green 3 5 207
15

When we call special.Cost(), since the SpecialItem type does not have its own
Cost() method, Go uses the Item.Cost() method—and passes it the embedded
Item value, not the entire SpecialItem that the method was originally called on.

As we will see later, if any of the embedded Item’s fields has the same name as
one of the SpecialItem’s fields, we can still access the embedded Item’s fields by
using the type as part of the name—for example, special.Item.price.

It is possible to override the methods of an embedded field simply by creating
a new method for the embedding struct that has the same name as one of the
embedded fields’ methods. For example, suppose we have a new item type:

type LuxuryItem struct {
 Item // Anonymous field (embedding)
 markup float64 // Named field (aggregation)
}

As it stands, if we call the Cost() method on a LuxuryItem, the embedded
Item.Cost() method will be used, just like it is for SpecialItems. Here are three
different implementations that override the embedded method (only one of
which may be used, of course!).

/*
func (item *LuxuryItem) Cost() float64 { // Needlessly verbose!
 return item.Item.price * float64(item.Item.quantity) * item.markup
}

func (item *LuxuryItem) Cost() float64 { // Needless duplication!
 return item.price * float64(item.quantity) * item.markup
}

*/

func (item *LuxuryItem) Cost() float64 { // Ideal ✓

return item.Item.Cost() * item.markup
}

The last implementation takes advantage of the embedded Cost() method. Of
course, there is no requirement that overriding methods make any use of the
embeddedmethods they override if we don’t want them to. (Embedding fields in
structs is covered later; §6.4.1, ➤ 275.)

ptg7913109

6.2. Custom Types 263

6.2.1.2. Method Expressions

Just as we can assign and pass functions, we can also assign and pass method
expressions. A method expression is a function that must be passed a value of
themethod’s type as its first argument. (The termunboundmethod is often used
in other languages for this concept.)

asStringV := Part.String // Effective signature: func(Part) string
sv := asStringV(part)
hasPrefix := Part.HasPrefix // Effective signature: func(Part, string) bool
asStringP := (*Part).String // Effective signature: func(*Part) string
sp := asStringP(&part)
lower := (*Part).LowerCase // Effective signature: func(*Part)
lower(&part)
fmt.Println(sv, sp, hasPrefix(part, "w"), part)

«16 "WRENCH"» «16 "WRENCH"» true «16 "wrench"»

Here we have created four method expressions: asStringV() which takes a Part
value as its sole argument, hasPrefix() which takes a Part as its first argument
and a string as its second argument, and asStringP() and lower() which both
take a *Part as their sole argument.

Method expressions are an advanced feature which can be very useful on the
uncommon occasions when they are needed.

All the custom typeswe have created so far potentially suffer froma critical flaw.
None of them provide any means of ensuring that the data they are initialized
with is valid (or is forced to be valid), nor any means of ensuring that the type’s
data (or fields in the case of struct types) cannot be given invalid data. For ex-
ample, the Part.Id and Part.Name fields can be set to any valueswe like. Butwhat
if we wanted to apply constraints—for example, only allow IDs to be positive
integers greater than zero, or only allow names that had a specific format? We
will address these issues in the next subsection where wewill create a small but
complete custom type with validated fields.

6.2.2. Validated Types

For many simple custom types, no validation is necessary. For example, we
might have type Point { X, Y int }, for which any values of X and Y are valid.
Furthermore, since Go guarantees to initialize all variables (including struct
fields) to their zero values, the need for explicit constructors is reduced.

For those situations where the default zero-value initialization isn’t sufficient,
we can create a construction function. Go doesn’t support constructors, so we
must call construction functions explicitly. To support this we must document

ptg7913109

264 Chapter 6. Object-Oriented Programming

the type as having an invalid zero value and provide one or more construction
functions that can be used to create valid values.

We can use a similar approach when it comes to fields that must be validated.
We can make such fields unexported and provide exported accessor methods in
which we can put the necessary validation.★

Let’s look at a small but complete custom type that illustrates these points.

type Place struct {
 latitude, longitude float64
 Name string
}

func New(latitude, longitude float64, name string) *Place {
return &Place{saneAngle(0, latitude), saneAngle(0, longitude), name}

}

func (place *Place) Latitude() float64 { return place.latitude }

func (place *Place) SetLatitude(latitude float64) {
 place.latitude = saneAngle(place.latitude, latitude)
}

func (place *Place) Longitude() float64 { return place.longitude }

func (place *Place) SetLongitude(longitude float64) {
 place.longitude = saneAngle(place.longitude, longitude)
}

func (place *Place) String() string {
return fmt.Sprintf("(%.3f°, %.3f°) %q", place.latitude,

 place.longitude, place.Name)
}

func (original *Place) Copy() *Place {
return &Place{original.latitude, original.longitude, original.Name}

}

The Place type is exported (from the place package), but its latitude and longi-
tude fields are unexported because they require validation. We have provided a
construction function,New(), to ensure that we always create valid *place.Places.
It is a Go convention to call construction functions New(), or if there ismore than
one, for their names to begin with “New”. (We haven’t shown the saneAngle()
function since it is beside the point—it takes the old angle and the new angle
and returns the new if the new is in range; otherwise it returns the old.) And

★Recall that in Go, identifiers are unexported (i.e., only visible within the package in which they are
defined) if they start with a lowercase letter, and identifiers are exported (i.e., visible in any package
that imports the package in which they are defined) if they start with an uppercase letter.

ptg7913109

6.2. Custom Types 265

by providing getters and setters for the unexported fields, we have ensured that
only valid values can be set.

The String() method means that *Place values fulfill the fmt.Stringer interface,
so *Places will print the way we want rather than using Go’s default formatting.
We have also provided a Copy()method—and not used any validation for it since
we know that the original is already valid.

newYork := place.New(40.716667, -74, "New York") // newYork is a *Place
fmt.Println(newYork)
baltimore := newYork.Copy() // baltimore is a *Place
baltimore.SetLatitude(newYork.Latitude() - 1.43333)
baltimore.SetLongitude(newYork.Longitude() - 2.61667)
baltimore.Name = "Baltimore"
fmt.Println(baltimore)

(40.717°, -74.000°) "New York"
(39.283°, -76.617°) "Baltimore"

We put the Place type in the place package and call place.New() to create *Places.
Once we have a *Place we can call its methods in the same way as we do for any
of the standard library’s custom types.

6.3. Interfaces
In Go an interface is a custom type that specifies a set of one or more method
signatures. Interfaces are wholly abstract, so it is not possible to instantiate an
interface. However, it is possible to create a variable whose type is that of an
interface—andwhich can then be assigned a value of any concrete type that has
the methods the interface requires.

The interface{} type is the interface that specifies the empty set of methods.
Every value satisfies the interface{} type whether the value has methods or
not—after all, if a value does havemethods, its set of methods includes the emp-
ty set of methods as well as the methods it actually has. This is why the inter-
face{} type can be used for anyvalue. We cannot callmethodsdirectly on a value
passed as an interface{} (even if it has some), since the interface it is fulfilling
has no methods. So, in general, it is better to pass values either as their actual
type or asan interface that has themethods thatwewant to use. Of course, if we
do use the interface{} type for values with methods, we can access those meth-
ods by using a type assertion (§5.1.2, 191 ➤) or a type switch (§5.2.2.2, 197 ➤),
or even by using introspection (§9.4.9, ➤ 427).

Here is a very simple interface.

ptg7913109

266 Chapter 6. Object-Oriented Programming

type Exchanger interface {
 Exchange()
}

The Exchanger interface specifies a single method, Exchange(), which takes no ar-
guments and returnsnothing. We have followed theGo convention for interface
names, which is that they should end with er. It is quite common to have inter-
faces with only one method—for example, the standard library’s io.Reader and
io.Writer interfaces each specify a singlemethod. Notice that an interface is re-
ally specifying anAPI (ApplicationProgramming Interface),that is,zero ormore
methods—although it says nothing about what those methods actually do.

A nonempty interface on its own is not usually of any use; to make it useful we
must create some custom types that have the methods the interface requires.★

Here are two such types.

type StringPair struct{ first, second string }

func (pair *StringPair) Exchange() {
 pair.first, pair.second = pair.second, pair.first
}

type Point [2]int

func (point *Point) Exchange() { point[0], point[1] = point[1], point[0] }

The custom StringPair and Point types are completely different, but since both
provide an Exchange() method, both satisfy the Exchanger interface. This means
that we can create StringPair and Point values and pass them to functions that
accept Exchangers.

Notice that although both the StringPair and Point types fulfill the Exchanger
interface, nowhere have we said this explicitly—there are no “implements”
or “inherits” statements. The mere fact that the StringPair and Point types
provide the methods (in this case just one method) that the interface specifies,
is sufficient for Go to know that they satisfy the interface.

The methods’ receivers are specified as pointers to their types so that we can
change the (pointed to) values the methods are called on.

Although Go is smart enough to print custom types in a sensible way,we usually
prefer to take control over their string representation. This can easily be done
by adding a method that fulfills the fmt.Stringer interface, that is, a method
with the signature String() string.

★ If we were creating a framework we might create interfaces but no types that implement them,
and require users of the framework to create such types for use with the framework.

ptg7913109

6.3. Interfaces 267

func (pair StringPair) String() string {
return fmt.Sprintf("%q+%q", pair.first, pair.second)

}

Thismethod returnsa string that consists of each of the strings in double quotes
with a “+” sign between them. With this method defined, Go’s fmt package’s
printmethodswill use it to print StringPair values—and also *StringPairs, since
Go will dereference such pointers to get the pointed-to value.

Here is a code snippet that shows the creation of some custom Exchanger values,
some calls to the Exchange() method, and a call to a custom exchangeThese()
function that accepts Exchanger values.

jekyll := StringPair{"Henry", "Jekyll"}
hyde := StringPair{"Edward", "Hyde"}
point := Point{5, -3}
fmt.Println("Before: ", jekyll, hyde, point)
jekyll.Exchange() // Treated as: (&jekyll).Exchange()
hyde.Exchange() // Treated as: (&hyde).Exchange()
point.Exchange() // Treated as: (&point).Exchange()
fmt.Println("After #1:", jekyll, hyde, point)
exchangeThese(&jekyll, &hyde, &point)
fmt.Println("After #2:", jekyll, hyde, point)

Before: "Henry"+"Jekyll" "Edward"+"Hyde" [5 -3]
After #1: "Jekyll"+"Henry" "Hyde"+"Edward" [-3 5]
After #2: "Henry"+"Jekyll" "Edward"+"Hyde" [5 -3]

All the variables are created as values, yet the Exchange() methods require
pointer receivers. This isn’t a problem since, as we noted earlier, Go is smart
enough to pass a value’s address when we call a method on it that requires
a pointer—providing the value is addressable. So, in the snippet, jekyll.Ex-
change() is automatically treated as if it were written (&jekyll).Exchange(), and
the same for the others.

In the call to the exchangeThese() function,wemust pass the values’ addressesex-
plicitly. If, for instance,we passed the hyde value of type StringPair, the Go com-
piler would notice that StringPairs do not fulfill the Exchanger interface—since
there is no Exchange() method with a StringPair receiver—and would stop com-
piling and report the problem. However, if we pass a *StringPair (e.g., &hyde),
the compilation will complete successfully. This works because there is an Ex-
change() method which takes a *StringPair receiver which means that *String-
Pairs fulfill the Exchanger interface.

Here is the exchangeThese() function.

ptg7913109

268 Chapter 6. Object-Oriented Programming

func exchangeThese(exchangers ...Exchanger) {
for _, exchanger := range exchangers {

 exchanger.Exchange()
 }
}

This function doesn’t know or care that we passed it two *StringPairs and one
*Point; all that it requires is that the parameters it is passed are Exchangers—and
this requirement is enforced by the compiler, hence the duck typing used here
is type-safe.

In addition to satisfying our own custom interfaces, we can satisfy those in the
standard library or any others we want, as we saw when we defined the String-
Pair.String() method to fulfill the fmt.Stringer interface. Another example
is the io.Reader interface which specifies a single method with the signature
Read([]byte) (int, error) that when called writes the data of the value it is
called on to the given []byte.Thewriting is destructive, that is, each bytewritten
is removed from the called-on value.

func (pair *StringPair) Read(data []byte) (n int, err error) {
if pair.first == "" && pair.second == "" {

return 0, io.EOF
 }

if pair.first != "" {
 n = copy(data, pair.first)
 pair.first = pair.first[n:]
 }

if n < len(data) && pair.second != "" {
 m := copy(data[n:], pair.second)
 pair.second = pair.second[m:]
 n += m
 }

return n, nil

}

By implementing this method we have made the StringPair type fulfill the
io.Reader interface. So now StringPairs (or, strictly speaking, *StringPairs since
some of the methods require pointer receivers) are Exchangers and fmt.Stringers
and io.Readers—with no need to say that *StringPair “implements” Exchanger or
any of the other interfaces. And we could, of course, add further methods and
fulfill additional interfaces if we wished.

The method uses the built-in copy() function (§4.2.3, 156 ➤). This function can
be used to copy into a slice from another slice of the same type—but here we
have used it in its other form to copy into a []byte the bytes in a string. The
copy() function never copiesmore bytes than the destination []byte has room for,

ptg7913109

6.3. Interfaces 269

and returns the number of bytes copied. The custom StringPair.Read() method
writes bytes from its first string (and removes any that are written), and then
does the same for its second string. If both stringsare empty themethod returns
a byte count of zero and io.EOF. Incidentally, the method would work perfectly
well if the second if statement’s statementswere executed unconditionally and
if the third if statement’s condition’s second clause was deleted—but at some
(perhaps insignificant) cost in efficiency.

Here it was necessary to use a pointer receiver since the Read()methodmodifies
the value it is called on. And in general, we prefer to use pointer receivers ex-
cept for small values, since pointers are cheaper to pass than all but the smallest
values.

With the Read() method in place we can make use of it.

const size = 16
robert := &StringPair{"Robert L.", "Stevenson"}
david := StringPair{"David", "Balfour"}
for _, reader := range []io.Reader{robert, &david} {
 raw, err := ToBytes(reader, size)

if err != nil {
 fmt.Println(err)
 }
 fmt.Printf("%q\n", raw)
}

"Robert L.Stevens"
"DavidBalfour"

This snippet creates two io.Readers. Since we implemented the StringPair.
Read() method to take a pointer receiver, only *StringPairs satisfy the io.Read-
er() interface, not StringPair values. For the first StringPair we have created
the value and set the robert variable to be a pointer to it, and for the second
StringPair we set the david variable to be a StringPair value—and so must use
its address in the []io.Reader slice.

Once the variables are set up, we iterate over them, and for each one we use a
custom ToBytes() function to copy their data into a []byte and then we print the
raw bytes as a double-quoted string.

The ToBytes() function takes an io.Reader (i.e.,any value that has amethodwith
the signature Read([]byte) (int, error), such as an *os.File), and a size limit,
and returns a []byte that contains the reader’s data and also an error.

func ToBytes(reader io.Reader, size int) ([]byte, error) {
 data := make([]byte, size)
 n, err := reader.Read(data)

ptg7913109

270 Chapter 6. Object-Oriented Programming

if err != nil {
return data, err

 }
return data[:n], nil // Slice off any unused bytes

}

Just like the exchangeThese() function we saw earlier, this function does not
know or carewhat specific type of value it is passed—so long as it is an io.Reader
of some kind.

If the read is successful, the data slice is resliced to reduce its length to the
number of bytes actually read. If we didn’t do this and the size was too large
wewould have the data read followed by bytes (each of value 0x00).For example,
without the slicing, david would be output as "DavidBalfour\x00\x00\x00\x00".

Notice that there is no explicit connection between an interface and any types
that satisfy it—we don’t have to say that a custom type “inherits” or “extends”
or “implements” an interface; simply giving a type the requisite methods is
sufficient. ThismakesGo incredibly flexible—we can easily add new interfaces,
types, and methods at any time, with no inheritance tree to disrupt.

6.3.1. Interface Embedding

Go interfaces (and structs, as we will see in the next section) have excellent sup-
port for embedding. Interfaces can embed other interfaces and the effect is al-
most the same as if we had written the embedded interface’smethod signatures
in the interface that embeds it. Let’s illustrate this with a simple example.

type LowerCaser interface {
 LowerCase()
}

type UpperCaser interface {
 UpperCase()
}

type LowerUpperCaser interface {
 LowerCaser // As if we had written LowerCase()
 UpperCaser // As if we had written UpperCase()
}

The LowerCaser interface specifies a single method, LowerCase(), that takes
no arguments and returns nothing. The UpperCaser interface is similar. The
LowerUpperCaser interface embeds the two other interfaces. This means that for
a concrete type to satisfy the LowerUpperCaser interface, it must have LowerCase()
and UpperCase() methods.

ptg7913109

6.3. Interfaces 271

In this tiny example the embedding doesn’t look likemuch of a win. However, if
we added extra methods to the first two interfaces (say, LowerCaseSpecial() and
UpperCaseSpecial()), the LowerUpperCaser interface would automatically include
them without us having to touch its code.

type FixCaser interface {
 FixCase()
}

type ChangeCaser interface {
 LowerUpperCaser // As if we had written LowerCase(); UpperCase()
 FixCaser // As if we had written FixCase()
}

We have now added two more interfaces, so we now have a kind of hierarchy of
embedded interfaces, as Figure 6.2 illustrates.

Abstract Interfaces

ChangeCaser

LowerUpperCaser

LowerCaser

LowerCase()

UpperCaser

UpperCase()

FixCaser

FixCase()

Concrete Types

*Part // is-a ChangeCaser

*Part // is-a fmt.Stringer

*StringPair // is-a ChangeCaser

*StringPair // is-a Exchanger

*StringPair // is-a io.Reader

*StringPair // is-a fmt.Stringer

Values

part := Part{1439, "File"}

pair := StringPair{"Murray", "Bookchin"}

Figure 6.2 Caser interfaces, types,and example values

The interfaces are, of course, of no use on their own;we need concrete types that
implement them for them to be useful.

func (part *Part) FixCase() {
 part.Name = fixCase(part.Name)
}

We saw the custom Part type earlier (260 ➤). Here we have added a single ad-
ditional method, FixCase(), which works on the Part’s Name field, just like the
LowerCase() and UpperCase() methods we saw earlier. All the case-changing

ptg7913109

272 Chapter 6. Object-Oriented Programming

methods take pointer receivers since they modify the value they are called on.
The LowerCase() and UpperCase() methods are implemented by using standard
library functions, and the FixCase() method relies on the custom fixCase()
function—this pattern of tiny methods that rely on functions to do the work is
very common in Go.

The Part.String() method (260 ➤) fulfills the standard library’s fmt.Stringer
interface and means that any Part (or *Part) will be printed using the string
returned by this method.

func fixCase(s string) string {
var chars []rune

 upper := true

for _, char := range s {
if upper {

 char = unicode.ToUpper(char)
 } else {
 char = unicode.ToLower(char)
 }
 chars = append(chars, char)
 upper = unicode.IsSpace(char) || unicode.Is(unicode.Hyphen, char)
 }

return string(chars)
}

This simple function returns a copy of the string it is given in which every
character has been lowercased, except for the very first character and the first
character after eachwhitespace or hyphen character,which are uppercased. For
example, given the string "lobelia sackville-baggins", the function will return
"Lobelia Sackville-Baggins".

Naturally, we can make any custom type satisfy any or all of the caser inter-
faces.

func (pair *StringPair) UpperCase() {
 pair.first = strings.ToUpper(pair.first)
 pair.second = strings.ToUpper(pair.second)
}

func (pair *StringPair) FixCase() {
 pair.first = fixCase(pair.first)
 pair.second = fixCase(pair.second)
}

Here we have added methods to the StringPair type we created earlier (266 ➤)
to make it satisfy the LowerCaser, UpperCaser, and FixCaser interfaces—although

ptg7913109

6.3. Interfaces 273

we have not shown the StringPair.LowerCase() method since it is structurally
identical to the StringPair.UpperCase() method.

Both the *Part and *StringPair types satisfy all the caser interfaces, including
the ChangeCaser interface since that embeds interfaces that the types fulfill.
They also both satisfy the standard library’s fmt.Stringer interface. And the
*StringPair type also satisfies our Exchanger interface and the standard library’s
io.Reader interface.

We are not obliged to fulfill every interface—for example, if we chose not to
implement the StringPair.FixCase() method the *StringPair type would satisfy
only the LowerCaser, UpperCaser, LowerUpperCaser, Exchanger, fmt.Stringer, and
io.Reader interfaces.

Let’s create a couple of these values and see some of the methods in use.

toastRack := Part{8427, "TOAST RACK"}
toastRack.LowerCase()
lobelia := StringPair{"LOBELIA", "SACKVILLE-BAGGINS"}
lobelia.FixCase()
fmt.Println(toastRack, lobelia)

«8427 "toast rack"» "Lobelia"+"Sackville-Baggins"

Themethods are called and behave aswewould expect. But what happens if we
have a bunch of such values and want to call a method on them? Here is a bad
way to do it.

for _, x := range []interface{}{&toastRack, &lobelia} { // UNSAFE!
 x.(LowerUpperCaser).UpperCase() // Unchecked type assertion
}

Wemust use pointers to the values since all the caser methodsmodify the value
they are called on and so require pointer receivers.

The approach used in this snippet has two deficiencies. The minor deficiency is
that the unchecked type assertion is to the LowerUpperCaser interface which is
more general than the interface we actually need. We could have done worse,
though, and used the ChangeCaser interface since that is even more general.
But we could not use the FixCaser interface since that provides only the Fix-
Case() method. What we should do is use the most specific interface that is
sufficient—in this case the UpperCaser interface. This approach’smajor deficien-
cy is that we use an unchecked type assertion at all since this could result in a
panic!

for _, x := range []interface{}{&toastRack, &lobelia} {
if x, ok := x.(LowerCaser); ok { // shadow variable

ptg7913109

274 Chapter 6. Object-Oriented Programming

 x.LowerCase()
 }

This code snippet uses a safer approach and sensibly uses the most specific
interface for the job—but it is rather unwieldy. The problem is that we are
using a slice of generic interface{} values rather than values of a particular
type, or that satisfy a particular interface. Of course, if all we are given is an
[]interface{}, then this is the best we can do.

for _, x := range []FixCaser{&toastRack, &lobelia} { // Ideal ✓

 x.FixCase()
}

This snippet illustrates the best approach: Instead of type checking raw
generic interface{} values we specify the slice as FixCasers—the most specific
interface type that is sufficient for our needs—and leave all the type checking to
the compiler.

Another aspect of the flexibility of interfaces is that they can be created after
the fact. For example, supposewe create some custom types, some of which have
an IsValid() bool method. If, later on, we discover that we have a function that
receivesa value of one of our custom typesand thatwewant to call the IsValid()
method if the value supports it, this can easily be done.

type IsValider interface {
 IsValid() bool
}

First, we create an interface that specifies the methods we want to check for.

if thing, ok := x.(IsValider); ok {
if !thing.IsValid() {

 reportInvalid(thing)
 } else {

// ... process valid thing ...
 }
}

With the interface in place we can now check any custom value to see if it
provides an IsValid() bool method, and if it does, we can call that method.

Interfaces provide a powerful abstraction mechanism that allows us to specify
sets of methods such that we can use interface parameters for functions or
methods that are concerned only with what a value can do, rather than caring
about what the value’s type is. We will see further uses of them later in this
chapter (§6.5.2, ➤ 289).

ptg7913109

6.4. Structs 275

6.4. Structs
The simplest custom types in Go are based on Go’s built-in types—for example,
type Integer int creates a custom Integer type to which we could add our own
methods. Custom types can also be based on structswhich are used to aggregate
and embed values together. This is particularly useful when the values—called
fields in the context of structs—are of different types, and so cannot be stored
in a slice (unless we use an []interface{}). Go’s structs are much closer to C’s
structs than C++’s (e.g., they are not classes), and they are more convenient to
use because of their excellent support for embedding.

We have already seen numerous examples of structs in earlier chapters and
in this chapter, and we will see many more throughout the rest of the book.
Nonetheless, there are some struct features that we have not yet seen, sowewill
begin with some illustrative examples to show them.

points := [][2]int{{4, 6}, {}, {-7, 11}, {15, 17}, {14, -8}}
for _, point := range points {
 fmt.Printf("(%d, %d) ", point[0], point[1])
}

The snippet’s points variable is a slice of arrays of type [2]int, so we must use
the [] index operator to get each coordinate. (Incidentally, the {} item is the
same as {0, 0} thanks to Go’s automatic zero-value initialization.) For small
amounts of simple data this works fine, but there is a nicer way to do this using
an anonymous struct.

points := []struct{ x, y int }{{4, 6}, {}, {-7, 11}, {15, 17}, {14, -8}}
for _, point := range points {
 fmt.Printf("(%d, %d) ", point.x, point.y)
}

Here, the snippet’s points variable is a slice of struct{ x, y int}s. Although the
struct itself is unnamed, we can access its data via its named fields which is
easier and safer than using array indexes.

6.4.1. Struct Aggregation and Embedding

We can embed structs in the same way as we can embed interfaces or oth-
er types, that is, by including the type name of a struct as an anonymous
field inside another struct. (Of course, if we gave the inner struct a variable
name it would be an aggregated named field rather than an embedded anony-
mous field.)

Usually an embedded field’s fields can be accessed directly using the . (dot)
selector operator without mentioning the type name, but if the containing

ptg7913109

276 Chapter 6. Object-Oriented Programming

struct hasa namedfieldwhose name is the sameas one of the embedded struct’s
fields, then we must use the embedded struct’s type name to disambiguate.

Every field name in a struct must be unique. For embedded (i.e., anonymous)
fields the uniqueness requirement is sufficiently strict to avoid ambiguity. For
example, if we have an embedded field of type Integer, we can have other fields
called, say, Integer2 or BigInteger, since they are distinctly different, but we can-
not have fields called, say, Matrix.Integer or *Integer since the last component of
these names is exactly the same as the Integer embedded field, and the unique-
ness of field names is based on their last component.

6.4.1.1. Embedding Values

Let’s start by looking at a simple example involving two structs.

type Person struct {
 Title string // Named field (aggregation)
 Forenames []string // Named field (aggregation)
 Surname string // Named field (aggregation)
}

type Author1 struct {
 Names Person // Named field (aggregation)
 Title []string // Named field (aggregation)
 YearBorn int // Named field (aggregation)
}

We have seen many similar examples in earlier chapters. Here, the Author1
struct’s fieldsare all named. This is howwe can use these structs and the output
that’s produced (using a custom Author1.String() method, not shown).

author1 := Author1{Person{"Mr", []string{"Robert", "Louis", "Balfour"},
"Stevenson"}, []string{"Kidnapped", "Treasure Island"}, 1850}

fmt.Println(author1)
author1.Names.Title = ""
author1.Names.Forenames = []string{"Oscar", "Fingal", "O'Flahertie",

"Wills"}
author1.Names.Surname = "Wilde"
author1.Title = []string{"The Picture of Dorian Gray"}
author1.YearBorn += 4
fmt.Println(author1)

Stevenson, Robert Louis Balfour, Mr (1850) "Kidnapped" "Treasure Island"
Wilde, Oscar Fingal O'Flahertie Wills (1854) "The Picture of Dorian Gray"

We begin by creating an Author1 value, populating all of its fields in order, and
printing it. Then we change the value’s fields and print it again.

ptg7913109

6.4. Structs 277

type Author2 struct {
 Person // Anonymous field (embedding)
 Title []string // Named field (aggregation)
 YearBorn int // Named field (aggregation)
}

To embed an anonymous field we use the name of the type (or interface, as we
will see later) that we want to embed, without specifying a variable name for
it. We can access such a field’s own fields directly (i.e., without specifying the
type or interface’s name), or using the type or interface’s name if we need to
disambiguate from another name in the containing struct.

The Author2 struct shown here embeds a Person struct as an anonymous field.
Thismeans that we can access the Person fields directly (except when we need to
disambiguate).

author2 := Author2{Person{"Mr", []string{"Robert", "Louis", "Balfour"},
"Stevenson"}, []string{"Kidnapped", "Treasure Island"}, 1850}

fmt.Println(author2)
author2.Title = []string{"The Picture of Dorian Gray"}
author2.Person.Title = "" // Must use the type name to disambiguate
author2.Forenames = []string{"Oscar", "Fingal", "O'Flahertie", "Wills"}
author2.Surname = "Wilde" // Same as: author2.Person.Surname = "Wilde"
author2.YearBorn += 4
fmt.Println(author2)

The code snippet showing the use of the Author1 struct is repeated here using
the Author2 struct—it produces identical output (assuming we have created an
Author2.String() method that does the same as the Author1.String() method).

By embedding Person as an anonymous field, we get almost the same effect
as if we had added the Person struct’s fields directly—but not quite, since if
we added the fields themselves we would end up with two Title fields which
wouldn’t compile.

The creation of the Author2 value is identical to when we created the Author1
value, but now we can refer directly to the Person fields (e.g., author2.Fore-
names)—except when we need to disambiguate (author2.Person.Title vs. author2.
Title).

6.4.1.2. Embedding Anonymous Values That Have Methods

If an embedded field hasmethodswe can call them on the containing struct, and
only the embedded field will be passed as the methods’ receiver.

ptg7913109

278 Chapter 6. Object-Oriented Programming

type Tasks struct {
 slice []string // Named field (aggregation)
 Count // Anonymous field (embedding)
}

func (tasks *Tasks) Add(task string) {
 tasks.slice = append(tasks.slice, task)
 tasks.Increment() // As if we had written: tasks.Count.Increment()
}

func (tasks *Tasks) Tally() int {
return int(tasks.Count)

}

We saw the custom Count type earlier (259 ➤). The Tasks struct has two fields: an
aggregated slice of stringsandan embedded Count value. As the implementation
of the Tasks.Add()method illustrates,we can access the anonymous Count value’s
methods directly.

tasks := Tasks{}
fmt.Println(tasks.IsZero(), tasks.Tally(), tasks)
tasks.Add("One")
tasks.Add("Two")
fmt.Println(tasks.IsZero(), tasks.Tally(), tasks)

true 0 {[] 0}
false 2 {[One Two] 2}

Here we have created a Tasks value, and called the Tasks.Add(), Tasks.Tally(),
and Tasks.Count.IsZero() (as Tasks.IsZero()) methods on it. Even though we
have not defined a Tasks.String() method, Go still produces sensible output
when asked to print the Tasks. (Note that we could not call the Tally() method
Count() since that would have caused a name collision with the embedded
Tasks.Count value and would not have compiled.)

It is important to remember that when an embedded field’s method is called on
a value that contains that field, it is only the embedded field that gets passed as
the method’s receiver. So when Tasks.IsZero(), Tasks.Increment(), or any other
Count method is called on a Tasks value, these methods receive a Count (or *Count
value), not the Tasks value.

In this example the Tasks type has its own methods (Add() and Tally()), and also
the embedded Count type’s methods (Increment(), Decrement(), and IsZero()). It
is, of course, possible for the Tasks type to override any or all of the Count type’s
methods simply by implementing its ownmethods of the same names. (We saw
an example of this earlier; §6.2.1.1, 261 ➤.)

ptg7913109

6.4. Structs 279

6.4.1.3. Embedding Interfaces

In addition to aggregating and embedding concrete types in structs, it is also
possible to aggregate and embed interfaces. (Naturally, the converse—aggre-
gating or embedding a struct in an interface—isn’t possible, because an inter-
face is a wholly abstract type, so such aggregating or embedding would notmake
sense.) When a struct includes an aggregated (named) or embedded (anony-
mous) field of an interface type, it means that the struct can store in that field
any value that satisfies the interface’s specification.

We will round off our coverage of structs by looking at a simple example that
shows how we might support “option” values that have short and long names
(e.g., "-o" and "--outfile"), a value of a particular type (int, float64, string),
and some common methods. (This example is designed to be illustrative rather
than elegant. For a fully functional option parser see the standard library’s
flag package, or one of the third-party option parsers from godashboard.appspot
.com/project.)

type Optioner interface {
 Name() string
 IsValid() bool
}

type OptionCommon struct {
 ShortName string "short option name"
 LongName string "long option name"
}

The Optioner interface specifies the generic methods that all our option types
must provide. The OptionCommon struct has the two fields that are common
to every option. Go allows us to annotate struct fields with strings (called
tags in Go terminology). These tags have no functional purpose, but—unlike
comments—they are accessible using Go’s reflection support (§9.4.9, ➤ 427).
Some programmers use the tags to specify field validation—for example, with
tags like "check:len(2,30)" for a string, or "check:range(0,500)" for a number,
and with whatever semantics the programmer creates.

type IntOption struct {
 OptionCommon // Anonymous field (embedding)
 Value, Min, Max int // Named fields (aggregation)
}

func (option IntOption) Name() string {
return name(option.ShortName, option.LongName)

}

func (option IntOption) IsValid() bool {

ptg7913109

280 Chapter 6. Object-Oriented Programming

return option.Min <= option.Value && option.Value <= option.Max
}

func name(shortName, longName string) string {
if longName == "" {

return shortName
 }

return longName
}

This is the complete implementation of the custom IntOption type plus the sup-
porting unexported name() function. Since the OptionCommon struct is embedded
we can access its fields directly—as we do in the IntOption.Name() method. The
IntOption satisfies the Optioner interface (since it provides the Name() and Is-
Valid() methods with the correct signatures).

Although the processing done by the name() function is very simple we have cho-
sen to use a separate function rather than implement it in the IntOption.Name()
method. Thismakes the IntOption.Name()method very short andmeans that we
can reuse the functionality in other custom options. So, for example, the Gener-
icOption.Name() and StringOption.Name() methods’ bodies are identical to the
IntOption.Name() method’s single statement body, with all three relying on the
name() function to do the actual work. This is a common pattern in Go, and we
will see it again in the chapter’s last section.

The StringOption’s implementation is very similar to the IntOption so we have
not shown it. (The differences are that its Value field is of type string and its
IsValid() method returns true if the Value is nonempty.) For the FloatOption we
have used interface embedding, just to show how it is done.

type FloatOption struct {
 Optioner // Anonymous field (interface embedding: needs concrete type)
 Value float64 // Named field (aggregation)
}

This is the complete implementation of the FloatOption. The embedded Optioner
field means that when we create FloatOption values we must assign to the
embedded field any value that satisfies the Optioner interface.

type GenericOption struct {
 OptionCommon // Anonymous field (embedding)
}

func (option GenericOption) Name() string {
return name(option.ShortName, option.LongName)

}

ptg7913109

6.4. Structs 281

func (option GenericOption) IsValid() bool {
return true

}

This is the complete implementation of the GenericOption, a type that fulfills the
Optioner interface.

The FloatOption type has an embedded field of type Optioner, so FloatOption
values require a concrete type that fulfills the Optioner interface for this field.
This need can bemet by assigning a GenericOption value to a FloatOption value’s
Optioner field.

Now that we have all the pieces in place (the IntOption, the FloatOption, etc.), let’s
see how to create and use them.

fileOption := StringOption{OptionCommon{"f", "file"}, "index.html"}
topOption := IntOption{
 OptionCommon: OptionCommon{"t", "top"},
 Max: 100,
}
sizeOption := FloatOption{
 GenericOption{OptionCommon{"s", "size"}}, 19.5}
for _, option := range []Optioner{topOption, fileOption, sizeOption} {
 fmt.Print("name=", option.Name(), " • valid=", option.IsValid())
 fmt.Print(" • value=")

switch option := option.(type) { // shadow variable
case IntOption:

 fmt.Print(option.Value, " • min=", option.Min,
" • max=", option.Max, "\n")

case StringOption:
 fmt.Println(option.Value)

case FloatOption:
 fmt.Println(option.Value)
 }
}

name=top • valid=true • value=0 • min=0 • max=100
name=file • valid=true • value=index.html
name=size • valid=true • value=19.5

The fileOption StringOption is created conventionally, with every field being as-
signed a suitable value in order. But for the topOption IntOption we only need to
assign to the OptionCommon and Max fields since the zero value is fine for the oth-
ers (i.e., for the Value and Min fields).Go allows us to create structs and initialize
only those fieldswewant to by using the syntax fieldName: fieldValue.When this
syntax isused,any fields that are not explicitly assigned to are automatically set
to their zero value.

ptg7913109

282 Chapter 6. Object-Oriented Programming

The sizeOption FloatOption’s first field is an Optioner interface, so we must
supply a concrete type that satisfies this interface. Here we have created a
GenericOption value for this purpose.

With three different options createdwe can iterate over themusing an []Option-
er, that is, a slice of values that satisfy the Optioner interface. Within the loop
the option variable holds each option (of type Optioner) in turn. We can call any
method specified by the Optioner interface on the option variable, and do so here
by calling the Option.Name() and Option.IsValid() methods.

Each option type has a Value field, but they are of different types—for example,
IntOption.Value is an int whereas StringOption.Value is a string. So, to be able
to access the type-specific Value fields (and similarly, any other type-specific
fields or methods), we must convert the given option to the correct type. This is
easily achieved using a type switch (§5.2.2.2, 197 ➤). In the snippet’s type switch
we have used a shadow variable (option) which always has the correct type for
the case that is executed (e.g., in the IntOption case, option is of type IntOption,
etc.), and so we are able to access any type-specific fields or methodswithin each
case.

6.5. Examples

Now that we know how to create custom types we are ready to look at some
more realistic and complete examples. The first example shows how to create
a simple custom value type. The second example shows how to create a set of
related interfaces and structs using embedding, and how to provide not only
type-construction functions, but also a factory function that can create values of
all the package’s exported types. The third example shows how to implement a
complete custom generic collection type.

6.5.1. Example: FuzzyBool—A Single-Valued Custom
Type

In this section we will see how to create a single-valued custom type and its
supporting methods. This example is in file fuzzy/fuzzybool/fuzzybool.go and is
based on a struct.

The built-in bool type is two-valued (true and false), but in some areas of artifi-
cial intelligence, fuzzy Booleans are used. These have values corresponding to
“true” and “false”, and also to intermediates between them. In our implemen-
tation we will use floating-point values, with 0.0 denoting false and 1.0 denot-
ing true. In this system, 0.5 means 50% true (50% false), and 0.25 means 25%
true (75% false), and so on. Here are some usage examples and the results they
produce.

ptg7913109

6.5. Examples 283

func main() {
 a, _ := fuzzybool.New(0) // Safe to ignore err value when using
 b, _ := fuzzybool.New(.25) // known valid values; must check if using
 c, _ := fuzzybool.New(.75) // variables though.
 d := c.Copy()

if err := d.Set(1); err != nil {
 fmt.Println(err)
 }
 process(a, b, c, d)
 s := []*fuzzybool.FuzzyBool{a, b, c, d}
 fmt.Println(s)
}

func process(a, b, c, d *fuzzybool.FuzzyBool) {
 fmt.Println("Original:", a, b, c, d)
 fmt.Println("Not: ", a.Not(), b.Not(), c.Not(), d.Not())
 fmt.Println("Not Not: ", a.Not().Not(), b.Not().Not(), c.Not().Not(),
 d.Not().Not())
 fmt.Print("0.And(.25)→", a.And(b), "• .25.And(.75)→", b.And(c),

"• .75.And(1)→", c.And(d), " • .25.And(.75,1)→", b.And(c, d), "\n")
 fmt.Print("0.Or(.25)→", a.Or(b), "• .25.Or(.75)→", b.Or(c),

"• .75.Or(1)→", c.Or(d), " • .25.Or(.75,1)→", b.Or(c, d), "\n")
 fmt.Println("a < c, a == c, a > c:", a.Less(c), a.Equal(c), c.Less(a))
 fmt.Println("Bool: ", a.Bool(), b.Bool(), c.Bool(), d.Bool())
 fmt.Println("Float: ", a.Float(), b.Float(), c.Float(), d.Float())
}

Original: 0% 25% 75% 100%
Not: 100% 75% 25% 0%
Not Not: 0% 25% 75% 100%
0.And(.25)→0% .25.And(.75)→25% .75.And(1)→75% 0.And(.25,.75,1)→0%
0.Or(.25)→25% .25.Or(.75)→75% .75.Or(1)→100% 0.Or(.25,.75,1)→100%
a < c, a == c, a > c: true false false
Bool: false false true true
Float: 0 0.25 0.75 1
[0% 25% 75% 100%]

The custom type is called FuzzyBool. We will start by looking at the type defini-
tion, and then the construction function. And we will finish up by looking at the
methods.

type FuzzyBool struct{ value float32 }

The FuzzyBool type is based on a struct that contains a single float32. The
value is unexported so anyone who imports the fuzzybool package must use
the construction function (which we have called New(), in accordance with Go

ptg7913109

284 Chapter 6. Object-Oriented Programming

convention), to create fuzzy Booleans. Thismeans, of course, that we can ensure
that only valid fuzzy Booleans are created.

Since the FuzzyBool type is based on a struct that contains a value whose type
is unique inside the struct, we could simplify the type to type FuzzyBool struct
{ float32 }. This would mean changing the code that accesses the value—and
which we will see in some of the following methods—from fuzzy.value to fuz-
zy.float32. We preferred to use a named variable partly because we found it
more æsthetically pleasing, and partly because if we wanted to change the un-
derlying type (to, say, float64), we would have far fewer changes to make.

Further variationsare also possible since the struct contains only a single value.
For example,we could change the type to type FuzzyBool float32 tomake it based
directly on a float32. Doing this works perfectly well, but requires slightly more
code and is a bit trickier to implement than the struct-based approach used
here. However, if we constrain ourselves to creating immutable fuzzy Booleans
(where the only difference is that instead of setting a new value with the Set()
method we would have to assign a new fuzzy Boolean), we can greatly simplify
the code by basing the type directly on a float32.

func New(value interface{}) (*FuzzyBool, error) {
 amount, err := float32ForValue(value)

return &FuzzyBool{amount}, err
}

For the convenience of fuzzy Boolean users, rather than accept only a float32 as
the initializing value we also accept float64s (Go’s default floating-point type),
ints (the default integer type), and bools. This flexibility is achieved by using
a custom float32ForValue() function which returns a float32 and nil for the
given value—or which returns 0.0 and an error if the value is not of a type it
can handle.

If we passed a value of an invalid type we have made a programming error and
want to know about it straight away. But we don’t want the application to crash
on our users. So, instead of just returning a *FuzzyBool, we also return an error.
If we pass a known valid literal to New() (as in the earlier snippet; 283 ➤), we
can safely ignore the error; but if we pass a variable, we should check the error
that is returned in case it isn’t nil.

The New() function returns a pointer to a FuzzyBool rather than a value because
we have chosen to make the fuzzy Booleans in this implementation mutable.
This means that those methods which modify a fuzzy Boolean (in this exam-
ple, just one, Set()) must take a pointer receiver, not a value.★

★ In fact, we could return a FuzzyBool value and still have a mutable type, as the book’s source code’s
fuzzy_value example illustrates.

ptg7913109

6.5. Examples 285

A reasonable rule of thumb is to create methods that take receiver values
for immutable types, and methods that take pointers for mutable types. (For
mutable types, having some methods take values and others take pointers is
perfectly possible—but can be inconvenient in practice.) It is also best to use
pointers for large struct types (e.g., those with two or more fields), to keep the
cost of passing them to a single pointer.

func float32ForValue(value interface{}) (fuzzy float32, err error) {
switch value := value.(type) { // shadow variable
case float32:

 fuzzy = value
case float64:

 fuzzy = float32(value)
case int:

 fuzzy = float32(value)
case bool:

 fuzzy = 0
if value {

 fuzzy = 1
 }

default:
return 0, fmt.Errorf("float32ForValue(): %v is not a "+

"number or Boolean", value)
 }

if fuzzy < 0 {
 fuzzy = 0
 } else if fuzzy > 1 {
 fuzzy = 1
 }

return fuzzy, nil

}

This unexported helper function is used by the New() and Set() methods to
convert a value into a float32 in the range [0.0, 1.0].Handling the different types
is easily accomplished by using a type switch (§5.2.2.2, 197 ➤).

If the function is called with a value of an invalid typewe return a non-nil error.
This gives the caller responsibility for checking the return value and responding
appropriately if an error has occurred. The caller could panic on error and cause
the application to crashwith a traceback,or it could handle the problem itself. It
is often better for low-level functions like this to return an error when they hit a
problem because they don’t know enough about the program’s logic to know how
or whether to handle it, and to push the problem up to the caller which should
be in a better position to know what to do.

ptg7913109

286 Chapter 6. Object-Oriented Programming

While we consider passing in a value of an invalid type to be a programming
error and therefore worthy of returning a non-nil error, we have chosen to treat
out-of-range values much more leniently, and simply clamp them to the nearest
valid value.

func (fuzzy *FuzzyBool) String() string {
return fmt.Sprintf("%.0f%%", 100*fuzzy.value)

}

This method satisfies the fmt.Stringer interface. This means that fuzzy
Booleans will be printed as we have specified, and that a fuzzy Boolean can be
passed wherever an fmt.Stringer value is expected.

We have chosen the string representation of fuzzy Booleans to be whole number
percentages. (Recall that the "%.0f" string format specifies a floating-point
number with no decimal point or decimal digits and the "%%" format specifies a
literal% character. String formatting was covered earlier; §3.5, 93 ➤.)

func (fuzzy *FuzzyBool) Set(value interface{}) (err error) {
 fuzzy.value, err = float32ForValue(value)

return err
}

The presence of this method is what makes our fuzzy Booleans mutable. The
method is very similar to the New() function, only here we work on an existing
*FuzzyBool rather than creating a new one. If the returned error is not nil then
the fuzzy Boolean’s value will be invalid, so we expect our callers to check the
return value.

func (fuzzy *FuzzyBool) Copy() *FuzzyBool {
return &FuzzyBool{fuzzy.value}

}

For custom types that are passed around as pointers, it is often convenient to
provide a Copy()method. Here,we simply create a new FuzzyBool, with the same
value as that of the receiver, and return a pointer to it. There is no need to do
any validation since we know that the receiver’s value is valid. This assumes,
of course, that the original value had a nil error when it was created with New(),
and similarly for any subsequent calls to the Set() method.

func (fuzzy *FuzzyBool) Not() *FuzzyBool {
return &FuzzyBool{1 - fuzzy.value}

}

This is the first of the logical operator methods, and like all the methods, it
works on a *FuzzyBool receiver.

ptg7913109

6.5. Examples 287

There are three sensible ways we could have designed this method. One way
would be to have it change the value it is called on and return nothing. Another
way is to change the value and also return the value—this is the approach taken
by many of the big.Int and big.Rat types’ methods in the standard library. This
approach means that operations can be chained (e.g., b.Not().Not()). It can also
save memory (since values are reused rather than created), but can easily catch
us off guard when we forget that the returned value is the same as the one the
method is called on—and that it has been changed. The other way is to do what
we have done here: Leave the value untouched and return a new fuzzy Boolean
whose value is the result of the logical operation. This is easy to understandand
use, and supports chaining—but at the price of creating more values. We have
taken this last approach with all the fuzzy Boolean logical operator methods.

Incidentally, the fuzzy NOT logic is simple, returning 1.0 for 0.0 and 0.0 for 1.0,
0.75 for 0.25 and 0.25 for 0.75, 0.5 for 0.5, and so on.

func (fuzzy *FuzzyBool) And(first *FuzzyBool,
 rest ...*FuzzyBool) *FuzzyBool {
 minimum := fuzzy.value
 rest = append(rest, first)

for _, other := range rest {
if minimum > other.value {

 minimum = other.value
 }
 }

return &FuzzyBool{minimum}
}

The logic for fuzzy AND is to return the minimum of the given fuzzy values. The
method’s signature guarantees that when the method is called it will be given
at least one other *FuzzyBool to work with (first), and will accept zero or more
additional ones (rest). The method simply appends the first onto the (possibly
empty) rest slice, and then iterates over the slice setting the minimum if its value
is bigger than the iteration’s current other value. And just like the Not()method,
we return a new *FuzzyBool, and leave the fuzzy Boolean the method was called
on unchanged.

The logic for fuzzy OR is to return the maximum of the given fuzzy values. We
have not shown the Or() method since it is structurally identical to the And()
method. The only differences are that the Or() method uses a maximum variable
instead of a minimum variable and compares using the < less than operator
instead of the > greater than operator.

func (fuzzy *FuzzyBool) Less(other *FuzzyBool) bool {
return fuzzy.value < other.value

}

ptg7913109

288 Chapter 6. Object-Oriented Programming

func (fuzzy *FuzzyBool) Equal(other *FuzzyBool) bool {
return fuzzy.value == other.value

}

These two methods allow us to compare fuzzy Booleans in terms of the float32s
they contain; both methods produce bool results.

func (fuzzy *FuzzyBool) Bool() bool {
return fuzzy.value >= .5

}

func (fuzzy *FuzzyBool) Float() float64 {
return float64(fuzzy.value)

}

The fuzzybool.New() construction function can be seen as a conversion function
since given a float32, float64, int, or bool, it produces a *FuzzyBool. These two
methods perform similar conversions going the other way.

The FuzzyBool type provides a complete fuzzy Boolean data type that can be
used like any other custom data type. So, *FuzzyBools may be stored in slices,
and in maps as keys or values or both. Of course, if we use *FuzzyBools as map
keys we will be able to storemultiple fuzzy Booleans even if they have the same
value because they will each have a unique address. One solution is to use a
value-based fuzzy Boolean (such as the fuzzy_value example in the book’s source
code). Alternatively, we could use a custom collection type that stored pointers
but which uses their values for comparisons: The custom omap.Map type can do
this, providing we supply a suitable less than function (§6.5.3, ➤ 302).

In addition to the fuzzy Boolean type shown in this subsection, the book’s exam-
ples also include three alternative fuzzy Boolean implementations for compar-
ison: These are not shown in the book or discussed beyond this paragraph. The
first two alternatives are in the files fuzzy_value/fuzzybool/fuzzybool.go and
fuzzy_mutable/fuzzybool/fuzzybool.go—these have exactly the same function-
ality as the version described in this subsection (in file fuzzy/fuzzybool/fuzzy-
bool.go). The fuzzy_value version works in terms of FuzzyBool values rather than
*FuzzyBools, and the fuzzy_mutable version is based directly on a float32 rather
than on a struct. The fuzzy_mutable’s code is slightly longer and trickier than
the struct-based version shown here. The third alternative provides slightly
less functionality because it provides an immutable fuzzy Boolean type. Again,
it is directly based on a float32; this version is in file fuzzy_immutable/fuzzy-
bool/fuzzybool.go. It is the simplest of the three implementations.

ptg7913109

6.5. Examples 289

6.5.2. Example: Shapes—A Family of Custom Types

When we have a set of related classes—such as shapes—upon which we might
want to apply some generic operations (e.g., asking a shape to draw itself), there
are two broad approacheswe can take to implementing them. The onemost like-
ly to be familiar to C++, Java, and Python programmers is to use a hierarchy—in
Go’s case, of embedded interfaces. However, it is oftenmore convenient and ver-
satile to create independent interfaces that can be freely composed. In this sub-
section we will show both approaches, the first in file shaper1/ shapes/shapes.go
and the second in file shaper2/shapes/shapes.go. (Note that when the packages’
types, functions, and methods are the same—which most of them are—we will
simply refer to the “shapes package”. Naturally, we will distinguish them as the
“shaper1 shapes package” or the “shaper2 shapes package” when discussing code
that is specific to one of them.)

Figure 6.3 shows an example of what the shapes package can do—in this case it
is used to create a white rectangle and to draw on it a circle and some polygons
with different numbers of sides and using various colors.

Figure 6.3 The shaper example’s shapes.png file

The shapes package provides three exported functions for working with images
and three types for creating shapes values—two of which are exported. The
hierarchical shapes1 shapes package provides three exported interfaces and the
compositional shapes2 shapes package provides five exported interfaces. We
will begin with the image-related code—the convenience functions—then we
will look at the interfaces (in two separate subsubsections), and finally, we will
review the concrete shape-related code.

6.5.2.1. Package-Level Convenience Functions

The standard library’simage packageprovides the image.Image interface.This in-
terface specifies three methods: image.Image.ColorModel() to return the image’s
color model (as a color.Model), image.Image.Bounds() to return the image’s bound-
ing box (as an image.Rectangle), and image.Image.At(x, y) which returns the col-
or.Color value for the given pixel. Notice that there is no image.Image method
for setting a pixel—even though several image types provide a Set(x, y int, fill

ptg7913109

290 Chapter 6. Object-Oriented Programming

color.Color) method. However, the image/draw package provides the draw.Image
interface which embeds the image.Image interface and also has a Set() method.
The draw.Image interface is fulfilled by the standard library’s image.Gray and im-
age.RGBA types, among others.

func FilledImage(width, height int, fill color.Color) draw.Image {
if fill == nil { // We silently treat a nil color as black

 fill = color.Black
 }
 width = saneLength(width)
 height = saneLength(height)
 img := image.NewRGBA(image.Rect(0, 0, width, height))
 draw.Draw(img, img.Bounds(), &image.Uniform{fill}, image.ZP, draw.Src)

return img
}

This is an exported convenience function that creates an image of the given size
uniformly filled with the given color.

We begin by silently replacing a nil color with black, and ensuring that both
dimensions are sensible. Then we create an image.RGBA value (an image that
defines its colors using red, green, blue, and alpha—transparency—values),and
return it as a draw.Image, since we are only concerned with what we can do with
it, not with what its actual type happens to be.

The draw.Draw() function takes a destination image (of type draw.Image), a rect-
angle that specifies where the drawing should be done (in this case the entire
destination image), a source image to copy from (in this case an infinite-sized
image filled with the given color), the point where the destination rectangle to
be drawn in should go (image.ZP is the zero point, i.e., point (0, 0)), and how the
drawing should be done. Here we have specified draw.Src so the function will
simply copy from the source onto the destination. So, the effect we achieve here
is to copy the given color to every pixel in the target image. (The draw package
also has a draw.DrawMask() function that supports some of the Porter-Duff com-
positing operations.)

var saneLength, saneRadius, saneSides func(int) int

func init() {
 saneLength = makeBoundedIntFunc(1, 4096)
 saneRadius = makeBoundedIntFunc(1, 1024)
 saneSides = makeBoundedIntFunc(3, 60)
}

Wehave defined three unexported variables to hold helper functionsall of which
take an int and return an int.Andwe have given the package an init() function
in which the variables are assigned suitable anonymous functions.

ptg7913109

6.5. Examples 291

func makeBoundedIntFunc(minimum, maximum int) func(int) int {
return func(x int) int {

 valid := x
switch {
case x < minimum:

 valid = minimum
case x > maximum:

 valid = maximum
 }

if valid != x {
 log.Printf("%s(): replaced %d with %d\n", caller(1), x, valid)
 }

return valid
 }
}

This function returns a function that given a value x, returns x if it is between
the minimum and maximum (inclusive), or returns the closest bounding value.

If x is out of range, in addition to returning a valid alternative, we also log
the problem. However, we don’t want to report the problem as existing in the
function created here (i.e., in saneLength(), saneRadius(), or saneSides()), because
the problem belongs to their caller. So, instead of logging the name of the
function created here, we log the name of the function’s caller using a custom
caller() function.

func caller(steps int) string {
 name := "?"

if pc, _, _, ok := runtime.Caller(steps + 1); ok {
 name = filepath.Base(runtime.FuncForPC(pc).Name())
 }

return name
}

The runtime.Caller() function returns informationabout the functions that have
been called and not yet returned in the current goroutine. The int argument
says how far (i.e., how many functions) back we want to look. An argument of
0 looks at the current function (i.e., this function, shapes.caller()), and an ar-
gument of 1 looks at this function’s caller, and so on. We add the 1 so as to start
from this function’s caller.

We are given four pieces of information by the runtime.Caller() function: the
program counter (which we have stored in variable pc), the filename and line
number at which the call took place (both of which we have ignored by using
blank identifiers), and a Boolean flag (which we have stored in the ok variable)
that reports on whether the information could be retrieved.

ptg7913109

292 Chapter 6. Object-Oriented Programming

If we successfully retrieve the program counter we then call the runtime.Func-
ForPC() function which returns a *runtime.Func value and on which we call the
runtime.Func.Name() method to retrieve the name of the called function. The
name is returned like a file path, for example, /home/mark/goeg/src/shaper1/
shapes.FilledRectangle for a function, or /home/mark/goeg/src/shaper1/shapes.

*shape•SetFill for a method. The path is unnecessary for a small project, so
we have stripped it off using the filepath.Base() function. We then return
the name.

For example, if we called the shapes.FilledImage() function and passed it an
out-of-range width or height such as 5000, the problem will be corrected in
the saneLength() function. In addition, since a problem occurred, a log output
will be produced, in this case saying "shapes.FilledRectangle(): replaced 5000
with 4096". This works because the saneLength() function calls caller() with
an argument of 1, to which caller() adds 1 to produce 2, so caller() goes three
functions up—itself (0), saneLength() (1), and FilledImage() (2).

func DrawShapes(img draw.Image, x, y int, shapes ...Shaper) error {
for _, shape := range shapes {

if err := shape.Draw(img, x, y); err != nil {
return err

 }
 }

return nil

}

This is another exported convenience function, and the only one to differ be-
tween the two shapes package implementations. The one shown here is from
the hierarchical shapes1 shapes package. The compositional shapes2 shapes pack-
age differs only in the function’s signature where it accepts Drawers, that is, val-
ues which satisfy the Drawer interface (i.e., have a Draw() method), rather than
Shapers which must have Draw(), Fill(), and SetFill() methods. So, in this case,
the compositional approachmeans that we use a more specific and less demand-
ing argument type (Drawer) than the hierarchical approach requires (Shaper).We
will review these interfaces in the next two subsubsections.

The body and behavior of the function is the same in both cases. The function
takes a draw.Image to draw on, a position (as an x, y coordinate), and zero or more
Shaper (or Drawer) values. Inside the loop each shape is told to draw itself on the
image at the given position. The x, y coordinates are checked in the lower-level
shape-specific Draw()methods and if they are invalid we will get a non-nil error
which we immediately return to the caller.

For Figure 6.3 (289 ➤), we used a modified version of this function that draws
each shape three times, once at the given x, y position, once offset by one pixel
to the right, and once offset one pixel down. This was done to make the lines
thicker for the screenshot.

ptg7913109

6.5. Examples 293

func SaveImage(img image.Image, filename string) error {
 file, err := os.Create(filename)

if err != nil {
return err

 }
defer file.Close()
switch strings.ToLower(filepath.Ext(filename)) {
case ".jpg", ".jpeg":

return jpeg.Encode(file, img, nil)
case ".png":

return png.Encode(file, img)
 }

return fmt.Errorf("shapes.SaveImage(): '%s' has an unrecognized "+
"suffix", filename)

}

This is the last of the exported convenience functions. Given an image that
fulfills the image.Image interface—which includes any that fulfill the draw.Image
interface since that embeds an image.Image—the function attempts to save the
image to a file with the given name. If the os.Create() call fails (e.g., due to an
empty filename or an I/O error), or if the filename has an unrecognized suffix,
or if the image encoding fails, the function will return a non-nil error.

At the time of this writing, Go’s standard library had support for reading and
writing two image file formats: .png (Portable Network Graphics) and .jpg
(Joint Photographic Experts Group). Packages that support additional image
formats are available from godashboard.appspot.com/project. The jpeg.Encode()
function has an extra parameterwhich can be used to fine-tune how the image is
saved—we have passed nil which means that the default settings will be used.

These encoders can panic—for example, if passed a nil image.Image—so if we
want to protect the program against our own mistakes we would need to put
a deferred function with a call to recover(), either in this function or farther
up the call chain (see §5.5.1, 213 ➤). We have opted not to add such protection
since the test suite (not shown) has sufficient calls of the function for there to be
confidence that such a programming error would immediately be triggered and
lead to a termination—and therefore would be almost impossible to miss.

Given the draw.Image interface we can specify image values whose individual
pixels can be set to colors of our choice. And with the DrawShapes() function
we can draw shapes (that fulfill the Shaper—or Drawer—interface) on such an
image. We can save images to disk using the SaveImage() function. With these
convenience functions in place, what we need is to create the interfaces (e.g.,
Shaper or Drawer, etc.), and the concrete types and their methods to satisfy the
interfaces.

ptg7913109

294 Chapter 6. Object-Oriented Programming

6.5.2.2. A Hierarchy of Embedded Interfaces

Programmers with a conventional inheritance-based object-oriented back-
ground are likely to use Go’s ability to embed interfaces to create a hierarchy of
interfaces. The recommended way is to use the compositional approach which
we will cover in the next subsubsection. Here are the interfaces used in the hi-
erarchical shapes1 shapes package.

type Shaper interface {
 Fill() color.Color
 SetFill(fill color.Color)
 Draw(img draw.Image, x, y int) error

}

type CircularShaper interface {
 Shaper // Fill(); SetFill(); Draw()
 Radius() int
 SetRadius(radius int)
}

type RegularPolygonalShaper interface {
 CircularShaper // Fill(); SetFill(); Draw(); Radius(); SetRadius()
 Sides() int
 SetSides(sides int)
}

We have created a hierarchy—by embedding, not inheritance—of three inter-
faces to specify the methods we want our shape values to have.

The Shaper interface defines methods to get and set a fill color of type color.
Color and a method for drawing itself onto a draw.Image at a given position. The
CircularShaper interface embeds an anonymous Shaper and adds a getter and
setter for a radius of type int. Similarly, the RegularPolygonalShaper interface
embeds an anonymous CircularShaper (and therefore also a Shaper) and adds a
getter and setter for a number of sides of type int.

Although creating hierarchies like this may be familiar—and works—it is
probably not the best way to do things in Go. This is because it locks us into a
hierarchy when we don’t need a hierarchy at all: What we really need is to just
say that this particular shape supports some relevant interfaces. This gives us
much more flexibility, as we will see in the next subsubsection.

6.5.2.3. Freely Composable Independent Interfaces

For the shapes we mostly want to say what specific things they can do (draw,
get/set a fill color, get/set a radius, etc.), with a little bit of genericity. Here are
the interfaces in the compositional shapes2 shapes package.

ptg7913109

6.5. Examples 295

type Shaper interface {
 Drawer // Draw()
 Filler // Fill(); SetFill()
}

type Drawer interface {
 Draw(img draw.Image, x, y int) error

}

type Filler interface {
 Fill() color.Color
 SetFill(fill color.Color)
}

type Radiuser interface {
 Radius() int
 SetRadius(radius int)
}

type Sideser interface {
 Sides() int
 SetSides(sides int)
}

This package’s Shaper interface is a convenient way of specifying shapes generi-
cally, that is, shapes which can be drawn and which can get/set a fill color. Each
of the other interfaces specifies one very specific behavior (counting getting and
setting as one).

Having many independent interfaces ismuchmore flexible than using a hierar-
chy. For example,wewere able to bemuchmore specific about the shapespassed
to the DrawShapes() function than was possible using a hierarchy (292 ➤). Also,
with no hierarchy to preservewe can add other interfacesmuchmore freely,and,
of course, with these more fine-grained interfaces we can compose with them
much more readily—as we did to create the Shaper interface.

The two different versions of the shapes package have completely different
interfaces (although both have a Shaper interface, its body differs between
them).Nonetheless, since interfaces and concrete types are completely separate
and independent, these differences have no effect whatsoever on the concrete
implementations that fulfill them.

6.5.2.4. Concrete Types and Methods

This is the last subsubsection covering the shapes package; it is here that wewill
review the concrete implementations that satisfy the interfaces described in the
previous two subsubsections.

ptg7913109

296 Chapter 6. Object-Oriented Programming

type shape struct{ fill color.Color }

func newShape(fill color.Color) shape {
if fill == nil { // We silently treat a nil color as black

 fill = color.Black
 }

return shape{fill}
}

func (shape shape) Fill() color.Color { return shape.fill }

func (shape *shape) SetFill(fill color.Color) {
if fill == nil { // We silently treat a nil color as black

 fill = color.Black
 }
 shape.fill = fill
}

This simple type is unexported so it is only accessible inside the shapes package.
This means that no shape value can be created outside the package.

In the hierarchical shaper1 shapes package this type does not fulfill any of the
interfaces because it does not have a Draw() method. But in the compositional
shaper2 shapes package it fulfills the Filler interface.

In the code as it stands, only the Circle type (which we will cover in a moment)
directly embedsa shape.So, in theory,we could have incorporated the color.Color
value into the Circle type and made the color getter and setter take *Circles
instead of shapes, and eliminated the shape type altogether. However, we prefer
to keep the shape type because it gives us the flexibility to add additional shape
interfaces and types that might be based directly on the shape type (i.e., to have
a color), rather than on the Circle type (e.g., because they don’t have a notion of
radius). This flexibility will come in handy in one of the exercises.

type Circle struct {
 shape
 radius int
}

func NewCircle(fill color.Color, radius int) *Circle {
return &Circle{newShape(fill), saneRadius(radius)}

}

func (circle *Circle) Radius() int {
return circle.radius

}

func (circle *Circle) SetRadius(radius int) {
 circle.radius = saneRadius(radius)

ptg7913109

6.5. Examples 297

}

func (circle *Circle) Draw(img draw.Image, x, y int) error {
// ... ~30 lines elided ...

}

func (circle *Circle) String() string {
return fmt.Sprintf("circle(fill=%v, radius=%d)", circle.fill,

 circle.radius)
}

This is the complete implementation of the Circle type. Although we can create
concrete *Circle values, we can pass them around as interfaces, which gives us
a lot of flexibility. For example, the DrawShapes() function (292 ➤) acceptsShapers
(or Drawers), no matter what their underlying concrete type is.

In the hierarchical shaper1 shapes package this type satisfies the CircularShaper
and Shaper interfaces. In the compositional shaper2 shapes package it satisfies
the Filler, Radiuser, Drawer, and Shaper interfaces. And in both cases the type
also satisfies the fmt.Stringer interface.

Since Go doesn’t have constructors and we have unexported fields, we must
provide construction functions which must be called explicitly. The Circle’s
construction function is NewCircle(); later on we will see that the package also
has a New() function that can create a value of any of the package’s shapes. The
saneRadius() helper function returns the given int if it is in a specified range or
a sensible value otherwise; we saw it created earlier (290 ➤).

The code for the Draw() method has been elided (although it is in the book’s
source code), since our concern in this chapter iswith creating custom interfaces
and types rather than with graphics.

type RegularPolygon struct {

*Circle
 sides int
}

func NewRegularPolygon(fill color.Color, radius,
 sides int) *RegularPolygon {

return &RegularPolygon{NewCircle(fill, radius), saneSides(sides)}
}

func (polygon *RegularPolygon) Sides() int {
return polygon.sides

}

func (polygon *RegularPolygon) SetSides(sides int) {
 polygon.sides = saneSides(sides)
}

ptg7913109

298 Chapter 6. Object-Oriented Programming

func (polygon *RegularPolygon) Draw(img draw.Image, x, y int) error {
// ... ~55 lines including two helper functions elided ...

}

func (polygon *RegularPolygon) String() string {
return fmt.Sprintf("polygon(fill=%v, radius=%d, sides=%d)",

 polygon.Fill(), polygon.Radius(), polygon.sides)
}

Here is the complete implementation of the RegularPolygon type used to provide
regular polygon shapes. This type is very similar to the Circle type, only it has
a more complicated Draw() method (whose body has been elided). Since the Reg-
ularPolygon embeds a *Circlewe have populated that field using the NewCircle()
function (which handles the validation). The saneSides() helper function is just
like the saneRadius() and saneLength() functions (290 ➤).

In the hierarchical shaper1 shapes package this type satisfies the RegularPolyg-
onalShaper, CircularShaper, Shaper, and fmt.Stringer interfaces. In the compo-
sitional shaper2 shapes package it satisfies the Filler, Radiuser, Sideser, Drawer,
Shaper, and fmt.Stringer interfaces.

The NewCircle() and NewRegularPolygon() functions allow us to create *Circle
and *RegularPolygon values, and since their types fulfill the Shaper and other
interfaces, we can pass them around as Shapers or as values of any of the other
interfaces that they fulfill. We can call any Shaper method on such values (i.e.,
Fill(), SetFill(), and Draw()). And if we want to call a non-Shaper method on
a Shaper value, we can do so using a type assertion or type switch to access the
value as a value of the interface whose method we want to call. We will see an
example when we look at the showShapeDetails() functions (➤ 300).

It is easy to imagine that we could create many other shape types, some
building on shape, others on Circle or RegularPolygon. Furthermore, theremay be
situations when we would like to create shapes whose shape was determined at
runtime, for example, by using a shape name. For this purpose we can create a
factory function, that is, a function which returns shape type values where the
specific type of the value returned depends upon an argument.

type Option struct {
 Fill color.Color
 Radius int
}

func New(shape string, option Option) (Shaper, error) {
 sidesForShape := map[string]int{"triangle": 3, "square": 4,

"pentagon": 5, "hexagon": 6, "heptagon": 7, "octagon": 8,
"enneagon": 9, "nonagon": 9, "decagon": 10}

if sides, found := sidesForShape[shape]; found {

ptg7913109

6.5. Examples 299

return NewRegularPolygon(option.Fill, option.Radius, sides), nil

 }
if shape != "circle" {

return nil, fmt.Errorf("shapes.New(): invalid shape '%s'", shape)
 }

return NewCircle(option.Fill, option.Radius), nil

}

This factory function requires two arguments: the name of the shape to be cre-
ated and a custom Option value in which optional shape-specific parameters can
be specified. (The use of structs to make functions capable of handling mul-
tiple optional arguments was covered in Chapter 5; §5.6.1.3, 222 ➤.) The func-
tion returns a shape that fulfills the Shaper interface and nil, or if an invalid
shape name is given, nil and an error. (Recall that the Shaper interface differs
between the two shapes packages’ implementations;§6.5.2.2,294 ➤and §6.5.2.3,
294 ➤.) The particular shape created depends on the shape string that is passed.
There is no need to validate the color or radius since that is handled by the
shapes.shape.SetFill() method and the shapes.saneRadius() function that are
ultimately called by the NewRegularPolygon() and NewCircle()methods—andsim-
ilarly for the sides.

polygon := shapes.NewRegularPolygon(color.RGBA{0, 0x7F, 0, 0xFF}, 65, 4)
showShapeDetails(polygon) ➊

y = 30
for i, radius := range []int{60, 55, 50, 45, 40} {
 polygon.SetRadius(radius)
 polygon.SetSides(i + 5)
 x += radius
 y += height / 8

if err := shapes.DrawShapes(img, x, y, polygon); err != nil {
 fmt.Println(err)
 }
}

This little snippet shows how some of the polygons shown in Figure 6.3 (289 ➤)
were created using the DrawShapes() function (292 ➤). The showShapeDetails()
function (above, ➊; ➤ 300) is used to print the details of any kind of shape.
This is possible because the function accepts any value that satisfies the Shaper
interface (i.e., any of our shapes), rather than a specific concrete shape type
(such as a *Circle or *RegularPolygon).

Since the Shaper interface differs between the two shapes packages there are
two different showShapeDetails() implementations. Here is the one for the
hierarchical shaper1 version.

ptg7913109

300 Chapter 6. Object-Oriented Programming

Embedding Is Not Inheritance i
In this subsection, the shaper example illustrates how to use struct embed-
ding to achieve an inheritance-like effect. This techniquemay appeal to those
porting C++ or Java code to Go (or to those learning Go from a C++ or Java
background).However, although this approach works:
The Go way is not to simulate inheritance,but to avoid it altogether.

In the context of the example this would mean having independent structs:

type Circle struct {
 color.Color
 Radius int
}

type RegularPolygon struct {
 color.Color
 Radius int
 Sides int
}

This still allows us to pass generic shape values—after all, if both shapes
have Draw() methods that satisfy a Drawer interface, then both Circles and
RegularPolygons can be passed as Drawer values.

Another point to note is that here we have made all the fields exported, with
no validation at all. This means that we must validate the fields when they
are used, rather than when they are set. Both approaches to validation are
sensible:Which is best depends on the circumstances.

The book’s shaper3 example uses the structs shown above and has the same
functionality as the shaper1 and shaper2 examples shown in this section.
However, shaper3 is written in a more Go-like style, with no embedding and
doing its validation at the point of use.

func showShapeDetails(shape shapes.Shaper) {
 fmt.Print("fill=", shape.Fill(), " ") // All shapes have a fill color

if shape, ok := shape.(shapes.CircularShaper); ok { // shadow variable
 fmt.Print("radius=", shape.Radius(), " ")

if shape, ok := shape.(shapes.RegularPolygonalShaper); ok {//shadow
 fmt.Print("sides=", shape.Sides(), " ")
 }
 }
 fmt.Println()
}

In the shaper1 shapes package’s interface hierarchy, the Shaper interface specifies
Fill() and SetFill() methods, so these can be used immediately. But for other
methods we must use checked type assertions to see if the shape passed in sat-
isfies the interfaces that have the methods we want to call. Here, for example,
we only access the Radius()method if the shape fulfills the CircularShaper inter-

ptg7913109

6.5. Examples 301

face, and similarly for the RegularPolygonalShaper’s Sides()method. (Recall that
RegularPolygonalShaper embeds a CircularShaper.)

The shaper2 version of the showShapeDetails() function is similar to the shaper1
version.

func showShapeDetails(shape shapes.Shaper) {
 fmt.Print("fill=", shape.Fill(), " ") // All shapes have a fill color

if shape, ok := shape.(shapes.Radiuser); ok { // shadow variable
 fmt.Print("radius=", shape.Radius(), " ")
 }

if shape, ok := shape.(shapes.Sideser); ok { // shadow variable
 fmt.Print("sides=", shape.Sides(), " ")
 }
 fmt.Println()
}

The compositional shaper2 shapes package has a convenient Shaper interface
that embeds the Drawer and Filler interfaces, so we know that the passed-in
shape has a Fill() method. And unlike shaper1’s hierarchical interfaces, here
we are able to use very specific type assertions to access the Radius() and Sides()
methods for shapes that support them.

If new methods or fields are added to shape, Circle, or RegularPolygon, our code
will continue to work unchanged. But if we add new methods to any of the
interfaces, then we would have to update the affected shape types to provide
the methods or our code would break. A better alternative is to create new
interfaceswith the additionalmethodsand embed the existing interfaces inside
them. This won’t break any existing code and gives us the option to add or not
add the newmethods to the existing types, depending on whether wewant them
to fulfill the new interfaces as well as the ones they already fulfill.

We recommendusing the compositional approach to interfaces rather than a hi-
erarchical approach. And as for struct embedding, we recommend doing things
theGoway, that is, having independent structs and not trying to simulate inher-
itance. Of course, once sufficient Go experience has been gained, such choices
can be made on the basis of technical merit rather than to ease translation or
out of habit.

In addition to the shaper1 and shaper2 examples shown in this subsection,
the book’s examples include shaper3 which shows a “purer” Go approach. The
shaper3 version has just one interface, Drawer, and independent Circle and Reg-
ularPolygon structs (as shown in the sidebar “Embedding Is Not Inheritance”,
300 ➤).Also, shaper3 uses shape values rather than pointers, and does its valida-
tion at the point of use. It is worth looking at the shaper2/shapes/shapes.go and
shaper3/shapes/shapes.go files, to compare and contrast the two approaches.

ptg7913109

302 Chapter 6. Object-Oriented Programming

6.5.3. Example: Ordered Map—A Generic Collection
Type

This chapter’s final example is of a generic ordered map type that stores key–
value pairs like Go’s built-in map type, only with all the pairs stored in key order.
The ordered map uses a left-leaning red-black tree so it is very fast, with a
lookup time complexity of O(log2 n).

★ By comparison, an unbalanced binary
tree’s performance can degrade to that of a linked list (O(n)) if items are added
in order. Balanced trees do not suffer from this defect because they maintain
the tree’s balance as items are added and removed and thereby preserve their
excellent performance characteristics.

Programmers with a background in inheritance-based object orientation (e.g.,
C++, Java, Python) are likely to want to make the ordered map’s keys support
the < less than operator or a Less(other) bool method. This can easily be done
by defining a Lesser interface that requires such a method, and providing tiny
wrapper types for int, string, MyType, and so on, that implement the method.
However, the right way to do this in Go is somewhat different.

For our Go ordered map we will impose no direct constraint on the key type.
Instead, we give each map a “less than” function to use for comparing its keys.
This means that it doesn’t matter whether our keys support the < operator
or not—so long as we can provide a suitable less than comparison function
for them.

Before looking at the implementation, let’s look at some examples of use,
starting with the creation and population of an ordered map.

words := []string{"Puttering", "About", "in", "a", "Small", "Land"}
wordForWord := omap.NewCaseFoldedKeyed()
for _, word := range words {
 wordForWord.Insert(word, strings.ToUpper(word))
}

Our ordered map is in package omap and is of type Map. To create a Map we must
use the omap.New() function, or one of the other Map construction functions, such
as the omap.NewCaseFoldedKeyed() function we have used here, since the Map’s zero
value is not usable. This particular construction function creates an empty Map
with a predefined less than function that compares string keys case-insensitive-
ly, and returns a pointer to it (i.e., a *Map).

★Our ordered map implementation is based on the left-leaning red-black trees described by Robert
Sedgewick in www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf and www.cs.princeton.edu/~rs/talks/
LLRB/RedBlack.pdf. At the time of this writing, the Java implementations presented in these papers
were incomplete and had some errors, so we used ideas from Lee Stanza’s C++ code at www.teach-
solaisgames.com/articles/balanced_left_leaning.html to complete our implementation.

www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf
www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf
www.teachsolaisgames.com/articles/balanced_left_leaning.html
www.teachsolaisgames.com/articles/balanced_left_leaning.html

ptg7913109

6.5. Examples 303

Every key–valuepair is addedusing the omap.Map.Insert()methodwhich accepts
two interface{} values, that is, a key and a value of any types. (However, the key
must be of a type that is compatible with the less than function, so in this exam-
ple keys must be strings.) The Insert() method returns true if a new item was
inserted, and false if an item with the given key already existed (in which case
that item’s value is replaced by the new given value—this is the same behavior
as the built-in map type).

wordForWord.Do(func(key, value interface{}) {
 fmt.Printf("%v→%v\n", key, value)
})

a→A
About→ABOUT
in→IN
Land→LAND
Puttering→PUTTERING
Small→SMALL

The omap.Map.Do()method takes a functionwith the signature func(interface{},
interface{}) as argument and calls this function on every item in the ordered
map—in key order—and passing in the key and value as the arguments for each
call. Here we have used the Do() method to print all of the wordForWord’s keys
and values.

In addition to inserting items and calling a method on all the map’s items, we
can also query how many items are in the map, search for items, and delete
items.

fmt.Println("length before deleting:", wordForWord.Len())
_, containsSmall := wordForWord.Find("small")
fmt.Println("contains small:", containsSmall)
for _, key := range []string{"big", "medium", "small"} {
 fmt.Printf("%t ", wordForWord.Delete(key))
}
_, containsSmall = wordForWord.Find("small")
fmt.Println("\nlength after deleting: ", wordForWord.Len())
fmt.Println("contains small:", containsSmall)

length before deleting: 6
contains small: true
false false true
length after deleting: 5
contains small: false

The omap.Map.Len() method returns the number of items in the ordered map.

ptg7913109

304 Chapter 6. Object-Oriented Programming

The omap.Map.Find() method returns the value of the item with the given key
as an interface{} and true, or nil and false if there is no such item. The omap.
Map.Delete() method deletes the item with the given key and returns true—or
safely does nothing if there is no such item, and returns false.

If we want to store keys of a custom type we can do so by creating the Map with
the omap.New() function and supplying it with a suitable less than method.

For example, here is an implementation of a very simple custom type.

type Point struct{ X, Y int }

func (point Point) String() string {
return fmt.Sprintf("(%d, %d)", point.X, point.Y)

}

Now we will see how to create an ordered map that stores *Points as keys and
their distance from the origin as values.

In the following snippet we have created an empty Map and given it a less than
function for comparing *Point keys. Then we have created a slice of *Points and
populated the map from the points. And finally, we have used the omap.Map.Do()
method to print the map’s keys and values in key order.

distanceForPoint := omap.New(func(a, b interface{}) bool {
α, β := a.(*Point), b.(*Point)
if α.X != β.X {

return α.X < β.X
 }

return α.Y < β.Y
})
points := []*Point{{3, 1}, {1, 2}, {2, 3}, {1, 3}, {3, 2}, {2, 1}, {2, 2}}
for _, point := range points {
 distance := math.Hypot(float64(point.X), float64(point.Y))
 distanceForPoint.Insert(point, distance)
}
distanceForPoint.Do(func(key, value interface{}) {
 fmt.Printf("%v → %.2v\n", key, value)
})

(1, 2) → 2.2
(1, 3) → 3.2
(2, 1) → 2.2
(2, 2) → 2.8
(2, 3) → 3.6
(3, 1) → 3.2
(3, 2) → 3.6

ptg7913109

6.5. Examples 305

Recall from Chapter 4 (155 ➤) that Go is smart enough to allow us to drop inner
type names and ampersands when creating slice literals, so here the creation
of the points slice is really a shorthand for points := []*Point{&Point{3, 1},
&Point{1, 2}, … }.

Although not shown, we can use the ordered map Delete(), Find(), and Len()
methods on the distanceForPoint map in exactly the same way as we did for
the wordForWord map, but using *Point keys for the first two (since the less than
function works in terms of *Points, not Points).

Now that we have seen the ordered map in use we will review its implementa-
tion. We won’t cover the Delete() method’s helper method and functions, be-
cause some of them are rather tricky and covering them won’t really add to our
knowledge of Go programming. (All these functions are in the book’s source
code, of course, in the file qtrac.eu/omap/omap.go.) We will start by looking at the
two types used to implement the ordered map (Map and node), and then the con-
struction functions. Then we will look at the Map’s methods and some of their
helper functions. As is common in Go programming, most methods are quite
short with more complicated processing passed on to helper functions.

type Map struct {
 root *node
 less func(interface{}, interface{}) bool
 length int
}

type node struct {
 key, value interface{}
 red bool
 left, right *node
}

The ordered map is implemented in terms of two custom struct types. The first
struct type is the Map struct which holds the root of the left-leaning red-black
tree, a less than function that is used to compare keys, and a length which holds
the number of items in the map. This type’s fields are all unexported and the
less function’s zero value is nil, so creating a Map variablewill produce an invalid
Map. The Map type’s documentation explains this and directs users to use one of
the omap package’s construction functions to create valid Maps.

The second struct type is the node struct which represents a single key–value
item. In addition to its key and value fields, the node struct has three additional
fields needed to implement the tree. The red field of type bool is used to identify
whether a node is “red” (true) or “black” (false)—this is used when portions of
the tree are rotated to maintain its balance. The left and right fields of type
*node hold pointers to a node’s left and right subtrees (which can be nil).

ptg7913109

306 Chapter 6. Object-Oriented Programming

The omap package provides several construction functions; here, we will look at
the generic omap.New() function and a couple of others.

func New(less func(interface{}, interface{}) bool) *Map {
return &Map{less: less}

}

This is the package’s generic function for creating an ordered map for any
built-in or custom type for which we can provide a suitable less than function.

func NewCaseFoldedKeyed() *Map {
return &Map{less: func(a, b interface{}) bool {

return strings.ToLower(a.(string)) < strings.ToLower(b.(string))
 }}
}

This construction function creates an empty ordered map that has string keys
which are compared case-insensitively.

func NewIntKeyed() *Map {
return &Map{less: func(a, b interface{}) bool {

return a.(int) < b.(int)
 }}
}

This construction function creates an empty ordered map that has int keys.

The omap package also has an omap.NewStringKeyed() function for creating an
ordered map with case-sensitive string keys (the implementation is almost
identical to omap.NewCaseFoldedKeyed() but without the strings.ToLower() calls),
and an omap.NewFloat64Keyed() function which is just like the omap.NewIntKeyed()
function except that it uses float64s instead of ints.

func (m *Map) Insert(key, value interface{}) (inserted bool) {
 m.root, inserted = m.insert(m.root, key, value)
 m.root.red = false

if inserted {
 m.length++
 }

return inserted
}

This method is structurally typical of many Go methods in that it passes most
of its work on to a helper, in this case the unexported insert() method. The
tree’s rootmight change as the result of an insertion, either because the treewas

ptg7913109

6.5. Examples 307

empty and now contains a single node which must become the root, or because
the insertion resulted in rotations to keep the tree balanced and which involved
the root.

The insert()method returns the tree’s root whether it changed or not, and also a
Boolean. The Boolean is true if a new item was inserted, and in this case we in-
crement themap’s length. If the Boolean is false it means that an itemwith the
given key was already in the map, so all that was done was to replace the item’s
current value with the given value, and themap’s length is left unchanged. (We
won’t explain why nodes are made red or black or why they are rotated. These
matters are fully explained in Robert Sedgewick’s papers—see the footnote;
302 ➤.)

func (m *Map) insert(root *node, key, value interface{}) (*node, bool) {
 inserted := false

if root == nil { // If the key was in the tree it would belong here
return &node{key: key, value: value, red: true}, true

 }
if isRed(root.left) && isRed(root.right) {

 colorFlip(root)
 }

if m.less(key, root.key) {
 root.left, inserted = m.insert(root.left, key, value)
 } else if m.less(root.key, key) {
 root.right, inserted = m.insert(root.right, key, value)
 } else { // The key is already in the tree so just replace its value
 root.value = value
 }

if isRed(root.right) && !isRed(root.left) {
 root = rotateLeft(root)
 }

if isRed(root.left) && isRed(root.left.left) {
 root = rotateRight(root)
 }

return root, inserted
}

This is a recursive function that traverses the tree to find the place where the
given key belongs, and rotates subtrees as necessary to maintain the tree’s
balance. When the Insert() method calls this method the root that is passed
in is the root of the entire tree (or nil if the tree is empty), but on subsequent
recursive calls the root is the root of a subtree (which could be nil).

If the new key isn’t the same as any existing key the traversal will reach the
right place to insert the new key—and this will be a nil leaf. At this point we
create and return a new *node to be the leaf and with its own leaves both nil.

ptg7913109

308 Chapter 6. Object-Oriented Programming

We don’t have to explicitly initialize the new node’s left and right fields (i.e.,
its leaves) since Go will automatically set them to their zero values (i.e., nil),
so we use the struct’s key: value syntax to initialize just those fields that have
nonzero values.

If the new key is the same as an existing key we reuse the existing key’s node,
and simply replace its value with the new value. (This is the same behavior as
the built-in map type.) A consequence of this is that every item in an orderedmap
has a unique key.

func isRed(root *node) bool { return root != nil && root.red }

This tiny helper function returns whether the given node is red; it treats nil
nodes as black.

func colorFlip(root *node) {
 root.red = !root.red

if root.left != nil {
 root.left.red = !root.left.red
 }

if root.right != nil {
 root.right.red = !root.right.red
 }
}

This helper function flips the colors of the given node and of its non-nil leaves.

func rotateLeft(root *node) *node {
 x := root.right
 root.right = x.left
 x.left = root
 x.red = root.red
 root.red = true

return x
}

func rotateRight(root *node) *node {
 x := root.left
 root.left = x.right
 x.right = root
 x.red = root.red
 root.red = true

return x
}

These functions rotate the root’s subtree to maintain the subtree’s balance.

func (m *Map) Find(key interface{}) (value interface{}, found bool) {
 root := m.root

for root != nil {
if m.less(key, root.key) {

 root = root.left
 } else if m.less(root.key, key) {
 root = root.right
 } else {

ptg7913109

6.5. Examples 309

return root.value, true

 }
 }

return nil, false

}

Since thismethod’s implementation is straightforwardand uses iteration rather
than recursion there is no need to create a helper function.

The Find() method identifies the item to find by comparing for equality the
current root’s key (as the method traverses the tree), with the given key,
using the less() function. This is done by using the logical equivalence
x = y ⇔ ¬ (x < y ∨ y < x). This is valid for ints, float64s, strings, the custom
Point type,andmany other types, but is not true for all types. It would be easy to
extend the omap.Map type to accept a separate equals function if it were needed.

Notice that we have used named return values although we never explicitly
assign to them. Of course, they are assigned to implicitly in the return state-
ments. Naming return values like this can be a useful supplement to a function
or method’s documentation. Here, for instance, it is obvious from the signature
Find(key interface{}) (value interface{}, found bool) what is being returned—it
would not be quite so obvious if the signature was Find(key interface{}) (inter-
face{}, bool).

func (m *Map) Delete(key interface{}) (deleted bool) {
if m.root != nil {

if m.root, deleted = m.remove(m.root, key); m.root != nil {
 m.root.red = false

 }
 }

if deleted {
 m.length--
 }

return deleted
}

Deleting an item from a left-leaning red-black tree is tricky, so we have passed
the work on to an unexported remove() method plus that method’s helper
functions, none of which are shown. If the ordered map is empty—or if no item
in the map has the given key—then Delete() safely does nothing and returns
false. If the tree has a single item,and that is the one deleted, then the *omap.Map
receiver’s root will be set to nil (and the tree will be empty). If a deletion takes
place we return true and decrement the map’s length.

Incidentally, the remove() method identifies the item to be deleted using the
same equality equivalence as the Find() method uses.

ptg7913109

310 Chapter 6. Object-Oriented Programming

func (m *Map) Do(function func(interface{}, interface{})) {
 do(m.root, function)
}

func do(root *node, function func(interface{}, interface{})) {
if root != nil {

 do(root.left, function)
 function(root.key, root.value)
 do(root.right, function)
 }
}

The Do() method and its do() helper function are used to traverse all the items
in the ordered map—in key order—and call the given function for each item,
passing in the item’s key and value each time.

func (m *Map) Len() int {
return m.length

}

This method simply returns the map’s length. The length is incremented and
decremented in the omap.Map.Insert() and omap.Map.Delete() methods we have
already seen.

This completes our review of the orderedmap custom collection type, and brings
us to the end of our coverage of object-oriented Go programming.

When it comes to custom types for which any value is valid we can simply create
the type (e.g., using a struct) and make the type and its fields exported (starting
with uppercase letters), and that is sufficient. (For examples, see the standard
library’s image.Point and image.Rectangle types.)

For custom types that require validation (e.g., those that are based on structs
with one or more fields and which require at least one of the fields to be validat-
ed), Go has a particular programming idiom. The fields that must be validated
are made unexported (start with a lowercase letter) and we provide getter and
setter accessor methods for them.

In the case of types whose zero values are invalid, we make the relevant fields
unexported and provide accessor methods. We also document the fact that the
zero value is invalid, and provide an exported construction function (typically
called New()). The construction function normally returns a pointer to a value of
the type with all the fields set to valid values.

We can pass values and pointers to values with exported—and unexported—
fields, and in the case of types which satisfy one or more interfaces, we can, of
course, pass them as interfaces when this is useful, that is, when we care only
about how they behave, not what they are.

ptg7913109

6.5. Examples 311

Clearly thoseprogrammerscoming fromamore inheritance-based object-orient-
ed background (such as C++, Java, or Python) will need to adapt their thinking.
However, the power and convenience of Go’s duck typing and interfaces, and
the lack of painful-to-maintain inheritance hierarchies,make the investment in
learning well worthwhile. Go’s approach to object-oriented programming works
extremely well, providing it is done in the spirit of the Go way.

6.6. Exercises
There are three exercises for this chapter. The first involves the creation of a
small but complete custom type whose fields must be validated. The second
involves adding new functionality to one of the custom types we discussed in
this chapter. The third requires the creation of a small custom collection type.
The first two exercises are not difficult; however, the third exercise is quite chal-
lenging.

1. Create a new package called font (e.g., in my_font/font.go). The purpose of
the package is to provide values that represent font properties (e.g., a font’s
family and size). There should be a New() function that takes a family and
size (both of which must be validated) and returns a *Font (with valid un-
exported fields).Also provide getters and validating setters. For validation,
don’t allow empty family namesand only allow font sizes between 5and 144
points inclusive: If invalid values are given set valid values (or the previous
values for setters), and log the problem. Be sure to provide a method that
satisfies the fmt.Stringer interface.

Here is an example of how to create,manipulate, and print a font using the
package.

titleFont := font.New("serif", 11)
titleFont.SetFamily("Helvetica")
titleFont.SetSize(20)
fmt.Println(titleFont)

{font-family: "Helvetica"; font-size: 20pt;}

Once the package is ready, copy the example’s font/font_test.go file into the
my_font directory and run go test to do some very basic testing.

A solution is given in font/font.go. The entire package is around 50 lines of
code. Incidentally, we chose to make the String() method return the font’s
details in CSS (Cascading Style Sheet) style. It would be straightforward, if
a little tedious, to extend this package to handle all the CSS font attributes,
such as weight, style, and variant.

2. Copy an entire shaper example (the hierarchical shaper1, the compositional
shaper2, or the Go-style shaper3, whichever you prefer—although we recom-

ptg7913109

312 Chapter 6. Object-Oriented Programming

mend shaper2 or shaper3—including its subdirectory) into a new directory,
say, my_shaper. Edit the my_shaper/shaper[123].go file: Delete the imports
except for image and shapes, and delete all the statements inside the main()
function. Edit the my_shaper/shapes/shapes.go file to add support for a new
shape called Rectangle. This shape should have a point of origin and a width
and height (all of which the image.Rectangle type provides), a fill color, and a
Boolean indicating whether the shape should be filled. Add the Rectangle in
the same style as the other shapes, that is, with unexported fields and with
an interface (e.g., a hierarchical RectangularShaper or a compositional Rect-
angler and Filleder), or with no interface and exported fields (in Go style),
to specify the type’s API. The Draw() method isn’t difficult, especially if you
use the unexported drawLine() function that is inside the shapes package,
and the draw.Draw() function. Remember also to update the New() function
so that it can create rectangles—and extend the Option type accordingly.

Once the rectangle has been added, fill in the my_shaper/shaper[123].go file’s
main() function to create and save an image like that shown in Figure 6.4.

Figure 6.4 An image created using the Rectangle type

Three solutions are given; a hierarchical one in the shaper_ans1 directory,
a compositional one in the shaper_ans2 directory, and a Go-style one in the
shaper_ans3 directory. Here is the RectangularShaper interface used in the
shaper_ans1 solution:

type RectangularShaper interface {
 Shaper // Fill(); SetFill(); Draw()
 Rect() image.Rectangle
 SetRect(image.Rectangle)
 Filled() bool
 SetFilled(bool)
}

For the shaper_ans2 solution we have the Rectangler and Filleder inter-
faces:

ptg7913109

6.6. Exercises 313

type Rectangler interface {
 Rect() image.Rectangle
 SetRect(image.Rectangle)
}

type Filleder interface {
 Filled() bool
 SetFilled(bool)
}

No new interface is needed for the Go-style version.

The code for the concrete Rectangle type itself is the same for the hierarchi-
cal and compositional approaches and features unexported fields with get-
ters and setters. But for the Go-style version, use exported fields and only
validate at the point of use.

type Rectangle struct {
 color.Color
 image.Rectangle
 Filled bool
}

In shaper_ans1/shapes/shapes.go, the Rectangle type and its supporting
methods are less than 50 lines. The Option type needs a couple more lines
and the New() function five more lines. In shaper_ans1/shaper1.go, the new
main() function is less than 20 lines. It is very similar for the shaper_ans2
solution’s Go files. The shaper_ans3 solution requires the least extra code.

More ambitious readersmight like to take the example further by providing
separate fill and outline colors with a nil color signifying that the fill or
outline should not be drawn, and a non-nil color being the color to fill or
outline with.

3. Create a custom collection type in package my_oslice called Slice. This type
must implement an ordered slice. Provide several construction functions,
for example, New(func(interface{}, interface{}) bool), which accepts a less
than function, and some others with predefined less than functions such as
NewStringSlice() and NewIntSlice().The *oslice.Slice type should provide a
Clear()method to empty the slice, an Add(interface{})method for inserting
an item into the correct place in the slice, a Remove(interface{}) boolmethod
for removing the first occurrence of the specified item and which reports
if the item was removed, an Index(interface{}) int method to return the
index position of the first occurrence of the specified item (or -1), an At(int)
interface{} method to return the item at the given index position (and
which panics if the index is out of range), and a Len() int method which
reports how many items are in the slice.

ptg7913109

314 Chapter 6. Object-Oriented Programming

func bisectLeft(slice []interface{},
 less func(interface{}, interface{}) bool, x interface{}) int {
 left, right := 0, len(slice)

for left < right {
 middle := int((left + right) / 2)

if less(slice[middle], x) {
 left = middle + 1
 } else {
 right = middle
 }
 }

return left
}

The bisectLeft() function is used in the solution and might prove useful.
If it returns len(slice), the item isn’t in the slice and belongs at the end.
Any other value means either that the item is in the slice at the returned
position, or that it isn’t in the slice but belongs at the returned position.

Some readers might like to copy the oslice/oslice_test.go file to the
my_oslice directory to test their solution. A solution is given in oslice/
oslice.go and is less than 100 lines. The Add() method is quite tricky, but
the code fromChapter 4’s InsertStringSlice() function (158 ➤) should prove
helpful.

ptg7913109

7 Concurrent
Programming

§7.1. Key Concepts ➤ 317

§7.2. Examples ➤ 322

§7.2.1. Example: Filter ➤ 322

§7.2.2. Example: Concurrent Grep ➤ 326

§7.2.3. Example: Thread-Safe Map ➤ 334

§7.2.4. Example: Apache Report ➤ 341

§7.2.5. Example: Find Duplicates ➤ 349

Concurrent programming allows developers to implement parallel algorithms
and to write programs that take advantage of multiple processors and multiple
cores. The downside is that in most mainstream programming languages (such
as C, C++, and Java) it is much harder to write,maintain, and debug concurrent
programs than single-threaded programs. Furthermore, it isn’t always possible
to split up processing to make using multiple threads worthwhile. And in
any case, the hoped-for performance benefits are not always achieved due to
the overhead of threading itself, or simply because it is much easier to make
mistakes in threaded programs.

One solution is to avoid threading altogether. For example,we can pass the bur-
dens on to the operating system by using multiprocessing. However, this has
the disadvantages that it leaves us responsible for handling all the inter-process
communication ourselves, and usually hasmore overhead than shared-memory
concurrency.

The Go solution is threefold. First, Go provides high-level support for concur-
rent programming that makes it much easier to do correctly; second, concurrent
processing is done in goroutines that are much more lightweight than threads;
and third, automatic garbage collection relieves programmers of the sometimes
fiendishly complex memory management required by concurrent programs.

Go’s built-in high-level API for writing concurrent programs is based on CSP
(Communicating Sequential Processes). This means that explicit locking—and
all the care required to lock and unlock at the right times—can be avoided,with
synchronization achieved by sending and receiving data via thread-safe chan-
nels. This greatly simplifies the writing of concurrent programs. And whereas

315

ptg7913109

316 Chapter 7. Concurrent Programming

dozens or scores of threads could overburden a typical desktop computer, the
same machine could happily cope with hundreds, thousands, or even tens of
thousands of goroutines. Go’s approachmakes it easier for programmers to rea-
son about their concurrent programs in terms of what they want the programs
to achieve rather than in terms of locking and other low-level details.

While most other languages have support for very low-level concurrent opera-
tions (atomic adds and compare and swaps), and some low-level facilities such
as mutexes, no other mainstream language has the kind of built-in high-level
concurrency support that Go offers (except, perhaps, as add-on libraries that are
not an integral part of the language).

In addition to the high-level concurrency support that is the subject of this chap-
ter,Go also provides the same low-level functionality as other languagesprovide.
At the lowest level the standard library’s sync/atomic package provides functions
for performing atomic additions and compare and swap operations. These ad-
vanced functionsaredesigned to support the implementationof thread-safe syn-
chronization algorithms and data structures—they are not intended for use by
applicationprogrammers. Go’s sync packageprovides the conventional low-level
concurrency primitives:wait conditions andmutexes. These are as high-level as
it gets in most other languages, so application programmers are often forced to
use them.

Go application programmers are expected to use Go’s high-level facilities—
channels and goroutines—for concurrent programming. In addition, the sync.
Once type can be used to call a function once only, no matter howmany times the
call is made, and the sync.WaitGroup type provides a high-level synchronization
mechanism, as we will see later.

We have already covered the basic syntax and usage of channels and goroutines
in Chapter 5 (§5.4, 205 ➤). None of that material is repeated here, although
knowledge of it is assumed, so it might be helpful to reread or at least skim that
section before continuing.

This chapter beginswith an overview of somekey concepts inGo concurrent pro-
gramming. Then the chapter presents five complete working programs that il-
lustrate Go concurrent programming and which between them show some stan-
dard patterns of use. The first example shows how to create a pipeline where
each section of the pipe executes in its own goroutine to maximize throughput.
The second example shows how to split work over a fixed number of goroutines
that output their results independently of each other. The third example shows
how to create a thread-safe data structure—without a lock or low-level primitive
in sight. The fourth example shows how to perform independent pieces of work
in a fixed number of goroutines and whose results must be merged together,
with three different approaches shown. The fifth example shows how to create
a processing-dependent number of goroutines and how to merge the work from
these goroutines into a single set of results.

ptg7913109

7.1. Key Concepts 317

7.1. Key Concepts

In concurrent programming we typically want to split up the processing that
needs doing over one or more goroutines (in addition to the main orchestrating
goroutine), and either output results as soon as they are computed or gather the
results for outputting at the end.

Even with Go’s high-level approach to concurrency there are pitfalls that we
must avoid. One such pitfall is when the program finishes almost immediately
but produces no results. Go programs automatically terminate when the main
goroutine terminates—even if other goroutines are processing at the time—so
wemust be careful to keep themain goroutine alive long enough for all thework
to be done.

Another pitfall wemust avoid is deadlock. One formof this problem is essential-
ly the opposite of the first pitfall: The main goroutine and all the processing go-
routines are alive even though all the work has been done. This is typically due
to a failure to report the completion of processing. Another cause of deadlock is
when two different goroutines (or threads) are using locks to protect resources
and try to acquire the same locks at the same time, as illustrated in Figure 7.1.
This kind of deadlock can only occur when locking is used, so is a common risk
in other languages but quite rare in Go, since Go applications can avoid the use
of locks by using channels.

Thread #1 Thread #2

A B

Figure 7.1 Deadlock: two or more blocked threads trying to acquire each other’s locks

The most common way to avoid premature termination and nontermination is
to make the main goroutine wait for a “done” channel to report that the work is
finished (aswewill see in amoment,and also in §7.2.2,➤ 326 and §7.2.4,➤ 341).
(It is also possible to use a sentinel value sent as the last “result”, but this is
rather clumsy compared to the other approaches.)

Another way to avoid the pitfalls is to wait for all the processing goroutines to
report that they are finished using a sync.WaitGroup.However,using a sync.Wait-
Group itself can cause a deadlock, particularly if the sync.WaitGroup.Wait() call
occurs in themain goroutinewhenall theprocessing goroutinesare blocked (e.g.,
waiting to receive on a channel). We will see how to use a sync.WaitGroup later
(§7.2.5, ➤ 349).

It is still possible to get deadlocks in Go, even if we use only channels, and don’t
use locks. For example, suppose we have a set of goroutines that can ask each

ptg7913109

318 Chapter 7. Concurrent Programming

other to execute functions (e.g., by sending requests to each other).Now if one of
the requested functionsdoes a send to the goroutine inwhich it is executing—for
example, to pass it some data—we will get a deadlock. This is illustrated in
Figure 7.2. (Later on we will see an example where this kind of deadlock is
possible; ➤ 337 and ➤ 340.)

goroutine

function()

Response #1

Request #1
Request #2

Cannot respond until
request #1 is serviced,
but request #1 cannot
respond until request #2
is serviced—deadlock!

Figure 7.2 Deadlock: a goroutine that tries to service a request with a request to itself

Channels provide a lock-free means of communication between concurrently
running goroutines. (Under the hood locksmay be used, but these are an imple-
mentation detail that we don’t have to concern ourselveswith.) When a channel
communication takes place, at the moment of communication the sending and
receiving channels (and their respective goroutines) are synchronized.

By default channels are bidirectional, that is, we can send values into them and
we can receive values from them. However, it is quite common for a channel that
is a field in a struct or a channel that is passed as a parameter to be used unidi-
rectionally, that is, only to be sent to, or only to be received from. In such cases
we can express the semantics (and force the compiler to check for us) by speci-
fying the channel’s direction. For example, the type chan<- Type is a send-only
channel and the type <-chan Type is a receive-only channel. Wehavenot used this
syntax in earlier chapters, because it is never required—we can always use chan
Type instead—and there was plenty of other material to learn. But from now on
we will use unidirectional channels wherever they are appropriate, since they
provide additional compile-time checking and are best practice.

Sending values such as bools,ints,and float64s through channels is intrinsically
safe since these are copied, so there is no risk of inadvertent concurrent access
to the same value. Similarly, sending strings is safe since they are immutable.

Sending pointers or references (e.g., slices or maps) through channels is not in-
trinsically safe since the pointed-to or referred-to value could be changed by
the sending goroutine and by the receiving goroutine at the same time—with
unpredictable results. So, when it comes to pointers and references, we must
make sure that they can only ever be accessed by one goroutine at any one time,
that is, accesses must be serialized. The exception is where the documentation
specifically says it is safe to pass a pointer—for example, the same *regexp.Reg-
exp can safely be used in as many goroutines as we like, because none of the
methods called on the pointed-to value change the value’s state.

ptg7913109

7.1. Key Concepts 319

One way to serialize accesses is to use mutexes. Another way is to apply a poli-
cy that a pointer or reference is only ever sent once, and once sent the sender
never accesses it again. This leaves the receiver free to access the pointed-to or
referred-to value—and to send on the pointer or reference providing both sender
and receiver follow the same policy. (Wewill see an example of using this policy-
based approach later; §7.2.4.3,➤ 347.) A downside of policy-based approaches is
that they require discipline. A third way to work safely with pointers or refer-
ences is to provide themwith exportedmethods that cannot change the pointed-
to or referred-to value and unexportedmethods that can perform changes. Such
pointers or references could then be passed around and accessed concurrently
through their exported methods, with only one goroutine allowed to use their
unexported methods (e.g., inside their own package; packages are covered in
Chapter 9).

It is also possible to send interface values—that is, values thatmeet a particular
interface—through channels. Values of read-only interfaces can safely be used
in any number of goroutines (unless the documentation says otherwise), but
values of interfaces that include methods for changing a value’s state must be
treated in the same way as pointers, with accesses to them serialized.

For instance, if we create a new imageusing the image.NewRGBA() functionwewill
get an *image.RGBA. This type fulfills both the image.Image interface (which has
only gettermethods,and so is read-only) and the draw.Image interface (which has
all the image.Image methods plus a Set() method). So, it is safe to pass the same
*image.RGBA value to asmany goroutinesaswe like—providingwe pass it to func-
tions that accept an image.Image. (Unfortunately, the safety could be subverted
by the receiving method using a type assertion to, say, a draw.Image interface, so
it is wise to have a policy that disallows such things.) And if we want to use the
same *image.RGBA value in multiple goroutines that might change it, we should
either send it as an *image.RGBA or as a draw.Image, and in either case we must
ensure that all accesses to it are serialized.

One of the simplest ways to use concurrency is to use one goroutine to prepare
jobs to do and another goroutine to do the jobs, leaving the main goroutine and
some channels to orchestrate everything. For example, here is how we might
create a “jobs” channel and a “done” channel in the main goroutine.

jobs := make(chan Job)
done := make(chan bool, len(jobList))

Here we have created an unbuffered jobs channel to pass values of some
custom Job type. We have also created a buffered done channel whose buffer
size corresponds to the number of jobs to be done based on the jobs available in
variable jobList of type []Job (whose initialization isn’t shown).

With the channels and job list set up, we can begin.

ptg7913109

320 Chapter 7. Concurrent Programming

go func() {
for _, job := range jobList {

 jobs <- job // Blocks waiting for a receive
 }

close(jobs)
}()

This snippet creates the first additional goroutine. It iterates over the jobList
slice and sends each job to the jobs channel. Because the channel is unbuffered
the goroutine is immediately blocked and will remain blocked until another
goroutine tries to receive from the jobs channel. Once all the jobs have been sent
to the jobs channel the channel is closed so that receivers will know when there
are no more jobs to do.

The semantics of this snippet are not entirely obvious! The for loop runs to
completion and then closes the jobs channel—but this takes place concurrently
with any other goroutines in the program. Furthermore, the go statement will
return immediately, leaving the code to be executed in its own goroutine—and,
of course, with no one trying to receive jobs at this time, the goroutine blocks.
So, right after this go statement, the program has two goroutines, the main go-
routinewhich continues to the next statement,and this newly created goroutine
that is blocked waiting for another goroutine to do a receive on the jobs channel.
Hence, it will take some time before the for loop completes and the channel is
closed.

go func() {
for job := range jobs { // Blocks waiting for a send

 fmt.Println(job) // Do one job
 done <- true

 }
}()

This snippet creates the second additional goroutine. This goroutine iterates
over the jobs channel, and for each job it receives, it processes the job (here, just
prints it), and sends true on the done channel for every job that it completes.
(We could just as well send false, since we only care about how many sends are
performed on the done channel, not about the actual values sent.)

Just like the first go statement, this statement returns immediately, and the for
statement blocks waiting for a send. So, at this point, three concurrent gorou-
tines are executing—the main goroutine and the two additional goroutines, as
Figure 7.3 illustrates.

Since we have already got a send waiting (in goroutine #1), that job is received
straight away (by goroutine #2) and processed. Meanwhile goroutine #1 is again
blocked, this time waiting to send its second job. Once goroutine #2 has finished

ptg7913109

7.1. Key Concepts 321

Main goroutine
(wait until done)

Goroutine #1
(send jobs)

Goroutine #2
(receive jobs)

jobs channel
done
channel

Results

Figure 7.3 Concurrent independent preparation and processing

processing it sends to the done channel—this channel is buffered and so doesn’t
block sends. Control then returns to goroutine #2’s for loop and the next job is
sent from goroutine #1 and received by goroutine #2, and so on, until all the jobs
are done.

for i := 0; i < len(jobList); i++ {
 <-done // Blocks waiting for a receive
}

This final snippet begins execution immediately after the two additional gorou-
tines have been created and begun executing. This code is in themain goroutine
and its purpose is to ensure that the main goroutine does not terminate until all
the jobs are done.

The for loop iterates as many times as there are jobs, but at each iteration, a
receive is done on the done channel (with the result thrown away) to ensure that
each iteration is synchronized with the completion of a job. If there is nothing
to receive (i.e., because a job is being done but hasn’t finished), the receive will
block. Once all the jobs are finished the number of sends to and receives from
the done channel will equal the number of iterations and the for loop will finally
complete. At this point the main goroutine can finish, thus terminating the
program, and we can be sure that all the processing has been completed.

Two rules of thumb should normally be applied to channels. First, we need only
close a channel if we will be checking that it is closed later on (e.g., using a for
… range loop, a select, or a checked receive using the <- operator). Second, a
channel should be closed by the sending goroutine, not by a receiving goroutine.
It is perfectly sensible not to close channels that are never checked for being
closed—channels are very lightweight, so they don’t tie up resources in the same
way as, say, an open file.

In this example, the jobs channel is iterated over using a for … range loop, so we
close it—and do this inside the sending goroutine—in accordancewith our rules
of thumb. On the other hand, we did not bother to close the done channel, since
no statement depends on it being closed later on.

This example illustrates a common pattern in Go concurrent programming,
although in this particular case using concurrency isn’t really a win. Some

ptg7913109

322 Chapter 7. Concurrent Programming

of the examples that follow in the next section use patterns similar to the one
shown here—and also make good use of concurrency.

7.2. Examples

Although Go uses relatively little syntax to provide goroutines and channels
(<-, chan, go, select), this is sufficient to implement concurrency in a rich variety
of ways. In fact, so many different approaches are possible that is not practical
to set forth every possible variation in this chapter. So, instead, we will look at
three patterns that are commonly used for concurrent programs—a pipeline,
multiple independent concurrent jobs (with and without synchronized results),
and multiple inter-dependent concurrent jobs—and see particular ways that
these can be realized using Go’s concurrency support.

Between them, the examples shown here and the exercises at the end should
provide sufficient insight into and practice of concurrent Go programming, that
both these and other approaches can be used confidently in new programs.

7.2.1. Example: Filter

This first example is designed to show a particular concurrent programming
pattern. The program could easily be adapted to do other work that would
benefit from the program’s approach to concurrency.

Those with a Unix background may have noticed that Go’s channels are rem-
iniscent of Unix pipes (except that channels are bidirectional whereas pipes
are unidirectional). Such pipes can be used to create pipelines where one pro-
gram’s output is fed to another program as input, whose output in turn is fed
to a third program, and so on. For example, we can get a list of all the Go files
in Go’s source tree (excluding test files) using the Unix pipeline command find
$GOROOT/src -name "*.go" | grep -v test.go. One of the beauties of this approach
is that it is easy to extend. For example, we could add | xargs wc -l to get each
file listed with a count of the number of lines it contains (plus a total at the end),
and add | sort -n to get the files listed in line count order (fewest to most).

Real Unix-style pipelines can be created using the standard library’s io.Pipe()
function. For example, the Go standard library uses this function to compare
images (see file go/src/pkg/image/png/reader_test.go).

In addition to using io.Pipe() to create Unix-style pipelines it is also possible
to create pipelines using channels, and it is this latter technique that we will
review here.

The filter example program (in file filter/filter.go), accepts some command-
line arguments (e.g., to specifyminimumandmaximumfile sizes and acceptable
file suffixes) and a list of files, and outputs those files from the list which match

ptg7913109

7.2. Examples 323

the command-line-given criteria. Here is the body of the program’s two-line
main() function.

minSize, maxSize, suffixes, files := handleCommandLine()
sink(filterSize(minSize, maxSize, filterSuffixes(suffixes, source(files))))

The handleCommandLine() function (not shown) uses the standard library’s flag
package to process command-line arguments. The pipeline works from the
innermost function call (source(files)) to the outermost (sink()). Here is the
same pipeline laid out in an easy-to-understand way.

channel1 := source(files)
channel2 := filterSuffixes(suffixes, channel1)
channel3 := filterSize(minSize, maxSize, channel2)
sink(channel3)

The source() function takes a slice of filenames and returns a channel of type
chan string that is assigned to the channel1 variable. The source() function sends
each filename in turn to the channel. The two filter functions each take filter
criteria and a chan string, and each return their own chan string. In this example,
the first filter’s returned channel is assigned to channel2 and the second to
channel3. The filters iterate over the items in the channel they receive and send
each item that matches their criteria to the channel they have returned. The
sink() function takes a channel and iterates over its items, printing each one.

Main goroutine
sink()

Goroutine #1
source()

Goroutine #2
filterSuffixes()

Goroutine #3
filterSize()

Channel #3C

Ch
an

ne
l #

1

C

Ch
an

ne
l #

2

Results

Figure 7.4 A pipeline of concurrent goroutines

Figure 7.4 provides a schematic illustration of what is happening. In the case of
the filter program the sink() function executes in the main goroutine and each
pipeline function (e.g., source(), filterSuffixes(), and filterSize()) executes
in its own goroutine. This means that each call to a pipeline function returns
straight away and execution quickly reaches the sink() function. At this point
all the goroutines are executing concurrently, either waiting to send or waiting
to receive until all the files have been processed.

func source(files []string) <-chan string {
 out := make(chan string, 1000)

go func() {
for _, filename := range files {

ptg7913109

324 Chapter 7. Concurrent Programming

 out <- filename
 }

close(out)
 }()

return out
}

This function createsa channel for passing filenames. It usesa buffered channel
since in tests this improved throughput. (As is often the case we have traded
memory for speed.)

Once the output channel has been created we create a goroutine which iterates
over the files and sends each one to the channel. When all the files have been
sent we close the channel. As usual, the go statement returns immediately,
so there may be quite a long gap in time between sending the first item and
sending the last item and closing the channel. The send to the channel does not
block (at least, not for the first 1000 files—or for however many files there are if
fewer than a 1000)—but does block if there are more to send, at least until one
or more are received from the channel.

As we noted earlier, by default channels are bidirectional, but we can constrain
a channel to be unidirectional. Recall from the previous section that the type
chan<- Type is a send-only channel and the type <-chan Type is a receive-only
channel. At the end of the function the bidirectional out channel is returned as
a unidirectional receive-only channel so that filenames can be received from it.
We could, of course, have returned it as a bidirectional channel, but this way we
have better expressed our intentions.

After executing the go statement to start the anonymous function processing
in its own goroutine, the function immediately returns the channel that the
goroutine’s function sends filenames to. So, once the source() function has
been called, there are two goroutines executing—the main goroutine and the
additional one created in the function.

func filterSuffixes(suffixes []string, in <-chan string) <-chan string {
 out := make(chan string, cap(in))

go func() {
for filename := range in {

if len(suffixes) == 0 {
 out <- filename

continue

 }
 ext := strings.ToLower(filepath.Ext(filename))

for _, suffix := range suffixes {
if ext == suffix {

 out <- filename

ptg7913109

7.2. Examples 325

break

 }
 }
 }

close(out)
 }()

return out
}

This is the first of the two filter functions and the only one shown since the
filterSize() function is structurally almost the same.

The in channel parameter can be a receive-only channel or a bidirectional chan-
nel, but in either case,within the filterSuffixes() function the type declaration
ensures that it may only be received from. (And as we know from the source()
function’s return value, the in channel is, in fact, a receive only channel.) Cor-
respondingly, we have returned the bidirectional out channel as a receive-only
channel, just as we did for the source() function. In both cases, we could leave
out the <-s and the function would work just the same. However, by including
directions we have precisely expressed the semantics we want the function to
have—and ensured that the compiler enforces them.

The filterSuffixes() function begins by creating an output channel with a
buffer size that is the same size as the incoming channel, so as to maximize
throughput. The function then creates a goroutine to do its processing. Inside
the goroutine the in channel is iterated over (i.e., each filename is received in
turn). If no suffixes have been specified then any suffix is acceptable in which
case each filename received is simply sent to the output channel. If there are
acceptable suffixes and the filename’s lowercased suffix matches any of them,
it is sent to the output channel; otherwise it is discarded. (The filepath.Ext()
function returns a filename’s extension—that is, its suffix—including the lead-
ing period; or an empty string for names that have no extension.)

Just like the source() function, once all the processing is finished the output
channel is closed—although itmay take some time to reach this point. And after
the goroutine has been created the output channel is returned so that the next
function in the pipeline can receive filenames from it.

At this point three goroutines are running; the main goroutine, the source()
function’s goroutine, and this function’s goroutine. And after the call to filter-
Size() there will be a fourth goroutine, with all of them working concurrently.

func sink(in <-chan string) {
for filename := range in {

 fmt.Println(filename)
 }
}

ptg7913109

326 Chapter 7. Concurrent Programming

The source() function and the two filter functions do their processing in their
own concurrent goroutines, communicating via channels. The sink() function
operates in the main goroutine on the last channel that is returned by the other
functions, iterating over the filenames that have successfully passed through
the filters (if any) and outputting them.

The sink() function’s range statement iterates over the receive-only in channel,
printing filenames or being blocked until the channel is closed, thus ensuring
that the main goroutine does not terminate until all the processing in the other
goroutines is done.

Naturally, we could add additional functions to the pipeline, either to filter out
filenames or to process the files that had got through the filtering so far, so long
as each new function accepted an input channel (the previous function’s output
channel) and returned its own output channel. And, of course, we could base
the channels on a struct rather than a simple string, if we wanted to passmore
sophisticated values through the pipeline.

While the pipeline shown in this subsection is a good illustration of a pipeline
framework, the particular processing done at each stage is really too little to
benefit from the pipeline approach. The kind of pipeline thatwould benefit from
concurrency is onewhere each stage of the pipeline potentially had a lot of work
to do, perhaps with the amount depending on the item being processed, so that
as much of the time as possible, every goroutine was busy.

7.2.2. Example: Concurrent Grep

One common concurrent programming pattern is where we have multiple jobs
to do, each of which can run to completion independently of the others. For
example, the Go standard library’s net/http package’s HTTP server follows
this pattern, with each request being served concurrently in its own goroutine
and with no communication between the goroutines. In this subsection we will
illustrate one approach to implementing this pattern using variants of a cgrep
“concurrent grep” program as an example.

Unlike the standard library’s HTTP server, the cgrep examples spread their
processing over a fixed number of goroutines, rather than creating them ad
hoc. (Wewill see an example that creates a variable number of goroutines later;
§7.2.5, ➤ 349.)

The cgrep programs take a regular expression and a list of files on the command
line and output the filename, line number, and every line in every file where the
regular expression matches. If there are no matches, there is no output at all.

The cgrep1 program (in file cgrep1/cgrep.go) uses three channels, two of which
are used for sending and receiving structs.

ptg7913109

7.2. Examples 327

type Job struct {
 filename string
 results chan<- Result
}

This struct is used to specify each job: the name of the file to be processed and
the channel where any result is to be sent. We could have defined the results
field as results chan Result, but since we only want Job values to send Results
into the channel and never receive from it, we have specified that the channel is
a unidirectional send-only channel.

type Result struct {
 filename string
 lino int
 line string
}

Each result is encapsulated by a value of this struct’s type, and contains the
filename, the line number (lino), and the matching line.

func main() {
 runtime.GOMAXPROCS(runtime.NumCPU()) // Use all the machine's cores

if len(os.Args) < 3 || os.Args[1] == "-h" || os.Args[1] == "--help" {
 fmt.Printf("usage: %s <regexp> <files>\n",
 filepath.Base(os.Args[0]))
 os.Exit(1)
 }

if lineRx, err := regexp.Compile(os.Args[1]); err != nil {
 log.Fatalf("invalid regexp: %s\n", err)
 } else {
 grep(lineRx, commandLineFiles(os.Args[2:]))
 }
}

The program’s main() function’s first statement tells the Go runtime system to
use asmany processors (cores) as the system has available. Calling runtime.GO-
MAXPROCS(0) returns the number of processors and changes nothing; calling it
with a positivenumber sets thenumber of processors theGo runtimeshoulduse.
The runtime.NumCPU() function returns how many logical processors/cores the
machine has.★ We put this line at the start of most concurrent Go programs,but
eventually it will be redundant because Go’s runtime systemwill become smart
enough to automatically adapt to the machine it is running on.

★Some processors claim to have more cores than they really have; see en.wikipedia.org/wiki/Hyper-
threading .

ptg7913109

328 Chapter 7. Concurrent Programming

The main() function handles the command-line arguments (a regular ex-
pression and a list of files) and calls the grep() function to do—or rather, to
orchestrate—the work. (We saw the custom commandLineFiles() function in an
earlier chapter; 176 ➤.)

The lineRx (of type *regexp.Regexp; §3.6.5, 120 ➤) that is created here is passed
to the grep() function andwill eventually be shared by all theworker goroutines.
This should be a cause of concern since, in general, we must assume that any
shared pointed-to value is not thread-safe. In such cases we must provide the
safety ourselves, for example,by using amutex. Alternatively,we could sacrifice
a little bit of memory and provide one value (e.g., one regexp) per worker
goroutine rather than share a single value. Fortunately, in the specific case of
*regexp.Regexp,Go’s documentation says that the pointed-to value is thread-safe.
This means that it is safe to share a *regexp.Regexp with as many goroutines as
need to use it.

var workers = runtime.NumCPU()

func grep(lineRx *regexp.Regexp, filenames []string) {
 jobs := make(chan Job, workers)
 results := make(chan Result, minimum(1000, len(filenames)))
 done := make(chan struct{}, workers)

go addJobs(jobs, filenames, results) // Executes in its own goroutine
for i := 0; i < workers; i++ {

go doJobs(done, lineRx, jobs) // Each executes in its own goroutine
 }

go awaitCompletion(done, results) // Executes in its own goroutine
 processResults(results) // Blocks until the work is done
}

This function creates the three bidirectional channels needed by the program.
The jobs are spread over asmanyworker goroutinesas the number of processors
the machine has, so we make the jobs and done channels’ buffer sizes this
number to minimize needless blocking. (Of course, it would be easy to add a
command-line option to let the user specify howmany worker goroutines to use,
regardless of the number of processors.) For the results channel we use a much
larger buffer, just as we did for the previous subsection’s filter example, and
using a custom minimum() function (not shown; see §5.6.1.2, 221 ➤for possible
implementations, or the cgrep.go source code for the one used here).

Instead of making the done channel’s type chan bool and not caring whether true
or false is sent, since all that matters is whether something is sent, we have
made the channel’s type chan struct{} (i.e., an empty struct) to more clearly
express our semantics. The only thing we can send on a channel of this type is
an empty struct value (struct{}{}), which is just what we need to signify a send
where the value doesn’t matter.

ptg7913109

7.2. Examples 329

Main goroutine
processResults()

Goroutine #6
awaitCompletion()

Goroutine #1
addJobs()

Goroutine #2
doJobs()

Goroutine #3
doJobs()

Goroutine #4
doJobs()

Goroutine #5
doJobs()

jobs
channel

results
channel

done channel

Results

Figure 7.5 Multiple independent concurrent jobs

With the channels in place we call the addJobs() function to start adding jobs to
the jobs channel—this function does its work in a goroutine. Next we call the
doJobs() function to perform the actual work: In fact, we call the function four
times, so we get four separate executions, each doing their work in their own
goroutine. Then we call the awaitCompletion() function which waits—in its own
goroutine—for all the work to be done and then closes the results channel. Fi-
nally, we call the processResults() function which executes in the main gorou-
tine. This function processes results received from the results channel, blocking
when no results are available, and finishing only when all the results have been
received. Figure 7.5 shows a schematic view of the program’s concurrency pat-
tern.

func addJobs(jobs chan<- Job, filenames []string, results chan<- Result) {
for _, filename := range filenames {

 jobs <- Job{filename, results}
 }

close(jobs)
}

This function sends every filename to the jobs channel (one by one) as a Job
value. The jobs channel has a buffer size of four (tomatch the number of worker
goroutines), so the first four jobs are added immediately and then the goroutine
in which this function is executed is blocked waiting for a job to be received to
free up room in the jobs channel to send another job. Once all the jobs have been
sent—which will depend on how many filenames are to be processed and how
long the processing takes—the jobs channel is finally closed.

ptg7913109

330 Chapter 7. Concurrent Programming

Although both of the actual channels passed into the function are bidirectional,
we have specified them both to be unidirectional send-only channels since that
is how the jobs channel is used inside the function and how the Job.results
channel is defined in the Job struct.

func doJobs(done chan<- struct{}, lineRx *regexp.Regexp, jobs <-chan Job) {
for job := range jobs {

 job.Do(lineRx)
 }
 done <- struct{}{}
}

This function is called four times in four separate goroutines, so there are four
invocations to share the work. Each invocation iterates over the same shared
jobs channel (declared as a receive-only channel), and each is blocked (i.e.,
blocks the goroutine it is executing in) until a job becomes available for it to
receive. For each job that an invocation gets to do, the function calls the job’s
Job.Do() method (which we will review further on). When an invocation runs
out of jobs it signifies that it has finished by sending an empty struct to the done
channel (which is declared as a send-only channel).

Incidentally, it is a Go convention that functions that have channel parameters
have the destination channels first, followed by the source channels.

func awaitCompletion(done <-chan struct{}, results chan Result) {
for i := 0; i < workers; i++ {

 <-done
 }

close(results)
}

This function (along with the processResults() function) ensures that the main
goroutinewaitsuntil all the processing isdonebefore terminating,thusavoiding
the pitfalls mentioned in the previous section (§7.1, 317 ➤). It is executed in its
own goroutine and waits for as many receives on the done channel as there are
workers—blocking its goroutine while it waits. Once the loop terminates the
results channel is closed so that the receiver will know when it has received the
last result. Note that we cannot pass the results channel as a receive-only chan-
nel (<-chan Result), since Go disallows closing such channels. We don’t bother
closing the done channel since we never use it in a context where it is checked for
being closed.

func processResults(results <-chan Result) {
for result := range results {

 fmt.Printf("%s:%d:%s\n", result.filename, result.lino, result.line)

ptg7913109

7.2. Examples 331

 }
}

This function executes in themain goroutine, iterating over the results channel
—or blocking waiting for results. Once all the results have been received and
processed (i.e., printed), the loop will finish, the function will return, and the
program will terminate.

Go’s concurrency support is so flexible that the approach used here for wait-
ing for the jobs to be done, closing the channels, and outputting the results
can be done in various other ways. For example, the cgrep2 program (in file
cgrep2/cgrep.go) is a variation on the cgrep1 program discussed in this subsec-
tion which has no awaitCompletion() or processResults() functions, but instead
has a single waitAndProcessResults() function.

func waitAndProcessResults(done <-chan struct{}, results <-chan Result) {
for working := workers; working > 0; {

select { // Blocking
case result := <-results:

 fmt.Printf("%s:%d:%s\n", result.filename, result.lino,
 result.line)

case <-done:
 working--
 }
 }
DONE:

for {
select { // Nonblocking
case result := <-results:

 fmt.Printf("%s:%d:%s\n", result.filename, result.lino,
 result.line)

default:
break DONE

 }
 }
}

The function begins with a for loop that will execute so long as there are active
worker goroutines. Each time the for loop’s select is executed, it blockswaiting
to receive a result or a done value. (If we had used a nonblocking select, i.e., one
with a default case,wewould have effectively created a CPU-wasting spin-lock.)
The for loop endswhen there are nomore activeworker goroutines, that is, after
all the workers have sent a value to the done channel.

Once all the workers have finished, we start a second for loop. Inside this loop
we use a nonblocking select. If the results channel has any unprocessed results

ptg7913109

332 Chapter 7. Concurrent Programming

left, the first case matches, a result is output, and then the for loop executes
the select statement again. This repeats until all the unprocessed results have
been output. But as soon as there is no result to receive (which could be straight
away if the results channel is empty when the for loop is entered), we break
to the DONE label. (A bare break is not sufficient since that would only break out
of the select statement.) This second for loop isn’t CPU-wasting because at
each iteration either there is a result to output or we are finished, so there is no
needless waiting.

For this particular example the waitAndProcessResults() function is longer and
more complicated than the original code’s awaitCompletion() and processRe-
sults() functions. However, using select statements can be beneficial when
there are several different channels to handle. For example, we could stop pro-
cessing after a specified amount of time has passed even if the results are in-
complete at that point, by using a select statement.

Here is our third and final variation, cgrep3 (in file cgrep3/cgrep.go).

func waitAndProcessResults(timeout int64, done <-chan struct{},
 results <-chan Result) {
 finish := time.After(time.Duration(timeout))

for working := workers; working > 0; {
select { // Blocking
case result := <-results:

 fmt.Printf("%s:%d:%s\n", result.filename, result.lino,
 result.line)

case <-finish:
 fmt.Println("timed out")

return // Time's up so finish with what results there were
case <-done:

 working--
 }
 }

for {
select { // Nonblocking
case result := <-results:

 fmt.Printf("%s:%d:%s\n", result.filename, result.lino,
 result.line)

case <-finish:
 fmt.Println("timed out")

return // Time's up so finish with what results there were
default:

return

 }
 }
}

ptg7913109

7.2. Examples 333

This is a variation of cgrep2, the difference being that we pass in a timeout value.
The time.After() function takes a time.Duration value (essentially a number of
nanoseconds), and returns a channel on which it returns the current time after
at least time.Duration nanoseconds have passed. Here, we have assigned the
returned channel to the finish variable and include a receive case for it in both
for loops’ select statements. If we get a timeout (i.e., if the finish channel sends
a value), we return from the function and the program finishes, even if work is
still being done.

If all the results are gathered before the timeout occurs (i.e., all the workers are
done), the first for loop is terminated and the second for loop is started the same
as for the cgrep2 example. The only differenceshere are that instead of breaking
out of the second for loop,we have simply done a return from the second select’s
default case; and we have included a timeout case.

Now that we have seen how the concurrency is handled, we will finish our
coverage of the cgrep examples by reviewing how each job is processed.

func (job Job) Do(lineRx *regexp.Regexp) {
 file, err := os.Open(job.filename)

if err != nil {
 log.Printf("error: %s\n", err)

return

 }
defer file.Close()

 reader := bufio.NewReader(file)
for lino := 1; ; lino++ {

 line, err := reader.ReadBytes('\n')
 line = bytes.TrimRight(line, "\n\r")

if lineRx.Match(line) {
 job.results <- Result{job.filename, lino, string(line)}
 }

if err != nil {
if err != io.EOF {

 log.Printf("error:%d: %s\n", lino, err)
 }

break

 }
 }
}

This method is used to process each file. It is passed a *regexp.Regexp, a pointer
which—unusually for a pointer—is thread-safe, so it doesn’t matter how many
different goroutines make use of it. Practically all of the function should be
familiar by now:We open the file for reading, handle any error, and if there is no
error we defer closing the file. Then we create a buffered reader to make it easy

ptg7913109

334 Chapter 7. Concurrent Programming

to iterate over the file’s contents line by line. Whenever we get a matching line
we send a Result value to the results channel: The send will block if the results
channel’s buffer is full. Any file that is processed could produce any number of
results, including zero if none of the file’s lines match the regexp.

As is common when processing a text file in Go, if an error occurs when reading
a line we handle it after working on the line. If the bufio.Reader.ReadBytes()
method encounters an error (including end of file), it returns any bytes read
prior to the error along with the error. Sometimes the very last line of a text
file doesn’t end with a newline, so to make sure that we process the very last
line (whether or not it ends in a newline), we handle the error after processing
the line. The disadvantage of handling the error afterward is that if the regexp
can match an empty string and we get a non-nil not-io.EOF error, we will get a
spurious match. (This can be worked around, of course.)

The bufio.Reader.ReadBytes() method returns the bytes up to and including the
specified byte (or up to the end of the file if the specified byte isn’t present).We
don’t want the newline, so we remove it using the bytes.TrimRight() method
which removes from the right of the given line, the given character or characters.
(This is just like the strings.TrimRight() function; 109 ➤.) To make our program
work cross-platform we trim both newline and carriage return characters.

Another small detail to note is that we read the lines as byte slices and do the
matching using the regexp.Regexp.Match() method rather than regexp.Reg-
exp.MatchString(). So we only do the (very cheap) conversion from []byte to
string formatching lines. Also,we count line numbers fromone rather than zero
since that is conventional.

A particularly nice aspect of the cgrep programs’design is that their concurrency
frameworks are both simple and separate from the actual processing (which is
done by the Job.Do() method), with the only connection between these two as-
pects being the results channel. This separation of concerns is common in con-
current Go programs and compares very favorably with the use of lower-level
concurrency constructs (such asmutexes) where the locking and unlocking code
is often needed throughout the program and can obscure and complicate the
program’s logic.

7.2.3. Example: Thread-Safe Map

Go’s sync and sync/atomic packages provide the low-level operations needed to
create concurrent algorithms and data structures. However, it is also possible
to take an existing data structure—such as a map or slice (or an omap.Map; §6.5.3,
302 ➤)—and make it thread-safe by ensuring that all accesses are serialized
using Go’s high-level channels.

In this subsection we will develop a thread-safe map that has string keys and
interface{} values (i.e., any values) and that can safely be shared by as many

ptg7913109

7.2. Examples 335

goroutines as we like—and without a lock in sight. (Of course, if we store and
retrieve pointer or reference values, they must be treated as read-only or access-
es to themmust be serialized.) The thread-safemap is in file safemap/safemap.go
and consists of an exported SafeMap interface that specifies the methods that
the safe map supports, and an unexported safeMap concrete type that fulfills
the interface. We will see the safe map in action in the next subsection (§7.2.4,
➤ 341).

The safemap is implemented by executing an unexportedmethod that captures
a map inside a goroutine. The only way to access themap is via channels, and this
in itself is sufficient to ensure that all map accesses are serialized. The method
runs an infinite loop on an incoming channel that blocks waiting for commands
(i.e., “insert this”, “delete that”, etc.).

We will begin by looking at the SafeMap interface, then at the safeMap type’s
exported methods, then at the safemap package’s New() function, and finally at
the unexported safeMap.run() method.

type SafeMap interface {
 Insert(string, interface{})
 Delete(string)
 Find(string) (interface{}, bool)
 Len() int
 Update(string, UpdateFunc)
 Close() map[string]interface{}
}

type UpdateFunc func(interface{}, bool) interface{}

All these methods are provided by the safeMap type. (We discussed the pattern
of having an exported interface and an unexported concrete type in the previous
chapter.)

The UpdateFunc type makes it convenient to specify the signature of an update
function:We will discuss this when we cover the Update() method further on.

type safeMap chan commandData

type commandData struct {
 action commandAction
 key string
 value interface{}
 result chan<- interface{}
 data chan<- map[string]interface{}
 updater UpdateFunc
}

type commandAction int

ptg7913109

336 Chapter 7. Concurrent Programming

const (
 remove commandAction = iota

 end
 find
 insert
 length
 update
)

The safeMap type is based on a channel that can send and receive values of the
custom commandData type. Each commandData value specifies the action that is to
be taken and also the data necessary to perform the action—for example, most
of the methods require a key to identify which item to work on. We will see all
of the fields in use as we review the safeMap’s methods.

Notice that both the result and data channels are declared as unidirectional
send-only channels; in other words, the safe map itself can send values to them,
but cannot receive from them. As we will see, the methods that create these
channels create them as bidirectional channels and so these channels are able
to receive whatever the safe map sends to them.

func (sm safeMap) Insert(key string, value interface{}) {
 sm <- commandData{action: insert, key: key, value: value}
}

Thismethod is the safemap equivalent of m[key] = valuewhere m is a map[string]
interface{}. It creates a commandData value with the insert action and with the
given key and value and sends the command to the safe map—which as we have
just seen is a type based on a chan commandData. (We covered creating structswith
some values initialized and the others set to their zero values by Go earlier; §6.4,
275 ➤.)

Whenwe review the safemap package’s New() functionwewill see that the safeMap
returned by the New() function (as a SafeMap) is associated with a goroutine. The
safeMap.run() method is executed in the goroutine, and is a closure which has
captured the safeMap channel. Themethod also contains the underlying map that
is used to store the safe map’s items, and has a for loop which iterates over the
safeMap channel and that performs each command it receives from the channel
on the underlying map.

func (sm safeMap) Delete(key string) {
 sm <- commandData{action: remove, key: key}
}

Thismethod tells the safemap to delete the itemwith the given key—or to safely
do nothing.

ptg7913109

7.2. Examples 337

type findResult struct {
 value interface{}
 found bool
}

func (sm safeMap) Find(key string) (value interface{}, found bool) {
 reply := make(chan interface{})
 sm <- commandData{action: find, key: key, result: reply}
 result := (<-reply).(findResult)

return result.value, result.found
}

The safeMap.Find() method creates its own reply channel so that it can receive
a response from the safe map—which may only send to the reply channel—and
then sends a find commandwith the given key and with its own reply channel to
the safemap. Sincenone of the channelsare buffered,whenwe send a command
the send is blocked until no other goroutines are sending to the safe map. Once
the command has been sent we immediately receive back the reply (which for
a find command comes packaged up as a findResult struct), whose constituents
we return to the caller. Incidentally, the use of names for the return values is
purely to make their purpose obvious.

func (sm safeMap) Len() int {
 reply := make(chan interface{})
 sm <- commandData{action: length, result: reply}

return (<-reply).(int)
}

This method has a similar structure to the Find() method in that it creates and
sends its own reply channel and passes on the received reply to its caller.

func (sm safeMap) Update(key string, updater UpdateFunc) {
 sm <- commandData{action: update, key: key, updater: updater}
}

This method seems somewhat incongruous with its unusual signature whose
second argument is of type func(interface{}, bool) interface{} (335 ➤). The
method sends an update command with the given key and with an updater
function to the safe map. Once the command is received the updater function
is called with the value of the item with the given key (or nil if there is no such
item) and a bool indicating whether the item exists. The item’s value is set to
the updater function’s return value (with a new item with the given key and the
returned value being created if necessary).

ptg7913109

338 Chapter 7. Concurrent Programming

It is important to note that if the updater function calls a safeMap method, then
we will get a deadlock! We will explain why when we cover the safemap.safe-
Map.run() method further on.

But why do we need this strange method, and how do we use it?

When it comes to inserting, deleting, or finding items from the safe map, we can
use the Insert(), Delete(), and Find()methodsperfectly well. But what happens
when we want to update an existing item? For example, what if we are using
the map to keep the prices of various parts and want to increase the price of a
part by 5%?With a normalmapwe can simply write m[key] *= 1.05, knowing that
thanks to Go’s automatic zero-value setting, if an item with the given key exists
its value will be incremented by 5%, and otherwise a new item with the key will
be created with a value of zero. Here is how we might try to achieve the same
thing using a safe map that holds float64 values.

if price, found := priceMap.Find(part); found { // WRONG!
 priceMap.Insert(part, price.(float64)*1.05)
}

The problem with the code shown here is that it is possible that one or more
other goroutines sharing the same priceMap could change the map in between
the Find() and Insert() calls shown here, so there is no guarantee that at the
time of the Insert() the price we are inserting really is exactly 5% more than
the original price.

What we need to do is an atomicupdate, that is, to retrieve and update the value
as a single uninterruptible operation. This is what the Update() method allows
us to do.

priceMap.Update(part, func(price interface{}, found bool) interface{} {
if found {

return price.(float64) * 1.05
 }

return 0.0
})

This code snippet showshow to do an atomic update. If there is no itemwith the
given key a new item with a value of 0.0 will be created; otherwise the existing
item’s value will be incremented by 5%.Since this update takes place in the safe
map’s goroutine in response to an update command,no other command (e.g., from
another goroutine) can be executed in the middle.

func (sm safeMap) Close() map[string]interface{} {
 reply := make(chan map[string]interface{})
 sm <- commandData{action: end, data: reply}

ptg7913109

7.2. Examples 339

return <-reply
}

The Close() method works in a similar way to the Find() and Len() methods,
only it serves two different purposes. First, it closes the safeMap channel (inside
the safeMap.run() method), so that no further updates can take place. This will
cause the for … range loop in the safeMap.run() method to terminate and will
therefore free up the goroutine in which it is executing for garbage collection.
Second, it returns the underlying map[string]interface{} which the caller can
keep or ignore. The Close() method can only ever be called once per safe map,
no matter how many goroutines are accessing the safe map, and once called no
other method can be called. Thismeans that if we keep the returned map we can
safely access it just like a normal map (i.e., in a single goroutine).

We have now completed our review of the safeMap’s exported methods. The last
things we need to look at are the safemap package’s New() function in which a
safeMap is created and returned as a SafeMap for use outside the package, and
the safeMap.run() method which captures the channel, provides the map[string]
interface{} to store the data, and handles all the communications.

func New() SafeMap {
 sm := make(safeMap) // type safeMap chan commandData

go sm.run()
return sm

}

The safeMap is of type chan commandData, so we must use the built-in make()
function to create the channel and return a reference to it. Oncewehave the safe
map we call its unexported run() method to create the map used for storage and
to receive commands. The run() method is executed in its own goroutine, and
as usual the go statement returns immediately. At the end, the function returns
the safeMap as a SafeMap interface to the New() function’s caller.

func (sm safeMap) run() {
 store := make(map[string]interface{})

for command := range sm {
switch command.action {
case insert:

 store[command.key] = command.value
case remove:

delete(store, command.key)
case find:

 value, found := store[command.key]
 command.result <- findResult{value, found}

case length:

ptg7913109

340 Chapter 7. Concurrent Programming

 command.result <- len(store)
case update:

 value, found := store[command.key]
 store[command.key] = command.updater(value, found)

case end:
close(sm)

 command.data <- store
 }
 }
}

Once the storage map is created, the run() method starts an effectively infinite
loop that iterates over the safe map channel, blocking if there is no command
to receive.

Since the store is no more than an ordinary map, all the actions that correspond
to each command that is receivedare straightforwardtounderstand. Oneslight-
ly tricky case is update where the item’s value is set to the return value of the
command.updater() function (as we saw earlier; 337 ➤). The end case corresponds
to a Close() call; this first closes the safe map channel to prevent any further
commands being received, and then sends the storage map back to the caller.

Note that if the command.updater() function were to call a safeMap method we
will get a deadlock. This is because the update case cannot finish until the com-
mand.updater() function returns, but if the function has called a safeMapmethod,
that call will be blocked waiting to be processed until the update case has fin-
ished, so neither will be able to finish. This kind of deadlock was illustrated ear-
lier in Figure 7.2 (318 ➤).

Clearly, there is a certain amount of overhead using a safe map compared with
an ordinary map.Each command requires the creation of a commandData struct and
for this to be sent through a channel,with sends from however many goroutines
we create to access the safe map being automatically serialized under the hood
by Go. One alternative is to use an ordinary map but protect accesses to it with
a sync.Mutex or a sync.RWMutex. Another alternative is to create a custom thread-
safe data structure such as those described in the literature (e.g., see The Art of
Multiprocessor Programming in Appendix C, ➤ 441). Another alternative is to
keep goroutine-specific maps so that no synchronization is needed at all—and
then to just merge the maps at the end. Nonetheless, the safe map described
here is easy to use and may prove sufficient for many purposes. We will see the
safe map in action in the next subsection, along with a couple of the alternative
approaches for comparison.

ptg7913109

7.2. Examples 341

7.2.4. Example: Apache Report

A frequent requirement in concurrent programs is for the concurrent processing
to update a shared data structure. One common solution is to use a mutex to
serialize accesses to the data structure. In Go, we can either use a mutex or use
channels to serialize accesses. In this subsection we will begin by showing an
approach that uses channels and the generic safemap developed in the previous
subsection. Then we will look at how to achieve the same thing using a shared
map protected by a mutex. And finally, we will review how to use local maps that
are independent and therefore don’t need serialized accesses so as to maximize
throughput, with channels used to serialize the updating of a common map at
the end.

The apachereport programs all do the same thing: They read an Apache web
server’s access.log file specified on the command line and output the number
of accesses to each unique HTML page that the log has recorded. These log
files can easily grow huge, so we have used one separate goroutine to read lines
from the file and three additional goroutines to share the processing of the lines.
Each HTML page must be added to a map with a count of 1 the first time it is
seen, and this count must be incremented each time the page is seen again. So,
although multiple goroutines are independently processing lines from the log
file, they must all update the same map. Each version of the program handles
the updating of the map in a different way.

7.2.4.1. Synchronizing with a Shared Thread-Safe Map

In this subsubsectionwewill review the apachereport1 program (in file apachere-
port1/apachereport.go). This program uses the safe map developed in the pre-
vious section to provide a shared thread-safe map. The program’s concurrency
structure is illustrated in Figure 7.6 (➤ 342).

In the figure, goroutine #2 is used to populate the work channel with lines from
the log file and goroutines #3 to #5 process each line and update the shared
safeMap. The operations on the safeMap itself take place in yet another goroutine,
so the program uses six goroutines in total.

var workers = runtime.NumCPU()

func main() {
 runtime.GOMAXPROCS(runtime.NumCPU()) // Use all the machine's cores

if len(os.Args) != 2 || os.Args[1] == "-h" || os.Args[1] == "--help" {
 fmt.Printf("usage: %s <file.log>\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }
 lines := make(chan string, workers*4)
 done := make(chan struct{}, workers)

ptg7913109

342 Chapter 7. Concurrent Programming

Main goroutine
waitUntil()
showResults()

Goroutine #1
safeMap

Goroutine #2
readLines()

Goroutine #3
processLines() • anon. #1

Goroutine #4
processLines() • anon. #2

Goroutine #5
processLines() • anon. #3

lines
channel

done channel

safeMap channel

Results

Figure 7.6 Multiple inter-dependent concurrent jobs with synchronized results

 pageMap := safemap.New()
go readLines(os.Args[1], lines)

 processLines(done, pageMap, lines)
 waitUntil(done)
 showResults(pageMap)
}

The main() function begins by making sure that the Go runtime system will
use all of the machine’s processors. Then it creates the two channels needed to
organize the processing. The lines channel will be sent each line from the log
file and theworker goroutineswill each receive lines from this channel. Wehave
given the lines channel a small buffer to reduce the likelihood of the worker
goroutines being blocked waiting for lines. The done channel is used to keep
track of when all the work is done, and since we only care about the occurrence
of sends and receives rather than their values, we use empty structs. The done
channel is buffered so that it doesn’t block when a goroutine wants to announce
that it has finished its work.

With the channels in place we create a new unexported safeMap which is
returned by the safemap.New() function as an exported SafeMap interface that can
freely be passed around. We then start off the goroutine for reading lines from
the files and then the goroutines for processing the lines. Then we wait for all
the worker goroutines to be finished, after which we can output the results.

func readLines(filename string, lines chan<- string) {
 file, err := os.Open(filename)

if err != nil {
 log.Fatal("failed to open the file:", err)

ptg7913109

7.2. Examples 343

 }
defer file.Close()

 reader := bufio.NewReader(file)
for {

 line, err := reader.ReadString('\n')
if line != "" {

 lines <- line
 }

if err != nil {
if err != io.EOF {

 log.Println("failed to finish reading the file:", err)
 }

break

 }
 }

close(lines)
}

This function should be very familiar since it is so similar to ones we have
seen before. The first key aspect is that each line is sent to the lines send-only
channel—this will block if the channel’s buffer becomes full, until another go-
routine receives from the channel. Naturally, even if there is blocking, it only
affects this goroutine; all the others will continue unaffected. The second key
aspect is that once all the lines have been sent we close the lines channel; this
tells prospective receivers that there is no more data to receive. Keep in mind,
though, that this goroutine executes concurrently with the program’s other
goroutines—in particular, the line processing worker goroutines—so the close()
statement isn’t reached until most of the work has been done.

func processLines(done chan<- struct{}, pageMap safemap.SafeMap,
 lines <-chan string) {
 getRx := regexp.MustCompile(`GET[\t]+([^ \t\n]+[.]html?)`)
 incrementer := func(value interface{}, found bool) interface{} {

if found {
return value.(int) + 1

 }
return 1

 }
for i := 0; i < workers; i++ {

go func() {
for line := range lines {

if matches := getRx.FindStringSubmatch(line);
 matches != nil {
 pageMap.Update(matches[1], incrementer)
 }

ptg7913109

344 Chapter 7. Concurrent Programming

 }
 done <- struct{}{}
 }()
 }
}

This function follows the Go parameter ordering convention of having destina-
tion channels first (in this case the done channel), followed by the source chan-
nels (in this case the lines channel).

The function creates the goroutines (three in this example) that do the work.
Each goroutine shares the same *regexp.Regexp (since, unusually for pointed-to
values, this is documented to be thread-safe), and the same incrementer()
function (since it has no side effects and doesn’t access any shared data). They
also share the same pageMap (of type SafeMap interface), since even the methods
that modify a SafeMap are thread-safe.

The regexp.Regexp.FindStringSubmatch() function returns nil if there is no
match, or a []string where the first item is the entire matching text and each
subsequent item corresponds to the text that matches a parenthesized subex-
pression in the regular expression. In this casewe have one such subexpression,
so if we get a match at all, the []string will have exactly two items in it, the en-
tire matching text and the text matched by the parenthesized subexpression, in
this case the filename of an HTML page.

Each worker goroutine receives different lines that are read by the goroutine
created in the readLines() function from the lines receive-only channel. If a
line matches the regular expression that identifies GET requests on HTML files,
the safeMap.Update() method is called with the page filename (matches[1]) and
with the incrementer() function. The incrementer() function is executed inside
the safe map’s goroutine and returns an incremented value for existing pages
and a value of 1 for pages that are new to the map. (Recall from the previous
subsection that if the function passed to the safeMap.Update() method calls any
other SafeMap method we will get a deadlock.) When there are no more pages
to process, each worker goroutine sends an empty struct to the done send-only
channel to signify that it has finished its work.

func waitUntil(done <-chan struct{}) {
for i := 0; i < workers; i++ {

 <-done
 }
}

This function executes in the main goroutine and blocks waiting on the done
receive-only channel. When every worker goroutine has sent an empty struct to
the done channel, the for loop finishes. As usual,we don’t bother to close the done

ptg7913109

7.2. Examples 345

channel since we never use it in a context where it is checked for being closed.
By blocking, this function ensures that the processing gets done before themain
goroutine terminates.

func showResults(pageMap safemap.SafeMap) {
 pages := pageMap.Close()

for page, count := range pages {
 fmt.Printf("%8d %s\n", count, page)
 }
}

Once all the lines have been read and all the matches added to the safe map,
this function is called to output the results. It begins by calling the safemap.
safeMap.Close() method which closes the safe map’s channel, terminates the
safeMap.run() method executing in a goroutine, and returns the underlying
map[string]interface{} to the caller. The returnedmapcanno longer be accessed
using the safe map’s channel and so can safely be used in a single goroutine (or
multiple goroutines if we serialize accesses using a mutex). From this point, we
only access the map in the main goroutine, so no serialization is necessary. We
simply iterate over the map’s key–value pairs and print them to the console.

Using a value of type SafeMap interface provides thread safety and simple syntax
with noneed to concern ourselveswith locks. Onedisadvantageof thisapproach
is that the safemap’s values are generic interface{} values rather than of a spe-
cific type, hence the need to use a type assertion in the incrementer() function.
(We will discuss another disadvantage further on; §7.2.4.3, ➤ 347.)

7.2.4.2. Synchronizing with a Mutex-ProtectedMap

We will now compare and contrast the clean channel-based approach to the tra-
ditional mutex-based approach. To do this we will briefly discuss the apachere-
port2 program (in file apachereport2/apachereport.go). This is a variation of the
apachereport1 program that uses a custom data type which encapsulates a map
and a mutex instead of using a SafeMap. The two programs do the same job but
are different in that the apachereport2 program stores int values in its map
rather than the interface{}s used by the generic SafeMap, and also only provides
the minimal and specific functionality required to do the job—an Increment()
method—compared to the safe map’s complete set of methods.

type pageMap struct {
 countForPage map[string]int
 mutex *sync.RWMutex
}

One advantage of using a specific custom type is that we can use the exact data
types that we need rather than having to use the generic interface{} type.

ptg7913109

346 Chapter 7. Concurrent Programming

func NewPageMap() *pageMap {
return &pageMap{make(map[string]int), new(sync.RWMutex)}

}

This function returns a ready-to-use *pageMap. (Incidentally, we could have
created the read-write mutex pointer using the syntax &sync.RWMutex{} instead
of new(sync.RWMutex); we discussed this equivalence in §4.1, 140 ➤.)

func (pm *pageMap) Increment(page string) {
 pm.mutex.Lock()

defer pm.mutex.Unlock()
 pm.countForPage[page]++
}

Every method that modifies the countForPage map must serialize its accesses
to the map using the mutex. The pattern used here is canonical: Lock the
mutex; defer unlocking the mutex so that whenever we return, the unlocking is
guaranteed (even in the face of a panic); and perform the access—ideally for as
short a time as possible.

Thanks to Go’s automatic zero initialization, the first time a page is accessed
in the countForPage map (i.e., when it isn’t in the map), it is added to the map
with a value of 0, which is then immediately incremented. Correspondingly, on
subsequent accesses to a page that is already in the map, its existing value will
be incremented.

Every method that accesses the countForPage mapmust serialize that access us-
ing a mutex. For updates to the map, the sync.RWMutex.Lock() and sync.RWMutex.
Unlock() methods shown here must be used, but for read-only accesses, we can
use different read-only methods.

func (pm *pageMap) Len() int {
 pm.mutex.RLock()

defer pm.mutex.RUnlock()
return len(pm.countForPage)

}

This method is included purely to show how to use a read lock. The pattern of
use is the same as for a normal lock, but read locks are potentially more efficient
(since we are promising to read but not update the protected resource). For
example, if we have multiple goroutines all reading the same countForPagemap,
they can all safely execute concurrently using a read lock. But if even one of
them acquires a normal (read-write) lock—and hence the ability to change the
map—then no other lock can be granted.

pageMap.Increment(matches[1])

ptg7913109

7.2. Examples 347

With the pageMap type in place the worker goroutines can update the sharedmap
using the statement shown here.

7.2.4.3. Synchronizing by Merging Local Maps via Channels

Whether we use a safe map or a plain map protected by a mutex, we might
reasonably expect that by increasing the number of worker goroutines we
would increase the overall speed of the program. However, since accesses to the
safe map or to the plain map are serialized (behind the scenes in the case of the
safe map), as we add goroutines, contention will increase.

As is often the case, we can trade some memory in exchange for increased
speed. So, for example, we could let every worker goroutine have its own plain
map. This would maximize throughput since there would be no contention at
all during processing, but at the price of using extra memory (since most likely
every mapwould have some or even all pages in common).At the end, of course,
wewould have tomerge thesemaps—and that could be a bottleneck since,while
one map was being merged, any others that were ready to merge would have
to wait.

The apachereport3 program (in file apachereport3/apachereport.go) uses local
goroutine-specific plain maps and merges them into a single overall map at
the end. The code is almost identical to the apachereport1 and apachereport2
programs, so we will very briefly review the key differences. The program’s
concurrency structure is illustrated by Figure 7.7.

Main goroutine
merge()

showResults()

Goroutine #1
readLines()

Goroutine #2
processLines()

Goroutine #3
processLines()

Goroutine #4
processLines()

lines
channel

results
channel

Results

Figure 7.7 Multiple inter-dependent concurrent jobs with synchronized results

// ...
 lines := make(chan string, workers*4)
 results := make(chan map[string]int, workers)

ptg7913109

348 Chapter 7. Concurrent Programming

go readLines(os.Args[1], lines)
 getRx := regexp.MustCompile(`GET[\t]+([^ \t\n]+[.]html?)`)

for i := 0; i < workers; i++ {
go processLines(results, getRx, lines)

 }
 totalForPage := make(map[string]int)
 merge(results, totalForPage)
 showResults(totalForPage)

// ...

This is an extract from apachereport3’s main() function. Instead of having a done
channel we have a results channel through which the local goroutine-specific
maps are sent once they have been fully populated. We also create an overall
map (totalForPage) into which all the results will be merged.

func processLines(results chan<- map[string]int, getRx *regexp.Regexp,
 lines <-chan string) {
 countForPage := make(map[string]int)

for line := range lines {
if matches := getRx.FindStringSubmatch(line); matches != nil {

 countForPage[matches[1]]++
 }
 }
 results <- countForPage
}

This function is almost the same as the version shown before. The key differ-
ences are first that we have created a local map to hold page counts, and second
that we return the local map to the results channel (rather than sending, say, a
struct{}{} to a done channel), once the function has finished processing lines.

func merge(results <-chan map[string]int, totalForPage map[string]int) {
for i := 0; i < workers; i++ {

 countForPage := <-results
for page, count := range countForPage {

 totalForPage[page] += count
 }
 }
}

This function is structurally the same as the waitUntil() functionwe saw earlier,
only this time we make use of the received value, using it to update the overall
totalForPagemap. Note that themaps received here are never accessed by their
sending goroutines after they have been sent, so no locking is necessary.

ptg7913109

7.2. Examples 349

The showResults() function is almost the same as before (so isn’t shown), only
it accepts the totalForPage map as its argument and iterates over this map
printing counts and pages.

The apachereport3 program’s code is simpler and cleaner than that needed
by apachereport1 and apachereport2, and the concurrency model it uses—each
goroutine populating its own uncontended data structure and merging results
at the end—should prove useful in many different contexts.

Of course, it is only natural for programmersused to the locking paradigm to be
tempted to use mutexes to serialize accesses in Go programs. However, the Go
documentation strongly recommends the use of goroutines and channels with
its mantra of “don’t communicate by sharing memory, instead, share memory by
communicating”,and Go compilers are being optimized above all to support this
concurrency model.

7.2.5. Example: Find Duplicates

This chapter’s final concurrency example is a program that attempts to find
duplicate files using file sizes and SHA-1 values rather than filenames.★

The programwewill review is called findduplicates (in file findduplicates/find-
duplicates.go).Theprogramuses the standard library’sfilepath.Walk() function
to iterate over all the files and directories in a given path, including subdirecto-
ries, and subsubdirectories, and so on. The program uses a variable number of
goroutines depending on the work it does. For each “big” file, a new goroutine is
created on the fly to compute that file’s SHA-1, while each “small” file’s SHA-1 is
computed in the current goroutine. This means that we don’t know in advance
how many goroutines any particular run of the program will use, although we
can—and do—set an upper limit.

One way of handling a variable number of goroutines is to use a “done” channel
just like in earlier examples, only this time keeping a running count of how
many goroutines are created. An easier way is to use a sync.WaitGroup which
achieves the same thing but passes on the counting to Go.

const maxGoroutines = 100

func main() {
 runtime.GOMAXPROCS(runtime.NumCPU()) // Use all the machine's cores

if len(os.Args) == 1 || os.Args[1] == "-h" || os.Args[1] == "--help" {
 fmt.Printf("usage: %s <path>\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

★ The SHA-1 secure hash algorithm produces a 20-byte value for any given chunk of data—such
as a file. Identical files will have the same SHA-1 values and different files will almost always have
different SHA-1 values.

ptg7913109

350 Chapter 7. Concurrent Programming

 infoChan := make(chan fileInfo, maxGoroutines*2)
go findDuplicates(infoChan, os.Args[1])

 pathData := mergeResults(infoChan)
 outputResults(pathData)
}

The main() function accepts a directory to start the processing from and orches-
trates all the work. It begins by creating a channel for passing fileInfo values
(which we will look at shortly). We have buffered the channel because experi-
ments showed that this consistently improved performance.

Next, the function executes the findDuplicates() function in a goroutine, and
then calls the mergeResults() function that reads the infoChan channel until it is
closed. Once the merged data is returned, the results are output.

The program’s goroutines and flow of communications are illustrated in Fig-
ure 7.8. The figure’s results channel is for values of type fileInfo; these values
are sent to the infoChan channel by a “walker” function (of type filepath.Walk-
Func) that we pass to the filepath.Walk() function. The filepath.Walk() func-
tion is itself called in the findDuplicates() function. The results are received
by the mergeResults() function. The goroutines in the figure are created by the
findDuplicates() function and by the walker function. In addition, the standard
library’s filepath.Walk() function might create its own goroutines (e.g., one to
process each directory), although how it actually works is an implementation
detail.

type fileInfo struct {
 sha1 []byte
 size int64
 path string
}

This type is used to summarize the data for each file. If two files’ SHA-1s and
sizes are the same they are considered to be duplicates—no matter what their
paths or filenames are.

func findDuplicates(infoChan chan fileInfo, dirname string) {
 waiter := &sync.WaitGroup{}
 filepath.Walk(dirname, makeWalkFunc(infoChan, waiter))
 waiter.Wait() // Blocks until all the work is done

close(infoChan)
}

This function calls the filepath.Walk() function to walk the directory’s tree
(starting at dirname), and for every file and directory it calls the filepath.Walk-
Func function it is passed as its second argument.

ptg7913109

7.2. Examples 351

Main goroutine
mergeResults()
outputResults()

WaitGroup

Goroutine #1
findDuplicates()

Goroutine #2
processFile()

Goroutine #3
processFile()

…

Goroutine #N
processFile()

fileInfo
channel

Figure 7.8 Multiple independent concurrent jobs with synchronized results

Our walker function will create an arbitrary number of goroutines, so we need
to make sure that we wait until they have all finished before the findDupli-
cates() function returns. We have done this by creating a sync.WaitGroup. Each
time we create a new goroutine we call sync.WaitGroup.Add(), and each time
a goroutine completes its work we call sync.WaitGroup.Done(). Once all the go-
routines have been set running we then wait for them all to finish by calling
sync.WaitGroup.Wait()—which blocks until the number of done announcements
equals the number added.

Once all the worker goroutines are finished there will be no more fileInfo
values sent to the infoChan, sowe close the channel.Naturally, the mergeResults()
function will still be able to read the channel, until it has read all the channel’s
items.

const maxSizeOfSmallFile = 1024 * 32

func makeWalkFunc(infoChan chan fileInfo,
 waiter *sync.WaitGroup) func(string, os.FileInfo, error) error {

return func(path string, info os.FileInfo, err error) error {
if err == nil && info.Size() > 0 &&

 (info.Mode()&os.ModeType == 0) {
if info.Size() < maxSizeOfSmallFile ||

 runtime.NumGoroutine() > maxGoroutines {
 processFile(path, info, infoChan, nil)
 } else {
 waiter.Add(1)

go processFile(path, info, infoChan,
func() { waiter.Done() })

ptg7913109

352 Chapter 7. Concurrent Programming

 }
 }

return nil // We ignore all errors
 }
}

This function creates and returns an anonymous function of type filepath.Walk-
Func (i.e., that has signature func(string, os.FileInfo, error) error). This func-
tion will be called for every file and directory that the filepath.Walk() function
encounters. The path is the file or directory name, the info has the results of a
stat call on the path, and the err either is nil or has the details of any problem
that was encountered regarding the path. We can skip directories by returning
an error value of filepath.SkipDir, and we can stop the walk by returning any
other non-nil error.

We have chosen to process only regular files of nonzero size. (Of course, all
files of size 0 bytes are the same, but we ignore such files.) The os.ModeType is a
bitmask that has bits set for directories, symbolic links, named pipes, sockets,
and devices—so if none of these are set we have a regular file.

If the file is “small” (in this case of up to 32KiB), we compute its SHA-1 imme-
diately using a custom processFile() function. But for all other files we create a
new goroutine in which the processFile() function is executed asynchronously.
This means that small files will block (until we’ve computed their SHA-1), but
big files will not since their computation is done in a separate goroutine. Either
way,when the computation is complete the resultant fileInfo value is sent to the
infoChan channel.

We need only call the sync.WaitGroup.Add() method when we create a new
goroutine, but whenever we do so we must be sure to call the corresponding
sync.WaitGroup.Done() method once the goroutine has finished its work. We do
this by taking advantage of Go’s support for closures (§5.6.3, 225 ➤). If we call
the processFile() function in a new goroutine we pass an anonymous function
as the last argument—when this anonymous function is called it will call the
sync.WaitGroup.Done() method. The processFile() function is expected to do a
deferred call on this anonymous function to ensure that Done() gets called when
the goroutine finishes. If we call the processFile()method in the current gorou-
tine, we pass nil instead of an anonymous function.

Why didn’t we simply process every file in a new goroutine? Go would have
no problem with that since we can create hundreds or thousands of goroutines
without hitting any problems. Unfortunately, most operating systems impose
a limit as to how many files may be open at the same time. For Windows the
default limit could be as small as 512 although this can be increased to 2048.
Mac OS X systems may have a default limit as low as 256 files, and Linux sys-
tems a default limit of 1024—however,Unix-like systems like these can usually

ptg7913109

7.2. Examples 353

have their limit set to tens or hundreds of thousands or more. Clearly, if we cre-
ated one goroutine per file we could easily exceed the limit on some platforms.

We have avoided the “too many open files” problem by combining two tactics.
First,we process small files in one goroutine (or perhaps in just a few goroutines
if the filepath.Walk() function happens to spread its work over multiple gorou-
tines and calls the walker function in them concurrently). This ensures that if
we hit a directory with thousands of tiny files we don’t have too many open at
once because only one or a few goroutines can process them at the same time.

We should be able to afford to process big files in their own goroutines since
the very fact that they are large means that we are unlikely to be able to be
fast enough to open too many of them at the same time. But if we do end up
processing too many big files, that is, if we start to have too many goroutines,
the second tactic will kick in. (The runtime.NumGoroutine() function tells us how
many goroutines exist at the time the function is called.)

If we have too many goroutines we stop creating new goroutines for processing
big files, and instead process every file—no matter what size it is—in the cur-
rent goroutine. This forces the program to use the same goroutine (or same few
goroutines) to process each subsequent file, and thus keeps a lid on the number
of goroutines, and as a consequence also limits the number of files that we have
open at the same time. Meanwhile, as each of the goroutines already processing
big files finish and are removed by Go’s runtime system, the number of gorou-
tines in use will decrease. So, at some point, there will be fewer goroutines than
our limit, and we will once again start creating new goroutines to process big
files.

func processFile(filename string, info os.FileInfo,
 infoChan chan fileInfo, done func()) {

if done != nil {
defer done()

 }
 file, err := os.Open(filename)

if err != nil {
 log.Println("error:", err)

return

 }
defer file.Close()

 hash := sha1.New()
if size, err := io.Copy(hash, file);

 size != info.Size() || err != nil {
if err != nil {

 log.Println("error:", err)
 } else {
 log.Println("error: failed to read the whole file:", filename)

ptg7913109

354 Chapter 7. Concurrent Programming

 }
return

 }
 infoChan <- fileInfo{hash.Sum(nil), info.Size(), filename}
}

This function is called from the current goroutine or in a newly created addition-
al goroutine to compute the given file’s SHA-1 and to send the file’s details to the
infoChan channel.

If the done variable is not nil, this function has been called in a new goroutine,
so we defer a call to the done() function (which simply contains a call to the
sync.WaitGroup.Done()method;352 ➤).This is to ensure that for every sync.Wait-
Group.Add() call, there is a corresponding Done() call, since this is essential to the
correct operation of the sync.WaitGroup.Wait() function. If the variable is nilwe
safely ignore it.

Next, we open the given file for reading, and defer closing it, in the usual way.
The standard library’s crypto/sha1 package provides the sha1.New() function
which returns a value that satisfies the hash.Hash interface. This interface
provides a Sum() method that returns the hash value (i.e., the 20-byte SHA-1
hash in this case), and also fulfills the io.Writer interface. (We pass in nil to
make the Sum() method give us a new []byte; alternatively, we could pass it an
existing []byte to which it will append the hash sum.)

We could have read in the entire contents of the file and then called the
sha1.Write() method to write the file into the hash, but we have opted to take
a much more efficient approach and used the io.Copy() function instead. This
function takes a writer to write to (in this case the hash), and a reader to read
from (here, the open file), and copies from the latter to the former. When the
copy has finished, io.Copy() returns the number of bytes copied and either nil
or an error if a problem occurred. Since the SHA-1 hash can work on chunks of
data at a time, the maximum amount of memory used by the io.Copy() call will
be the size of the buffer used by the SHA-1 plus some fixed overhead. If we had
read the entire file into memory first, we would have used the same amount of
buffer and overhead memory—plus enough memory to store the whole file. So,
especially for larger files, using io.Copy() achieves real savings.

Once the computation is done we send a fileInfo value to the infoChan channel
with the SHA-1value, the file’s size (available from the os.FileInfo passed to the
processFile() function from the walker function), and the filename (including
the full path).

type pathsInfo struct {
 size int64
 paths []string
}

ptg7913109

7.2. Examples 355

This struct type is used to store the details of each duplicate file, that is, its
size, and all the file’s paths and filenames. It is used by the mergeResults() and
outputResults() functions.

func mergeResults(infoChan <-chan fileInfo) map[string]*pathsInfo {
 pathData := make(map[string]*pathsInfo)
 format := fmt.Sprintf("%%016X:%%%dX", sha1.Size*2) // == "%016X:%40X"

for info := range infoChan {
 key := fmt.Sprintf(format, info.size, info.sha1)
 value, found := pathData[key]

if !found {
 value = &pathsInfo{size: info.size}
 pathData[key] = value
 }
 value.paths = append(value.paths, info.path)
 }

return pathData
}

This function begins by creating a map to store duplicate files. The keys are
strings composed of the file’s size, a colon, and the file’s SHA-1, and the values
are *pathsInfos.

To produce the keys we have created a format string which has 16 zero-padded
hexadecimal digits to represent the file’s size and enough hexadecimal digits to
represent the file’s SHA-1.We have used leading zeros for the file size part of the
key so that we can sort the keys by size later on. The sha1.Size constant holds
the number of bytes occupied by an SHA-1 (i.e., 20). Since one byte represented
in hexadecimal has two digits, we must use twice as many characters as there
are bytes for the SHA-1 in the format string. (Incidentally,we could have created
the format string with format = "%016X:%" + fmt.Sprintf("%dX", sha1.Size*2).)

Although multiple goroutines send to the infoChan channel, this function (in the
main goroutine) is the only one that receives from the channel. The for loop
receives fileInfo values—or blocks waiting. The loop ends when all the values
have been received and the infoChan channel is closed. For each fileInfo value
received, a map key string is computed. If the map doesn’t have an item with
the key, we create a suitable value with the given file size, and with an empty
slice of paths, and add it to the map under the new key. Then, with the new or
existing item in themap,we append to the item’s paths the path of the file in the
fileInfo value.

And at the end, this will result in duplicate files having path slices with more
than one path, and nonduplicates having path slices with exactly one path.
Once all the fileInfo values have been processed and the map populated, the
function returns the map ready for further processing.

ptg7913109

356 Chapter 7. Concurrent Programming

func outputResults(pathData map[string]*pathsInfo) {
 keys := make([]string, 0, len(pathData))

for key := range pathData {
 keys = append(keys, key)
 }
 sort.Strings(keys)

for _, key := range keys {
 value := pathData[key]

if len(value.paths) > 1 {
 fmt.Printf("%d duplicate files (%s bytes):\n",

len(value.paths), commas(value.size))
 sort.Strings(value.paths)

for _, name := range value.paths {
 fmt.Printf("\t%s\n", name)
 }
 }
 }
}

The pathDatamap’skeysare strings that beginwith each file’s size in 16hexadec-
imal digits padded with leading zeros. (16 digits was chosen since this is large
enough to represent an int64.) This means that by retrieving and sorting the
keys we can get the files in size order from smallest to biggest. So, the function
begins by creating a keys slice to which each of the map’s keys are appended,
after which the keys are sorted. Then, the function iterates over the size-sorted
slice of keys, retrieving the corresponding pathsInfo value. For those that have
more than one path the files’ size is output followed by an indented list of the
duplicate files in path-sorted order, as shown below.

$./findduplicates $GOROOT

2 duplicate files (67 bytes):
/home/mark/opt/go/test/fixedbugs/bug248.dir/bug0.go
/home/mark/opt/go/test/fixedbugs/bug248.dir/bug1.go

...
4 duplicate files (785 bytes):

/home/mark/opt/go/doc/gopher/gophercolor16x16.png
/home/mark/opt/go/favicon.ico
/home/mark/opt/go/misc/dashboard/godashboard/static/favicon.ico
/home/mark/opt/go/src/pkg/archive/zip/testdata/gophercolor16x16.png

...
2 duplicate files (1,371,249 bytes):

/home/mark/opt/go/bin/ebnflint
/home/mark/opt/go/src/cmd/ebnflint/ebnflint

ptg7913109

7.2. Examples 357

We have, of course, elided many lines as the ellipses indicate.

func commas(x int64) string {
 value := fmt.Sprint(x)

for i := len(value) - 3; i > 0; i -= 3 {
 value = value[:i] + "," + value[i:]
 }

return value
}

Most humans find it difficult to parse long numbers (e.g., 1371249), so we have
used this simple commas() function to insert grouping commas to make the
sizes easier to read. The function accepts a single int64 value, so if we have
a plain int or an integer of some other size, we must convert it—for example,
commas(int64(i)).★

This completes our review of the findduplicates program and of Go concurrent
programming generally. Go’s support for concurrency (<-, chan, go, select) is
very flexible and there are many more variations on how to do things than we
have had the space to show here. Nonetheless, the examples—and the exercises
that follow—should be sufficient to provide a good understanding of how to do
concurrent programming in Go, and offer a useful starting point for creating
new concurrent programs.

Of course, it is not possible to state definitively which of the approacheswe have
covered (or the other possible approaches) is the best to use, since each one may
prove best in different circumstances. The performanceprofile of each approach
is affected by the particular machine, the number of goroutines, and whether
the processing is purely in-memory or involves external data (such as accessing
files or network communications). A reliable means of finding out which is
the best approach for a particular program is to time (or profile) the program
using real (or realistic) data using different approaches and different numbers
of goroutines.

7.3. Exercises
This chapter has three exercises. The first involves creating a thread-safe data
structure. The second and third require the creation of small but complete
concurrent programs, with the third exercise being fairly challenging.

1. Create a thread-safe slice type called safeSlice and the following exported
SafeSlice interface:

★At the time of this writing, Go has no locale support.

ptg7913109

358 Chapter 7. Concurrent Programming

type SafeSlice interface {
 Append(interface{}) // Append the given item to the slice
 At(int) interface{} // Return the item at the given index position
 Close() []interface{} // Close the channel and return the slice
 Delete(int) // Delete the item at the given index position
 Len() int // Return the number of items in the slice
 Update(int, UpdateFunc) // Update the item at the given index position
}

It will also be necessary to create a safeSlice.run()method in which the un-
derlying slice (of type []interface{}) is created, andwhich runs an “infinite”
loop iterating over the communications channel, and a New() function in
which the safe slice is created and the safeSlice.run() method executed in
a goroutine.

The safe slice implementation can easily be modeled on the safe map cov-
ered earlier (§7.2.3, 334 ➤), and has the same deadlock risk in the safe-
Slice.Update()method. A solution is given in the safeslice/safeslice.gofile
and is under 100 lines. (The apachereport4 program can be used for testing
since it uses the safeslice package.)

2. Create a program that accepts one or more image filenames on the com-
mand line, and for each one prints a line on the console as an HTML tag of
the form . The program
should process the images concurrently using a fixed number of worker
goroutines, and the order of output doesn’t matter (so long as each line is
output complete!).Thefilenamesshouldbe outputwithout paths. Allowany
files to be given on the command line, but ignore those that aren’t regular
files or that aren’t images, and ignore all errors.

The standard library’s image.DecodeConfig() function can retrieve an im-
age’swidth and height froman io.Reader (as returned by os.Open()),without
having to read the entire image. For this function to be able to recognize
various image formats, (.jpg, .png, etc.), it is necessary to import the corre-
sponding packages. However, we don’t need to access these packages di-
rectly, so to avoid the Go compiler giving us “imported and not used” errors,
we must import the packages to the blank identifier (e.g., _ "image/jpeg"; _
"image/png", etc.).We discuss these kinds of import in the next chapter.

The book’s examples include two implementations, imagetag1 which is
single-threaded (no additional goroutines, no channels), and imagetag2
which is concurrent in a similar way to this chapter’s cgrep2 example. If
you just want to focus on the concurrency aspects you might like to copy the
imagetag1/imagetag1.go file to, say, the my_imagetag directory and convert it
from being single-threaded to concurrent. This will involve modifying the
main() and process() functions, and the addition of around 40 lines of code.
Windows users might like to use the commandLineFiles() function (176 ➤) to

ptg7913109

7.3. Exercises 359

handle file globbing; both implementations already include this. The more
confident reader might prefer to try writing the program entirely from
scratch. The solution in imagetag2/imagetag2.go takes one of many different
possible approaches and is around 100 lines.

3. Create a concurrent program that uses a fixed number of worker goroutines
and that accepts one ormoreHTMLfiles on the command line.The program
should read each HTML file and every time it finds an tag it should
check to see if the tag has width and height attributes, and if not, it should
ascertain the image’s width and height and add the missing attribute or
attributes. The concurrency structure could be done in a similar way to
one of the apachereport examples (but not the mutex-using apachereport2
version), except that there is no need for a results channel.

Since Go 1 doesn’t have an HTML parser, for this exercise we use the reg-
exp and strings packages.★ We searched for image tags using the regular
expression string `<[iI][mM][gG][^>]+>`, and we identified image filenames
within image tags using the regular expression `src=["']([^"']+)["']`.
(These regexeps are not very sophisticated since we want to focus on con-
currency, not regular expressions, for which see §3.6.5, 120 ➤.) Use the im-
age.DecodeConfig() function discussed in the previous exercise (along with
all the imports) to get each image’s size. Asusual,Windowsusersmight like
to use the commandLineFiles() function (176 ➤) to handle file globbing.

The concurrency aspects of this program are quite straightforward, but
the processing is quite tricky. This is a welcome change from concurrent
programming in some other languages where the concurrency aspects
overwhelm the actual processing that needs to be done.

Two solutions are provided. The first solution, sizeimages1 (in file size-
images1/sizeimages1.go), does everything it should, but has one disadvan-
tage: It can only find the image files if it is run in the same directory as the
HTML files. This limitation is due to the fact that we replace each
tag with an updated tag using the regexp.Regexp.ReplaceAllStringFunc()
method. This method expects to be passed a replacer function with signa-
ture func(string) string with the string passed in being the matched text
and the returned string being the replacement. A typical string passed in
might be ``. The replacer function has no idea what
the path to the splash.png file is, and so must assume the current directory,
and hence the limitation that sizeimages1must be run in the same directory
as the HTML files.

It might be tempting to try to solve the problem by using a global direc-
tory string and assigning the current HTML file’s path to it before using
the replacer function—but this won’t work in all situations. Why? The

★An HTML parser is in development and may be available by the time you read this.

ptg7913109

360 Chapter 7. Concurrent Programming

second solution, sizeimages2 (in file sizeimages2/sizeimages2.go), solves the
problem by creating a fresh replacer function as a closure that captures the
HTML file’s directory each time it is needed. Then, the replacer function
uses the captured directory as the image’s path for image files that have rel-
ative paths.

This is probably the most challenging exercise in the book so far, and will
require looking up functions in the image, regexp, and strings packages.
The sizeimages1.go file is around 160 lines, with sizeimages2.go under
170 lines.

ptg7913109

8 File Handling

§8.1. Custom Data Files ➤ 362

§8.1.1. Handling JSON Files ➤ 365

§8.1.2. Handling XML Files ➤ 371

§8.1.3. Handling Plain Text Files ➤ 377

§8.1.4. Handling Go Binary Files ➤ 385

§8.1.5. Handling Custom Binary Files ➤ 387

§8.2. Archive Files ➤ 397

§8.2.1. Creating Zip Archives ➤ 397

§8.2.2. Creating Optionally Compressed Tarballs ➤ 399

§8.2.3. Unpacking Zip Archives ➤ 401

§8.2.4. Unpacking Optionally Compressed Tarballs ➤ 403

In earlier chapters we saw several examples of reading, creating, and writing
text files. In this chapter we will look in more detail at Go’s file handling
facilities and in particular how to read and write files in standard formats (such
as XML and JSON), as well as custom plain text and binary formats.

Since we have now covered all of Go’s language features (apart from creating
programswith our own custompackagesandwith third-party packages—which
is covered in the next chapter), we are free to use all the facilities that Go pro-
vides. We will take advantage of this freedom and make use of closures (§5.6.3,
225 ➤) to avoid repetitive code, and in some cases make more advanced use of
Go’s support for object orientation, in particular adding methods to functions.

This chapter’s focus is on files rather than directories or the file system gen-
erally. For directories, the previous chapter’s findduplicates example (§7.2.5,
349 ➤) shows how to iterate over the files and subdirectories of a directo-
ry using the filepath.Walk() function. In addition, the standard library’s os
package’s os.File type provides methods for reading the names in a directory
(os.File.Readdirnames()), and for retrieving os.FileInfo values for each item in
a directory (os.File.Readdir()).

361

ptg7913109

362 Chapter 8. File Handling

This chapter’s first section shows how to write and read files using standard and
customfile formats. The second section coversGo’s support for handling archive
files and compression.

8.1. Custom Data Files
It is quite common for programs to maintain internal data structures and to
provide import/export functionality to support data interchange, and also to
facilitate the processing of their data by external tools. Since our concern here
is with file handling, we will focus purely on how to write and read data to and
from standard and custom formats from and into a program’s internal data
structures.

For this section wewill use the same data for all the examples so that we can get
a direct comparison between the various file formats. All the code is taken from
the invoicedata program (in the invoicedata directory in the files invoicedata.go,
gob.go, inv.go, jsn.go, txt.go, and xml.go). The program takes two filenames
as command-line arguments, one to read and one to write (and which must
be different). The program then reads the data from the first file (in whatever
format its suffix indicates) and writes the same data to the second file (again,
using whatever format its suffix indicates).

The files created by invoicedata work cross-platform, that is, a file created on,
say, Windows, is readable on Mac OS X and Linux, and vice versa, no matter
which format it is. Gzip-compressed files (e.g., invoices.gob.gz) can be read and
written seamlessly; compression is covered in the second section (§8.2, ➤ 397).

The data consists of an []*Invoice, that is, a slice of pointers to Invoice values.
Each invoice is held in an Invoice value, and each invoice holds zero or more
items in its Items field of type []*Item (slice of pointers to Item).

type Invoice struct {
 Id int
 CustomerId int
 Raised time.Time
 Due time.Time
 Paid bool
 Note string
 Items []*Item
}

type Item struct {
 Id string
 Price float64
 Quantity int
 Note string
}

These two structs are used to hold the data.Table 8.1 shows some informal com-
parisons of how long it took to read and write the same 50000 random invoices,
and the size of thefile occupied by those invoices in each format. The timingsare
in seconds rounded up to the nearest tenth of a second—they should be taken as
unitless since they will undoubtedly vary on different hardware under different

ptg7913109

8.1. CustomData Files 363

Table 8.1 Format Speed and Size Comparisons

Suffix Read Write Size (KiB) Read/Write LOC Format

.gob 0.3 0.2 7 948

.gob.gz 0.5 1.5 2 589
21 + 11 = 32 Go Binary

.jsn 4.5 2.2 16 283

.jsn.gz 4.5 3.4 2 678
32 + 17 = 49 JSON

.xml 6.7 1.2 18 917

.xml.gz 6.9 2.7 2 730
45 + 30 = 75 XML

.txt 1.9 1.0 12 375

.txt.gz 2.2 2.2 2 514
86 + 53 = 139 Plain text (UTF-8)

.inv 1.7 3.5 7 250

.inv.gz 1.6 2.6 2 400
128 + 87 = 215 Custom binary

loads. The size column shows the sizes in kibibytes—these should be very con-
sistent acrossmachines. For this data set, the compressed sizes are surprisingly
similar,even though theuncompressedsizesvary considerably. The linesof code
exclude code that is common to all formats (e.g., the code for decompressing and
compressing and the structs).

The timings and file sizes are what we would reasonably expect—apart from
the extremely fast reading and writing of the plain text format. This is thanks
to the fmt package’s excellent print and scan functions in conjunction with a
custom text format thatwe designed to be easy to parse. For the JSONandXML
formats, instead of using the default storage for time.Time values (an ISO-8601
date/time string),we have simply stored the date part—thishas slightly reduced
the file size at the expense of some processing speed and some additional code.
For example, the JSON code would run faster, and be about the same number of
lines as the Go binary code, if we allowed it to handle time.Time values itself.

For binary data, the Go binary format is the most convenient to use—it is very
fast, is extremely compact, requires very little code, and is relatively easy to
adapt to data changes. However, if we use custom types that are not initially
gob-encodable and have to make them satisfy the gob.Encoder and gob.Decoder
interfaces, this can considerably slow down writing and reading in gob format,
and also bloat out the file size.

For human-readable data,XML is probably the best format to use—particularly
since it is so useful as a data interchange format. More lines are required to
handle XML format than JSON format. This is because Go 1 doesn’t have an
xml.Marshaler interface (a lack that is expected to bemade good in a later Go 1.x
release), and also because we have used parallel data types (XMLInvoice and
XMLItem) to help map between the XML data and the invoice data (Invoice and
Item). Applications that use XML as their external storage format would not

ptg7913109

364 Chapter 8. File Handling

need the parallel data types or the conversions that the invoicedata program
needs, so are likely to be faster and require less code than the invoicedata exam-
ple suggests.

In addition to reading and writing speed, file size, and lines of code, there is one
other issue that we should consider: format robustness. For example, if we add
one field to the Invoice struct and one field to the Item struct, then we will need
to change our file formats. How easy is it to adapt our code to write and read the
new format—and also be able to continue reading the old format? Providing we
take care to version our file formats such changes are pretty straightforward to
cater to (as one of the chapter’s exerciseswill demonstrate)—with the exception
of JSON format for which adapting the code to be able to read both the old and
new formats is slightly tricky.

In addition to the Invoice and Item structs, all the file formats share some
constants:

const (
 fileType = "INVOICES" // Used by text formats
 magicNumber = 0x125D // Used by binary formats
 fileVersion = 100 // Used by all formats
 dateFormat = "2006-01-02" // This date must always be used
)

The magicNumber is used to uniquely identify invoice files.★ The fileVersion
indicates the invoice file version—using this makes it easier to change the
program later on to accommodate changes to the data. The dateFormat shows
how we want dates formatted in human-readable formats and is discussed later
on (➤ 368).

We have also created a couple of interfaces.

type InvoicesMarshaler interface {
 MarshalInvoices(writer io.Writer, invoices []*Invoice) error

}

type InvoicesUnmarshaler interface {
 UnmarshalInvoices(reader io.Reader) ([]*Invoice, error)
}

The purpose of these is to make it easy to use a reader or writer for a specific
format in a generic way. For example, here is the function the invoicedata
program uses to read invoices from an open file.

★ There is no universal repository of magic numbers, so we cannot be certain that any particular
magic number hasn’t been used before.

ptg7913109

8.1. CustomData Files 365

func readInvoices(reader io.Reader, suffix string) ([]*Invoice, error) {
var unmarshaler InvoicesUnmarshaler
switch suffix {
case ".gob":

 unmarshaler = GobMarshaler{}
case ".inv":

 unmarshaler = InvMarshaler{}
case ".jsn", ".json":

 unmarshaler = JSONMarshaler{}
case ".txt":

 unmarshaler = TxtMarshaler{}
case ".xml":

 unmarshaler = XMLMarshaler{}
 }

if unmarshaler != nil {
return unmarshaler.UnmarshalInvoices(reader)

 }
return nil, fmt.Errorf("unrecognized input suffix: %s", suffix)

}

The reader is any value that satisfies the io.Reader interface, such as an open
file (of type *os.File), or a gzip decompressor (of type *gzip.Reader), or a
string.Reader. The suffix string is the file’s suffix (after any .gz suffix has been
stripped off). The GobMarshaler, InvMarshaler, and so on, are custom types which
provide the MarshalInvoices() and UnmarshalInvoices() methods (and therefore
satisfy the InvoicesMarshaler and InvoicesUnmarshaler interfaces), as we will see
in the following subsections.

8.1.1. Handling JSON Files

According to www.json.org, JSON (JavaScript Object Notation) is a lightweight
data interchange format that is easy for humans to read and write, and easy
for machines to parse and generate. JSON is a plain text format using the
UTF-8 encoding. JSON has become increasingly popular—particularly for
transferring data over network connections—because it is more convenient to
write, is (usually)muchmore compact, and requiresmuch less processing power
to parse than XML.

Here is the data for a single invoice in JSON format, but with most of the
invoice’s second item’s fields elided.

{
 "Id": 4461,
 "CustomerId": 917,
 "Raised": "2012-07-22",

www.json.org

ptg7913109

366 Chapter 8. File Handling

 "Due": "2012-08-21",
 "Paid": true,
 "Note": "Use trade entrance",
 "Items": [
 {
 "Id": "AM2574",
 "Price": 415.8,
 "Quantity": 5,
 "Note": ""
 },
 {
 "Id": "MI7296",
 ...
 }
]
}

Normally, the encoding/json package writes JSON data without any unnec-
essary whitespace, but we have shown it here with indentation and spaces to
make it easier to see the data’s structure. Although the encoding/json package
supports time.Times,we have chosen to implement our own custom MarshalJSON()
and UnmarshalJSON() Invoice methods to handle the raised and due dates our-
selves. This allows us to store shorter date strings (since for our data the time
elements are always zero), such as "2012-09-06", rather than full date/times such
as "2012-09-06T00:00:00Z".

8.1.1.1. Writing JSON Files

We have created a type based on an empty struct to give us something with
which to associate the JSON-specific MarshalInvoices() and UnmarshalInvoices()
methods.

type JSONMarshaler struct{}

This type fulfills the generic InvoicesMarshaler and InvoicesUnmarshaler inter-
faces that we saw earlier (365 ➤).

Here is a method for writing an entire data set of []*Invoice items to an
io.Writer in JSON format using the encoding/json package’s standard Go to
JSON marshaling conversions. The writer could be an *os.File returned by
the os.Create() function, or a *gzip.Writer returned by the gzip.NewWriter()
function—or anything else that fulfills the io.Writer interface.

func (JSONMarshaler) MarshalInvoices(writer io.Writer,
 invoices []*Invoice) error {

ptg7913109

8.1. CustomData Files 367

 encoder := json.NewEncoder(writer)
if err := encoder.Encode(fileType); err != nil {

return err
 }

if err := encoder.Encode(fileVersion); err != nil {
return err

 }
return encoder.Encode(invoices)

}

The JSONMarshaler type has no data so we don’t need to assign its value to a
receiver variable.

We begin by creating a JSON encoder that wraps the io.Writer and provides an
encoder to which we can write our JSON-encodable data.

We write the data using the json.Encoder.Encode() method. This method copes
perfectly with our slice of invoices each of which contains its own slice of items.
The method returns an error or nil; if we get an error we immediately return it
to the caller.

Writing a file type and a file version isn’t strictly necessary, but as one of the
exercises will illustrate, doing so makes it much easier to change the file format
later on (e.g., to accommodate additional fields in the Invoice and Item structs),
and be able to read both this format and the new format.

Notice that the method isn’t really concerned with the types of the data it en-
codes, so it is trivial to create similar functions for writing other JSON-encod-
able data. Furthermore, the JSONMarshaler.MarshalInvoices() method will not
require any changes to write a new format providing that all the new fields are
exported and JSON-encodable.

If the code shownherewasall of the program’sJSON-related code, then it would
work perfectly well as it is. However, since we want to exercise finer control
over the JSON output—in particular the formatting of time.Time values—we
have provided the Invoice type with a MarshalJSON() method that satisfies the
json.Marshaler interface. The json.Encode() function is smart enough to check
whether a value it is asked to encode is a json.Marshaler, and if it is, the function
uses the value’s own MarshalJSON() method rather than using its own built-in
encoding code.

type JSONInvoice struct {
 Id int
 CustomerId int
 Raised string // time.Time in Invoice struct
 Due string // time.Time in Invoice struct
 Paid bool

ptg7913109

368 Chapter 8. File Handling

 Note string
 Items []*Item
}

func (invoice Invoice) MarshalJSON() ([]byte, error) {
 jsonInvoice := JSONInvoice{
 invoice.Id,
 invoice.CustomerId,
 invoice.Raised.Format(dateFormat),
 invoice.Due.Format(dateFormat),
 invoice.Paid,
 invoice.Note,
 invoice.Items,
 }

return json.Marshal(jsonInvoice)
}

The custom Invoice.MarshalJSON()method takes an existing Invoice and returns
a JSON-encoded version of it. The function’s first statement simply copies the
invoice’s fields into a custom JSONInvoice struct, converting the two time.Time
values into strings. Since the JSONInvoice struct’s fields are all Booleans,
numbers, or strings, the struct can be JSON-encoded using the json.Marshal()
function, so we use this function to do almost all of the work.

To write date/times (i.e., time.Time values) as strings,wemust use the time.Time.
Format() method. This method takes a format string which indicates how
the date/time must be written. The format string is rather unusual in that
it must be a string representation of Unix time 1136243045, that is, the pre-
cise date/time 2006-01-02T15:04:05Z07:00, or, as here, some subset of that
date/time. The choice of this particular date/time is arbitrary,but fixed—no oth-
er value will do for specifying date, time, and date/time formats.

If we want to create our own date/time formats they must always be written
in terms of the Go date/time. For example, if we wanted to write a date in the
formweekday,month,day,year,wemust use a format such as "Mon, Jan 02, 2006",
or "Mon, Jan _2, 2006" if we want to suppress leading zeros. The time package’s
documentation has full details—and also lists some predefined format strings.

8.1.1.2. Reading JSON Files

Reading JSON data is just as easy as writing it—especially if we read it
back into top-level variables of the same types as the ones written. The JSON-
Marshaler.UnmarshalInvoices() method takes an io.Reader which could be an
*os.File returned by the os.Open() function, or a *gzip.Reader returned by the
gzip.NewReader() function—or anything else that fulfills the io.Reader inter-
face.

ptg7913109

8.1. CustomData Files 369

func (JSONMarshaler) UnmarshalInvoices(reader io.Reader) ([]*Invoice,
error) {

 decoder := json.NewDecoder(reader)
var kind string
if err := decoder.Decode(&kind); err != nil {

return nil, err
 }

if kind != fileType {
return nil, errors.New("cannot read non-invoices json file")

 }
var version int
if err := decoder.Decode(&version); err != nil {

return nil, err
 }

if version > fileVersion {
return nil, fmt.Errorf("version %d is too new to read", version)

 }
var invoices []*Invoice

 err := decoder.Decode(&invoices)
return invoices, err

}

We have three items of data to read in: the file type, the file version, and the en-
tire invoices data. The json.Decoder.Decode() method takes a pointer to the val-
ue it must populate with the JSON data it decodes, and returns an error or nil.
We use the first two variables (kind and version) to check that we have a JSON
invoices file and that the file version is one we can handle. Then we read the
invoices, in the process of which the json.Decoder.Decode()method will increase
the size of the invoices slice to accommodate the invoices it reads and will popu-
late the slice with pointers to Invoices (and their Items) that the function creates
on the fly as necessary. At the end, the method returns the invoices and nil—or
it returns nil and an error if a problem occurred.

If we had relied purely on the json package’s built-in functionality and left the
raised and due dates to be marshaled in the default way, the code shown here
would be sufficient on its own tounmarshal a JSON-format invoicesfile. Howev-
er, since we have chosen to marshal the invoice data’s raised and due time.Times
in a customway (i.e., storing only the date parts), we must provide our own cus-
tom unmarshaling method that understands our custommarshaling.

func (invoice *Invoice) UnmarshalJSON(data []byte) (err error) {
var jsonInvoice JSONInvoice
if err = json.Unmarshal(data, &jsonInvoice); err != nil {

return err
 }

ptg7913109

370 Chapter 8. File Handling

var raised, due time.Time
if raised, err = time.Parse(dateFormat, jsonInvoice.Raised);

 err != nil {
return err

 }
if due, err = time.Parse(dateFormat, jsonInvoice.Due); err != nil {

return err
 }

*invoice = Invoice{
 jsonInvoice.Id,
 jsonInvoice.CustomerId,
 raised,
 due,
 jsonInvoice.Paid,
 jsonInvoice.Note,
 jsonInvoice.Items,
 }

return nil

}

This method uses the same JSONInvoice struct as before, and relies on the
standard json.Unmarshal() function to populate it with an invoice’s data. We
then create and assign an Invoicewith the unmarshaled data andwith the dates
converted into time.Time values.

Naturally, the json.Decoder.Decode()method is smart enough to check if a value
it is being asked to decode into satisfies the json.Unmarshaler interface, and if it
does, it uses the value’s own UnmarshalJSON() method.

If the invoices data is changed by the addition of exported fields, this method
will continue to work as is—but only if we make our Invoice.UnmarshalJSON()
method version-sensitive. Furthermore, if the new fields’ zero values are not
acceptable, then when reading files in the original format we must post-process
the data to give the new fields sensible values. (One of the exercises involves the
addition of new fields and just this kind of post-processing.)

JSON is an easy format to work with, especially if we create suitable structs
with exported fields, although it can be tricky to support two or more versions of
a JSON file format. Also, the json.Encoder.Encode() and json.Decoder.Decode()
functions (and the json.Marshal() and json.Unmarshal() functions) are not
perfect inverses of each other—this means, for example, that it is possible to
marshal data that cannot then be unmarshaled back into the same form as the
original data. So, we must take care to check that they work correctly for our
particular data.

Incidentally, there is a JSON-like format called BSON (Binary JSON) which
is much more compact than JSON and much faster to write and read. A Go

ptg7913109

8.1. CustomData Files 371

package that provides BSON support (gobson) is available from the godash-
board.appspot.com/projectweb page. (Installing and using third-party packages
is covered in Chapter 9.)

8.1.2. Handling XML Files

The XML (eXtensible Markup Language) format is widely used both as a data
interchange format and as a file format in its own right. XML is a much more
complex and sophisticated format than JSON,but is generallymore verbose and
tedious to write by hand.

The encoding/xml package can encode and decode structs to and from XML for-
mat in a similar way to the encoding/json package. However, the XML encoding
and decoding functionality is much more demanding than for the encoding/json
package. This is partly because the encoding/xml package requires struct fields
to have suitably formatted tags (whereas they are not always needed for JSON).
Also,Go 1’s encoding/xml package doesnot have an xml.Marshaler interface, sowe
must write more code to handle XML than for the JSON and Go binary formats.
(This is expected to be resolved in a later Go 1.x release.)

Here is a single example invoice in XML format with newlines and extra
whitespace included to make it fit the page and be easier to read.

<INVOICE Id="2640" CustomerId="968" Raised="2012-08-27" Due="2012-09-26"
Paid="false"><NOTE>See special Terms & Conditions</NOTE>
<ITEM Id="MI2419" Price="342.80" Quantity="1"><NOTE></NOTE></ITEM>
<ITEM Id="OU5941" Price="448.99" Quantity="3"><NOTE>

"Blue" ordered but will accept "Navy"</NOTE>
</ITEM>
<ITEM Id="IF9284" Price="475.01" Quantity="1"><NOTE></NOTE></ITEM>
<ITEM Id="TI4394" Price="417.79" Quantity="2"><NOTE></NOTE></ITEM>
<ITEM Id="VG4325" Price="80.67" Quantity="5"><NOTE></NOTE></ITEM>

</INVOICE>

Having raw character data in tags (e.g., for the invoices’ and items’ Note fields)
is rather tricky to handle when using the xml package’s encoder and decoder, so
the invoicedata example uses explicit <NOTE> tags.

8.1.2.1. Writing XML Files

The encoding/xml package requires us to use structs whose fields have encod-
ing/xml package-specific tags. In view of this, we cannot use the Invoice and
Item structs directly for XML. So we have created the XML-specific XMLInvoices,
XMLInvoice, and XMLItem structs to solve this. And since the invoicedata program
requires us to have parallel sets of structs,wemust also provide a means of con-
verting between them. Of course, applications that use XML as their primary

ptg7913109

372 Chapter 8. File Handling

storage format would need only one struct (or one set of structs) and would add
the necessary encoding/xml package tags directly to those structs’ fields.

Here is the XMLInvoices struct that will be used to hold the entire data set.

type XMLInvoices struct {
 XMLName xml.Name `xml:"INVOICES"`
 Version int `xml:"version,attr"`
 Invoice []*XMLInvoice `xml:"INVOICE"`
}

No struct tag has any intrinsic semantics in Go—they are just strings acces-
sible using Go’s reflection interface (§9.4.9, ➤ 427). However, the encoding/xml
package requires us to use such tags to provide it with information about how
we want it to map our structs’ fields to or from XML.An xml.Name field is used to
name the tag that will contain the struct that the field is in. Fields tagged with
`xml:",attr"` will become attributes of the tag using the field name as the at-
tribute name. We can force another name to be used if wewish,by preceding the
commawith the namewewant to use. We have done so here tomake the Version
field become an attribute called version, rather than accepting the default name
of Version. If the tag just contains a name, this name is used to indicate nested
tags,<INVOICE> in this example. One important subtlety to note is that instead of
calling the XMLInvoices’s invoices field Invoices,we have called it Invoice to (case-
insensitively) match the tag name.

Here is the original Invoice struct and the parallel XML-equivalent XMLInvoice.

type Invoice struct {
 Id int
 CustomerId int
 Raised time.Time
 Due time.Time
 Paid bool
 Note string
 Items []*Item
}

type XMLInvoice struct {
 XMLName xml.Name `xml:"INVOICE"`
 Id int `xml:",attr"`
 CustomerId int `xml:",attr"`
 Raised string `xml:",attr"`
 Due string `xml:",attr"`
 Paid bool `xml:",attr"`
 Note string `xml:"NOTE"`
 Item []*XMLItem `xml:"ITEM"`
}

We have used the default names for the attributes here—for example, field Cus-
tomerId will become an attribute with exactly the same name. There are two
nested tags, <NOTE> and <ITEM>, and just as for the XMLInvoices struct, instead of
calling the XML invoice’s items field Items, we have called it Item to (case-insen-
sitively) match the tag name.

We have made the XMLInvoice’s Raised and Due fields strings since we want
to handle their values ourselves (just storing dates), rather than allow the
encoding/xml package to store full date/time strings.

ptg7913109

8.1. CustomData Files 373

Here is the original Item struct and the parallel XML-equivalent XMLItem.

type Item struct {
 Id string
 Price float64
 Quantity int
 Note string
}

type XMLItem struct {
 XMLName xml.Name `xml:"ITEM"`
 Id string `xml:",attr"`
 Price float64 `xml:",attr"`
 Quantity int `xml:",attr"`
 Note string `xml:"NOTE"`
}

The XMLItem’s fields are tagged to make them attributes, except for the Note field
which will become a nested <NOTE> tag, and the XMLName field which holds the
item’s own XML tag name.

Just as we did for the JSON format, for XML we have created an empty struct
to give us something with which to associate the XML-specific MarshalInvoices()
and UnmarshalInvoices() methods.

type XMLMarshaler struct{}

This type fulfills the generic InvoicesMarshaler and InvoicesUnmarshaler inter-
faces that we saw earlier (365 ➤).

func (XMLMarshaler) MarshalInvoices(writer io.Writer,
 invoices []*Invoice) error {

if _, err := writer.Write([]byte(xml.Header)); err != nil {
return err

 }
 xmlInvoices := XMLInvoicesForInvoices(invoices)
 encoder := xml.NewEncoder(writer)

return encoder.Encode(xmlInvoices)
}

Thismethod takes an io.Writer (i.e., anything that satisfies the io.Writer inter-
face such as an open file or open compressed file), into which it can write XML.
Themethod begins by writing the standardXMLheader, <?xml version="1.0" en-
coding="UTF-8"?> (the xml.Header constant also includesa trailing newline).Then
it converts all the invoices and their items into the equivalent XML structs. Al-
though this looks like it will use asmuchmemory again as the original data, be-
cause Go’s strings are immutable, under the hood only references to the original
strings will be copied into the XML structs, so the overhead will not be as great
as it appears. And for applications that use structs with XML tags directly, no
conversion is necessary.

Once we have populated the xmlInvoices (of type XMLInvoices), we create a new
xml.Encoder, passing it the io.Writer we want it to write to. Then we encode all

ptg7913109

374 Chapter 8. File Handling

the data as XML and return the encoder’s return value—which will be either an
error or nil.

func XMLInvoicesForInvoices(invoices []*Invoice) *XMLInvoices {
 xmlInvoices := &XMLInvoices{
 Version: fileVersion,
 Invoice: make([]*XMLInvoice, 0, len(invoices)),
 }

for _, invoice := range invoices {
 xmlInvoices.Invoice = append(xmlInvoices.Invoice,
 XMLInvoiceForInvoice(invoice))
 }

return xmlInvoices
}

This function takes an []*Invoice and returns an *XMLInvoices that has all the
data converted to *XMLInvoices (and containing *XMLItems rather than *Items),
relying on the XmlInvoiceForInvoice() function to do all the work.

We never have to populate an xml.Name field ourselves (unless we want to use
namespaces), so herewhenwe create the *XMLInvoicesweneed only populate the
Version field to ensure that our <INVOICES> tag has a version attribute—for exam-
ple, <INVOICES version="100">. We have also set the Invoice field to be an empty
slicewith sufficient capacity for all the invoices. This isn’t strictly necessary,but
is potentially more efficient than leaving the field’s initial value as nil, since it
means thebuilt-in append() functionwill never have to allocatememory and copy
data to grow the slice behind the scenes.

func XMLInvoiceForInvoice(invoice *Invoice) *XMLInvoice {
 xmlInvoice := &XMLInvoice{
 Id: invoice.Id,
 CustomerId: invoice.CustomerId,
 Raised: invoice.Raised.Format(dateFormat),
 Due: invoice.Due.Format(dateFormat),
 Paid: invoice.Paid,
 Note: invoice.Note,
 Item: make([]*XMLItem, 0, len(invoice.Items)),
 }

for _, item := range invoice.Items {
 xmlItem := &XMLItem{
 Id: item.Id,
 Price: item.Price,
 Quantity: item.Quantity,
 Note: item.Note,
 }

ptg7913109

8.1. CustomData Files 375

 xmlInvoice.Item = append(xmlInvoice.Item, xmlItem)
 }

return xmlInvoice
}

This function takes an Invoice and returns the equivalent XMLInvoice. The
conversion is straightforward:We simply copy most of the Invoice field values to
the corresponding XMLInvoice fields. Since we have chosen to handle the raised
and due dates ourselves (so that we store only dates and not full date/times),we
convert them to strings. And for the Invoice.Items field we append each item as
an XMLItem to the XMLInvoice.Item slice. We used the same potential optimization
as before, creating the Item slice to have sufficient capacity to avoid append() ever
having to allocatememory and copy data. We discussed thewriting of time.Time
values when covering the JSON format earlier (368 ➤).

One final point to note is that nowhere in our code dowe do any XML-escaping—
this is taken care of automatically by the xml.Encoder.Encode() method.

8.1.2.2. Reading XML Files

Reading XML files is slightly more involved than writing, especially if we have
to parse some fields ourselves (such as dates); but it isn’t difficult if we use
suitable XML-tagged structs.

func (XMLMarshaler) UnmarshalInvoices(reader io.Reader) ([]*Invoice,
error) {

 xmlInvoices := &XMLInvoices{}
 decoder := xml.NewDecoder(reader)

if err := decoder.Decode(xmlInvoices); err != nil {
return nil, err

 }
if xmlInvoices.Version > fileVersion {

return nil, fmt.Errorf("version %d is too new to read",
 xmlInvoices.Version)
 }

return xmlInvoices.Invoices()
}

This method takes an io.Reader (i.e., anything that satisfies the io.Reader
interface such as an open file or open compressed file), fromwhich to read XML.
The method begins by creating a pointer to an empty XMLInvoices struct and
an xml.Decoder for reading the io.Reader. The entire XML file is then parsed by
the xml.Decoder.Decode() method, and if the parse is successful the *XMLInvoices
struct is populatedwith theXMLfile’s data. If the parse failed (e.g., if therewas
an XML syntax error or if the file isn’t an invoices file), the decoder will return
an error which we immediately pass to the caller. If the parse is successful we

ptg7913109

376 Chapter 8. File Handling

check the version, and if it is one we can handle we convert all the XML structs
back to the structs used internally in our program. Naturally, this conversion
step would be unnecessary if we used only XML-tagged structs.

func (xmlInvoices *XMLInvoices) Invoices() (invoices []*Invoice,
 err error) {
 invoices = make([]*Invoice, 0, len(xmlInvoices.Invoice))

for _, xmlInvoice := range xmlInvoices.Invoice {
 invoice, err := xmlInvoice.Invoice()

if err != nil {
return nil, err

 }
 invoices = append(invoices, invoice)
 }

return invoices, nil

}

The XMLInvoices.Invoices()method converts an *XMLInvoices into an []*Invoice.
It is the inverse of the XmlInvoicesForInvoices() function (374 ➤), and passes all
the conversion work onto the XMLInvoice.Invoice() method.

func (xmlInvoice *XMLInvoice) Invoice() (invoice *Invoice, err error) {
 invoice = &Invoice{
 Id: xmlInvoice.Id,
 CustomerId: xmlInvoice.CustomerId,
 Paid: xmlInvoice.Paid,
 Note: strings.TrimSpace(xmlInvoice.Note),
 Items: make([]*Item, 0, len(xmlInvoice.Item)),
 }

if invoice.Raised, err = time.Parse(dateFormat, xmlInvoice.Raised);
 err != nil {

return nil, err
 }

if invoice.Due, err = time.Parse(dateFormat, xmlInvoice.Due);
 err != nil {

return nil, err
 }

for _, xmlItem := range xmlInvoice.Item {
 item := &Item{
 Id: xmlItem.Id,
 Price: xmlItem.Price,
 Quantity: xmlItem.Quantity,
 Note: strings.TrimSpace(xmlItem.Note),
 }
 invoice.Items = append(invoice.Items, item)

ptg7913109

8.1. CustomData Files 377

 }
return invoice, nil

}

This XMLInvoice.Invoice() method is used to return the *Invoice that’s equiva-
lent to the *XMLInvoice it is called on.

The method begins by creating an Invoice with most of the fields populated
from the XMLInvoice, and with the Items field set to an empty slice with sufficient
capacity for the items.

Then the two date/time valued fields are populated manually, since we opted
to handle these ourselves. The time.Parse() function takes a date/time for-
mat string (which, as noted earlier, must be based on the precise date/time
2006-01-02T15:04:05Z07:00), and a string to parse, and returns the equivalent
time.Time and nil—or nil and an error.

Next, the invoice’s Items field is populated by iterating over the *XMLItems in
the XMLInvoice’s Item field and creating equivalent *Items. And at the end, the
*Invoice is returned.

Just as when writing XML,we don’t have to concern ourselves with unescaping
any XML we read—the xml.Decoder.Decode() function takes care of this auto-
matically.

The xml package supports much more sophisticated tags than we have needed
here, including nesting. For example, the tag name `xml:"Books>Author"` would
result in the XML <Books><Author>content</Author></Books>. Also, in addition to
`xml:",attr"`, the package supports `xml:",chardata"` to write the field as char-
acter data, `xml:",innerxml"` to write the field verbatim, and `xml:",comment"`
to write the field as an XML comment. So, by using tagged structs we are able
to take full advantage of the convenient encoding and decoding functions, and
at the same time exercise considerable control over how the XML is written
and read.

8.1.3. Handling Plain Text Files

For plain text files we must create our own custom format, ideally one that is
easy to parse and extend.

Here is the data for a single invoice in a custom plain text format.

INVOICE ID=5441 CUSTOMER=960 RAISED=2012-09-06 DUE=2012-10-06 PAID=true
ITEM ID=BE9066 PRICE=400.89 QUANTITY=7: Keep out of <direct> sunlight
ITEM ID=AM7240 PRICE=183.69 QUANTITY=2
ITEM ID=PT9110 PRICE=105.40 QUANTITY=3: Flammable
F
F

ptg7913109

378 Chapter 8. File Handling

The format for each invoice is an INVOICE line, then one or more ITEM lines, and
finally a form-feed character. Each line (whether for invoices or their items) has
the same essential structure: a word identifying the type of line, a sequence of
space-separated key=values, and optionally, a colon-space followed by note text.

8.1.3.1. Writing Plain Text Files

Writing plain text is straightforward thanks to Go’s powerful and flexible fmt
package’s print functions. (These were covered earlier; §3.5, 93 ➤.)

type TxtMarshaler struct{}

func (TxtMarshaler) MarshalInvoices(writer io.Writer,
 invoices []*Invoice) error {
 bufferedWriter := bufio.NewWriter(writer)

defer bufferedWriter.Flush()
var write writerFunc = func(format string,

 args ...interface{}) error {
 _, err := fmt.Fprintf(bufferedWriter, format, args...)

return err
 }

if err := write("%s %d\n", fileType, fileVersion); err != nil {
return err

 }
for _, invoice := range invoices {

if err := write.writeInvoice(invoice); err != nil {
return err

 }
 }

return nil

}

This method begins by creating a buffered reader to operate on the file it is
passed. It is essential that we defer the flushing of the buffer to guarantee that
everything we write really does get written to the file (unless an error occurs).

Rather than checking every write with code of the form if _, err := fmt.Fprintf(
bufferedWriter, ...); err != nil { return err } we have created a function
literal that provides two simplifications. First, the write() function ignores the
number of bytes written that the fmt.Fprintf() function reports. Second, the
function captures the bufferedWriter so we don’t have to mention it explicitly in
our code.

We could have simply passed our write() function to helper functions, for
example, writeInvoice(write, invoice). But instead we have gone a step fur-
ther and have added methods to the writerFunc type. This is done simply by
declaring methods (i.e., funcs) that take a writerFunc as their receiver, just

ptg7913109

8.1. CustomData Files 379

as we would do for any other type. This is what allows us to make calls like
write.writeInvoice(invoice), that is, to be able to call methods on the write()
function itself; and since such methods receive the write() function as their re-
ceiver, they can make use of it.

Notice that we had to explicitly specify the write() function’s type (writerFunc)—
hadwe not done so,Gowould consider its type to be func(string, ...interface{})
error (which it is, of course) and would not have allowed us to call writerFunc
methods on it (unless we used a type conversion to type writerFunc).

With the convenient write() function (and its methods) now available, we begin
by writing the file type and file version (the latter to make it easier to adapt to
changing data). Then, we iterate over every invoice, and for each one we call the
write() function’s writeInvoice() method.

const noteSep = ":"

type writerFunc func(string, ...interface{}) error

func (write writerFunc) writeInvoice(invoice *Invoice) error {
 note := ""

if invoice.Note != "" {
 note = noteSep + " " + invoice.Note
 }

if err := write("INVOICE ID=%d CUSTOMER=%d RAISED=%s DUE=%s "+
"PAID=%t%s\n", invoice.Id, invoice.CustomerId,

 invoice.Raised.Format(dateFormat),
 invoice.Due.Format(dateFormat), invoice.Paid, note); err != nil {

return err
 }

if err := write.writeItems(invoice.Items); err != nil {
return err

 }
return write("\f\n")

}

This method is used to write each invoice. It accepts the invoice to write and
writes using the write() function it is called on.

The invoice line is written in one go. If a note is present we write it preceded
by colon-space; otherwise we write nothing at all for it. For the date/times (i.e.,
time.Time values), we use the time.Time.Format() method, the same as we did
when writing the data in JSON and XML format (368 ➤). And for the Boolean
we use the %t format verb (§3.5.1, 97 ➤); alternatively we could have used the %v
verb or the strconv.FormatBool() function (116 ➤).

Once the invoice line has been written, we write the items, and at the end, we
write a form-feed and a newline to indicate the end of the invoice’s data.

ptg7913109

380 Chapter 8. File Handling

func (write writerFunc) writeItems(items []*Item) error {
for _, item := range items {

 note := ""
if item.Note != "" {

 note = noteSep + " " + item.Note
 }

if err := write("ITEM ID=%s PRICE=%.2f QUANTITY=%d%s\n", item.Id,
 item.Price, item.Quantity, note); err != nil {

return err
 }
 }

return nil

}

The writeItems()method accepts the invoice’s itemsandwritesusing the write()
function it is called on. It iterates over all the items, writing each one in turn,
and just as for invoices, writes only nonempty notes.

8.1.3.2. Reading Plain Text Files

It is almost as easy to open and read in plain text as it is to write it—but
parsing the text to reconstruct the original data can be tricky depending on the
complexity of the format.

There are four approaches that can be used. The first three approaches involve
splitting lines up and then using conversion functions such as strconv.Atoi()
and time.Parse() for nonstring fields. These approaches are, first,manual pars-
ing (e.g., character by character or word by word)—this can be tedious to imple-
ment, fragile, and slow; second, using the fmt.Fields() or fmt.Split() functions
to split up each line; and third, using regular expressions. For the invoicedata
program we have used the fourth approach: This does not require us to split up
lines or to use conversion functions since almost everything we need can be han-
dled by the fmt package’s scan functions.

func (TxtMarshaler) UnmarshalInvoices(reader io.Reader) ([]*Invoice,
error) {

 bufferedReader := bufio.NewReader(reader)
if err := checkTxtVersion(bufferedReader); err != nil {

return nil, err
 }

var invoices []*Invoice
 eof := false

for lino := 2; !eof; lino++ {
 line, err := bufferedReader.ReadString('\n')

if err == io.EOF {

ptg7913109

8.1. CustomData Files 381

 err = nil // io.EOF isn't really an error
 eof = true // this will end the loop at the next iteration
 } else if err != nil {

return nil, err // finish immediately for real errors
 }

if invoices, err = parseTxtLine(lino, line, invoices); err != nil {
return nil, err

 }
 }

return invoices, nil

}

This method creates a buffered reader for the io.Reader it is passed, and passes
each line in turn to a parser function. As usual for text files, we handle io.
EOF specially, so that the last line is always read whether or not it ends with a
newline. (Of course, this is rather liberal for this particular format.)

The file is read line by line using 1-based line numbering, as is conventional.
The first line is checked to see that it has a valid file type and version, hence the
line number (lino) begins at 2 when processing the actual invoice data.

Since we are working line by line and each invoice is represented by two or more
lines (an INVOICE line and one or more ITEM lines), we need to keep track of the
current invoice so that we can add to it as each line is read. This is easily done
because invoices are appended to the invoices slice, so the current invoice is
always the one at position invoices[len(invoices)-1].

When the parseTxtLine() function parses an INVOICE line it creates a new Invoice
value and appends a pointer to this value to the invoices slice.

There are two techniques we can use if we want to append to a slice inside a
function. The first technique is to pass a pointer to the slice and operate on the
pointed-to slice. The second technique is to pass in the slice value and return
the (possiblymodified) slice back for the caller to assign to the original slice. The
parseTxtLine() function uses the second technique. (We saw an example of the
first technique earlier; §5.7, 244 ➤.)

func parseTxtLine(lino int, line string, invoices []*Invoice) ([]*Invoice,
error) {
var err error

if strings.HasPrefix(line, "INVOICE") {
var invoice *Invoice

 invoice, err = parseTxtInvoice(lino, line)
 invoices = append(invoices, invoice)
 } else if strings.HasPrefix(line, "ITEM") {

if len(invoices) == 0 {
 err = fmt.Errorf("item outside of an invoice line %d", lino)

ptg7913109

382 Chapter 8. File Handling

 } else {
var item *Item

 item, err = parseTxtItem(lino, line)
 items := &invoices[len(invoices)-1].Items ➊

*items = append(*items, item)
 }
 }

return invoices, err
}

This function takes a line number (lino; used for error reporting), the line to
parse, and the slice of invoices that we want to populate.

If the line begins with the text “INVOICE”, we call the parseTxtInvoice() func-
tion to parse the line and create an Invoice value—and to return a pointer to it.
We then append this *Invoice to the invoices slice, and at the end return the in-
voices and nil or an error. Note that at this point the invoice is incomplete—we
only have its ID, customer ID, raised and due dates, whether it has been paid,
and any note—but we have none of its items.

If the line begins with the text “ITEM”, we first check to see that there is a
current invoice, (i.e., that the invoices slice isn’t empty). If there is, we call the
parseTxtItem() function to parse the line and create an Item value—and to return
a pointer to the item. We must then add the item to the current invoice’s items.
This is done by taking a pointer to the current invoice’s items (➊) and setting
this pointer’s value (i.e., the []*Item it points to) to the result of appending the
new *Item to it. Of course, we could have added the *Item directly, using the
code invoices[len(invoices)-1].Items = append(invoices[len(invoices)-1].Items,
item).

Any other lines (e.g., empty and form-feed lines) are ignored. Incidentally, in
theory this function would be faster if we made the “ITEM” case the first one
since there are usually far more items than invoices or empty lines.

func parseTxtInvoice(lino int, line string) (invoice *Invoice,
 err error) {
 invoice = &Invoice{}

var raised, due string
if _, err = fmt.Sscanf(line, "INVOICE ID=%d CUSTOMER=%d "+

"RAISED=%s DUE=%s PAID=%t", &invoice.Id, &invoice.CustomerId,
 &raised, &due, &invoice.Paid); err != nil {

return nil, fmt.Errorf("invalid invoice %v line %d", err, lino)
 }

if invoice.Raised, err = time.Parse(dateFormat, raised); err != nil {
return nil, fmt.Errorf("invalid raised %v line %d", err, lino)

 }

ptg7913109

8.1. CustomData Files 383

if invoice.Due, err = time.Parse(dateFormat, due); err != nil {
return nil, fmt.Errorf("invalid due %v line %d", err, lino)

 }
if i := strings.Index(line, noteSep); i > -1 {

 invoice.Note = strings.TrimSpace(line[i+len(noteSep):])
 }

return invoice, nil

}

We begin by creating a zero-valued Invoice value and assigning a pointer to it
to the invoice variable (of type *Invoice). The scan functions can handle strings,
numbers, and Booleans, but not time.Time values, so we handle the raised and
due datesby scanning them in as stringsand then parsing these separately. The
scan functions are listed in Table 8.2.

Table 8.2 The Fmt Package’s Scan Functions

Parameter r is an io.Reader to read from; s is a string to read from; fs is a format string as
used by the fmt package’s print functions (seeTable 3.4,95 ➤); args stands for one or more
pointers (i.e., addresses) of values to populate. All the scan functions return the number
of items successfully parsed (i.e., populated) and either nil or an error.

Syntax Description

fmt.Fscan(r, args)
Reads r for successive space- or newline-separated
values to populate args

fmt.Fscanf(r, fs,
args)

Reads r for successive space-separated values as speci-
fied by the fs format to populate args

fmt.Fscanln(r, args)
Reads r for successive space-separated values to popu-
late args and expects a newline or io.EOF at the end

fmt.Scan(args)
Reads os.Stdin for successive space-separated values
to populate args

fmt.Scanf(fs, args)
Reads os.Stdin for successive space-separated values
as specified by the fs format to populate args

fmt.Scanln(args)
Reads os.Stdin for successive space-separated values
to populate args and expects a newline or io.EOF at
the end

fmt.Sscan(s, args)
Reads s for successive space- or newline-separated
values to populate args

fmt.Sscanf(s, fs,
args)

Reads s for successive space-separated values as speci-
fied by the fs format to populate args

fmt.Sscanln(s, args)
Reads s for successive space-separated values to popu-
late args and expects a newline or io.EOF at the end

ptg7913109

384 Chapter 8. File Handling

If the fmt.Sscanf() function wasn’t able to read in asmany items aswe provided
values for, or if some other error occurred (e.g., a read error), it will return a
non-nil error.

The dates are parsed using the time.Parse() function that was discussed in
an earlier subsubsection (§8.1.2.2, 375 ➤). If the invoice line has a colon it
means that there is a note at the end, so we retrieve this with any whites-
pace trimmed off. We could have used the expression line[i+1:] rather than
line[i+len(noteSep):] since we know that the noteSep’s colon character occupies
a single UTF-8 byte, but we prefer to be defensive and use an approach that will
work for any character, no matter how many bytes it occupies.

func parseTxtItem(lino int, line string) (item *Item, err error) {
 item = &Item{}

if _, err = fmt.Sscanf(line, "ITEM ID=%s PRICE=%f QUANTITY=%d",
 &item.Id, &item.Price, &item.Quantity); err != nil {

return nil, fmt.Errorf("invalid item %v line %d", err, lino)
 }

if i := strings.Index(line, noteSep); i > -1 {
 item.Note = strings.TrimSpace(line[i+len(noteSep):])
 }

return item, nil

}

This function works just like the parseTxtInvoice() function we have just seen,
except that all the item values, apart from the note, can be scanned directly.

func checkTxtVersion(bufferedReader *bufio.Reader) error {
var version int
if _, err := fmt.Fscanf(bufferedReader, "INVOICES %d\n", &version);

 err != nil {
return errors.New("cannot read non-invoices text file")

 } else if version > fileVersion {
return fmt.Errorf("version %d is too new to read", version)

 }
return nil

}

This function is used to read the very first line of the invoices text file. It uses
the fmt.Fscanf() function to read the bufio.Reader directly. If the file isn’t an
invoices file or if the version is too recent for the program to handle, it reports
an error; otherwise it returns nil.

Writing text files is easy using the fmt package’s print functions. Parsing text
files is fairly challenging but we are well provided for with Go’s regexp package,

ptg7913109

8.1. CustomData Files 385

its strings.Fields() and strings.Split() functions, and the fmt package’s
scan functions.

8.1.4. Handling Go Binary Files

The Go binary (“gob”) format is a self-describing sequence of binary values. In-
ternally, the Go binary format consists of a sequence of zero or more chunks,
each of which has a byte count, a sequence of zero or more typeId–typeSpecifi-
cationpairs, and a typeId–valuepair. The typeId–typeSpecificationpairsmay be
omitted if the value pair’s typeId is predefined (e.g., bool, int, string, etc.); oth-
erwise each of the type pairs is used to describe a custom type (e.g., a custom
struct). Type pair typeIds are negated to distinguish between type pairs and
value pairs. As we will see, we don’t need to know any of the internals to make
use of gob format, since the encoding/gob package takes care of all the low-level
details for us, behind the scenes.★

The encoding/gob package provides encoder and decoder functionality in much
the same way as the encoding/json package does, and is just as easy to use. In
general, gob format is the most convenient Go format to use for data files or for
transmitting data over network connections, providing that human readability
is not a requirement.

8.1.4.1. Writing Go Binary Files

Here is a method for writing an entire data set of []*Invoice items to an open
file (or anything else that fulfills the io.Writer interface) in gob format.

type GobMarshaler struct{}

func (GobMarshaler) MarshalInvoices(writer io.Writer,
 invoices []*Invoice) error {
 encoder := gob.NewEncoder(writer)

if err := encoder.Encode(magicNumber); err != nil {
return err

 }
if err := encoder.Encode(fileVersion); err != nil {

return err
 }

return encoder.Encode(invoices)
}

We begin by creating a gob encoder that wraps the io.Writer and provides a
writer to which we can write our data.

★A more detailed description of the format is given in the documentation, golang.org/pkg/encoding/
gob/. And Rob Pike has written an interesting blog post on gob format, blog.golang.org/2011/03/
gobs-of-data.html .

ptg7913109

386 Chapter 8. File Handling

We write the data using the gob.Encoder.Encode() method. This method copes
perfectly with our slice of invoices each of which contains its own slice of items.
The method returns an error or nil; if we get an error we immediately return it
to the caller.

Writing a magic number and a file version isn’t necessary, of course, but as one
of the exercises will show, doing this makes it easier to change the file format
later on.

Notice that the method isn’t really concerned with the types of the data it en-
codes, so it is trivial to create similar functions for writing gob data. Further-
more, the GobMarshaler.MarshalInvoices() method will not require any changes
to write in a new format.

Since our Invoice struct’s fields are all Booleans, numbers, strings, time.Times,
or structs (i.e., Items)which themselves only containBooleans,numbers, strings,
time.Times, or structs, the code shown here works as is.

If our structs contained fields that are not gob-encodable we would have to
make our structs satisfy the gob.GobEncoder and gob.GobDecoder interfaces. The
gob encoder is smart enough to check whether a value it is asked to encode is a
gob.GobEncoder, and if it is, the encoder uses the value’s own GobEncode() method
rather than using its own built-in encoding code. The same thing applies to
decoding with the check being made for a GobDecode() method that satisfies the
gob.GobDecoder interface. (The invoicedata example’s source code’s gob.go file
includes the—unnecessary, and commented out—code to make an Invoice a gob
encoder and decoder, just to show an easy way to do it.) Making a struct satisfy
these interfaces can significantly slow down gob writing and reading, as well as
producing larger files.

8.1.4.2. Reading Go Binary Files

Reading gob data is just as easy as writing it—providing we read it back
into top-level variables of the same types as the ones written. The GobMar-
shaler.UnmarshalInvoices() method takes an io.Reader (e.g., a file opened for
reading) from which to read the gob data.

func (GobMarshaler) UnmarshalInvoices(reader io.Reader) ([]*Invoice,
error) {

 decoder := gob.NewDecoder(reader)
var magic int
if err := decoder.Decode(&magic); err != nil {

return nil, err
 }

if magic != magicNumber {
return nil, errors.New("cannot read non-invoices gob file")

 }

ptg7913109

8.1. CustomData Files 387

var version int
if err := decoder.Decode(&version); err != nil {

return nil, err
 }

if version > fileVersion {
return nil, fmt.Errorf("version %d is too new to read", version)

 }
var invoices []*Invoice

 err := decoder.Decode(&invoices)
return invoices, err

}

Wehave three itemsof data to read in: themagic number, the file version,and all
the invoices data. The gob.Decoder.Decode()method takes a pointer to the value
it must populatewith the gob data it decodes,and returnsan error or nil.We use
the first two variables (magic and version) to check that we have a gob invoices
file and that the file version is one we can handle. Then we read the invoices,
in the process of which the gob.Decoder.Decode() method will increase the size
of the invoices slice to accommodate the invoices it reads and will populate the
slice with pointers to Invoices (and their Items) that the function creates on the
fly as necessary. At the end, the method returns the invoices and nil or an error
if a problem occurred.

If the invoices data is changed by the addition of exported fields, this method
will continue to work as is for Booleans, numbers, strings, time.Times, and
structs containing these types. Of course, for data that contains other types,
we must update the methods that satisfy the gob.GobEncoder and gob.GobDecoder
interfaces.

When dealing with struct types, the gob format is very flexible, coping seamless-
ly with some differences. For example, if a struct that has a value is written
in gob format, the value can be read back into the same struct—or into many
similar struct types, perhaps one which has a pointer to the value, or where
the type of the value is different but compatible (int vs. uint or similar). And
as the invoicedata example shows, gob format has no problem handling nested
data (although, at the time of this writing, it cannot handle recursive values).
The gob documentation discusses what differences the format can cope with
and explains the format’s internals, none of which need concern us providing
we use the same types for writing and for reading—just as we have done in this
example.

8.1.5. Handling Custom Binary Files

Although Go’s encoding/gob package is very easy to use and requires very little
code, we might still need to create our own custom binary formats. A custom
binary format is likely to achieve themost compact data representation possible

ptg7913109

388 Chapter 8. File Handling

and can be very fast to write and read. In practice, we have found that writing
and reading in Go Binary format is dramatically faster than using a custom
binary format—and creates files that are not much bigger. However, some
of this advantage is lost if we must handle data that isn’t gob-encodable by
satisfying the gob.GobEncoder and gob.GobDecoder interfaces. Of course, in some
situations we may need to interoperate with other software that uses its own
custom binary format that we must be able to write and read, so knowing how
to work with binary files can be very useful.

Figure 8.1 provides a schematic view of how the .inv custom binary format rep-
resents a single invoice. Integer values are represented by integers of specific
sizes and signedness. Booleans are represented by an int8 with value 1 for true
and 0 for false. Strings are represented by a byte count (of type int32) followed
by a []byte of their UTF-8-encoded bytes. For dates we have taken a slightly
unusual approachby representing themas int32sbased on treating an ISO-8601
format date (without the hyphens) as a number. For example, we represent the
date 2006-01-02 as the integer 20060102. Each invoice’s items are represented
by a count of how many items there are followed by the items themselves. (Re-
call that unlike invoice IDs, item IDs are strings and not ints; 362 ➤.)

Id Cu
st
om
er
Id

Ra
is
ed

Du
e

Pa
id

No
te it
em

co
un
t

it
em
s

int32 int32 int32 int32 int8 int32

int32 []byte

float64 int16

int32 []byte int32 []byte

Id Pr
ic
e

Qu
an
ti
ty

No
te

Figure 8.1 The .inv custom binary format

8.1.5.1. Writing Custom Binary Files

Writing data in binary format is straightforward thanks to the encoding/binary
package’s binary.Write() function.

type InvMarshaler struct{}

var byteOrder = binary.LittleEndian

func (InvMarshaler) MarshalInvoices(writer io.Writer,
 invoices []*Invoice) error {

ptg7913109

8.1. CustomData Files 389

var write invWriterFunc = func(x interface{}) error {
return binary.Write(writer, byteOrder, x)

 }
if err := write(uint32(magicNumber)); err != nil {

return err
 }

if err := write(uint16(fileVersion)); err != nil {
return err

 }
if err := write(int32(len(invoices))); err != nil {

return err
 }

for _, invoice := range invoices {
if err := write.writeInvoice(invoice); err != nil {

return err
 }
 }

return nil

}

This method writes all the invoices to the given io.Writer. It begins by creating
a convenience write() function which captures both the io.Writer and the byte
order we want to use. Just as we did for .txt format, we have set the write()
function to be of a specific type (invWriterFunc), and have created some methods
for the write() function (e.g., invWriterFunc.writeInvoices()), to make it more
convenient to use later on.

Note that it is essential that we use the same byte order for writing and reading
binary data. (We can’t make our byteOrder a constant, because binary.Little-
Endian—or binary.BigEndian for thatmatter—isn’t a simple value like a string or
number.)

Writing the data is very similar to what we have seen before for other formats.
One important difference is that once we have written the magic number and
file version, we write a count of how many invoices are going to be written.
(It would also have been possible to skip the count and simply write out the
invoices; then,when reading back,we would have to keep reading one invoice at
a time until we reached io.EOF.)

type invWriterFunc func(interface{}) error

func (write invWriterFunc) writeInvoice(invoice *Invoice) error {
for _, i := range []int{invoice.Id, invoice.CustomerId} {

if err := write(int32(i)); err != nil {
return err

 }

ptg7913109

390 Chapter 8. File Handling

 }
for _, date := range []time.Time{invoice.Raised, invoice.Due} {

if err := write.writeDate(date); err != nil {
return err

 }
 }

if err := write.writeBool(invoice.Paid); err != nil {
return err

 }
if err := write.writeString(invoice.Note); err != nil {

return err
 }

if err := write(int32(len(invoice.Items))); err != nil {
return err

 }
for _, item := range invoice.Items {

if err := write.writeItem(item); err != nil {
return err

 }
 }

return nil

}

The writeInvoice() method is called for each invoice. It accepts a pointer to the
invoice to write and writes using the write() function it is called on.

The method begins by writing the invoice’s ID and customer ID as int32s. It is
legal to write plain ints, but this is nonportable since the size of an intmay vary
depending on the underlying machine and the version of Go being used, so it
is very important to always write specifically signed and sized integers such as
uint32, int32, and so on. Next, we write the raised and due dates using a custom
writeDate() method, and then the paid Boolean and the note string, again using
custom methods. Finally, we write a count of how many items the invoice
has, followed by the items themselves, each written by the custom writeItem()
method.

const invDateFormat = "20060102" // This date must always be used.

func (write invWriterFunc) writeDate(date time.Time) error {
 i, err := strconv.Atoi(date.Format(invDateFormat))

if err != nil {
return err

 }
return write(int32(i))

}

ptg7913109

8.1. CustomData Files 391

We discussed the time.Time.Format() function—and why we must use the
specific date 2006-01-02 in format strings—earlier (368 ➤). Here we have used
an ISO-8601-like format, but with no hyphens so that we get a string of exactly
eight digitswith leading zeros for single-digitmonth and day numbers. We then
convert this string into an integer—for example, if we have the date 2012-08-05,
we convert it to an equivalent number, that is, 20120805, and then write this
number as an int32.

Incidentally, if we wanted to store date/times rather than just dates, or just
wanted a faster computation, we could replace calls to this method with write(
int64(date.Unix())) and store the secondssince theUnix epoch. The correspond-
ing reader would be something like var d int64; if err := binary.Read(reader,
byteOrder, &d); err != nil { return err }; date := time.Unix(d, 0).

func (write invWriterFunc) writeBool(b bool) error {
var v int8
if b {

 v = 1
 }

return write(v)
}

At the time of this writing, the encoding/binary package has no support for
writing or reading bools so we have created this simple method to handle them.
Incidentally, we didn’t need to use a conversion (e.g., int8(v)), because variable
v is already a signed and sized type.

func (write invWriterFunc) writeString(s string) error {
if err := write(int32(len(s))); err != nil {

return err
 }

return write([]byte(s))
}

Strings must be written out as their underlying UTF-8-encoded bytes. Here,
we first write a count of how many bytes we will write and then the bytes
themselves. (If we had fixed-width data we wouldn’t need the count, of course,
providing that when it came to reading,we created an empty []byte of the same
size as was written.)

func (write invWriterFunc) writeItem(item *Item) error {
if err := write.writeString(item.Id); err != nil {

return err
 }

if err := write(item.Price); err != nil {
return err

ptg7913109

392 Chapter 8. File Handling

 }
if err := write(int16(item.Quantity)); err != nil {

return err
 }

return write.writeString(item.Note)
}

Thismethod is called towrite every item for every invoice. For the string IDand
for the notewe use the invWriterFunc.writeString()method,and for the quantity
we use an integer of a particular size and signedness. For the price, though, we
write it as is since it is already a sized type (float64).

There’s nothing difficult about writing binary data, providing we are careful
to write counts before variable-width data so that we know how many items to
read back in. Using gob format is much more convenient, of course, but using a
custom binary format should produce smaller files.

8.1.5.2. Reading Custom Binary Files

Reading custombinary data is almost as straightforwardaswriting it. We don’t
have to parse the data as such; we just read each datum, using the same byte
ordering as was used for writing, into a value of the same type as was written.

func (InvMarshaler) UnmarshalInvoices(reader io.Reader) ([]*Invoice,
error) {
if err := checkInvVersion(reader); err != nil {

return nil, err
 }
 count, err := readIntFromInt32(reader)

if err != nil {
return nil, err

 }
 invoices := make([]*Invoice, 0, count)

for i := 0; i < count; i++ {
 invoice, err := readInvInvoice(reader)

if err != nil {
return nil, err

 }
 invoices = append(invoices, invoice)
 }

return invoices, nil

}

This method begins by checking that we have an invoices file of a version that
we can handle. Then it reads in the number of invoices in the file using a custom
readIntFromInt32() function. We set the invoices slice to have zero length (i.e.,

ptg7913109

8.1. CustomData Files 393

no invoices), but with the exact capacity that we need. Then we read in each
invoice in turn and append it to the invoices slice.

An alternative approach would have been to replace the make() call with make(
[]*invoice, count) and the append() line with invoices[i] = invoice. However,we
prefer to create sliceswith the capacity they need, since this is potentially faster
than growing a slice on the fly. After all, if we append to a slice whose length is
equal to its capacity, a new slice will be created under the hood and the original
slice’s data will be copied into it—whereas if the capacity is sufficient in the first
place, no copying is required.

func checkInvVersion(reader io.Reader) error {
var magic uint32
if err := binary.Read(reader, byteOrder, &magic); err != nil {

return err
 }

if magic != magicNumber {
return errors.New("cannot read non-invoices inv file")

 }
var version uint16
if err := binary.Read(reader, byteOrder, &version); err != nil {

return err
 }

if version > fileVersion {
return fmt.Errorf("version %d is too new to read", version)

 }
return nil

}

This function tries to read in the file’smagic number and version. It returns nil
if the file is acceptable and an error otherwise.

The binary.Read() function is the complement of the binary.Write() function—it
takes an io.Reader to read from, the byte order to use, and a pointer to an item
of the exact type for it to populate.

func readIntFromInt32(reader io.Reader) (int, error) {
var i32 int32

 err := binary.Read(reader, byteOrder, &i32)
return int(i32), err

}

This custom helper function is used to read an int32 from a binary file and
return it as a plain int.

ptg7913109

394 Chapter 8. File Handling

func readInvInvoice(reader io.Reader) (invoice *Invoice, err error) {
 invoice = &Invoice{}

for _, pId := range []*int{&invoice.Id, &invoice.CustomerId} {
if *pId, err = readIntFromInt32(reader); err != nil {

return nil, err
 }
 }

for _, pDate := range []*time.Time{&invoice.Raised, &invoice.Due} {
if *pDate, err = readInvDate(reader); err != nil {

return nil, err
 }
 }

if invoice.Paid, err = readBoolFromInt8(reader); err != nil {
return nil, err

 }
if invoice.Note, err = readInvString(reader); err != nil {

return nil, err
 }

var count int
if count, err = readIntFromInt32(reader); err != nil {

return nil, err
 }
 invoice.Items, err = readInvItems(reader, count)

return invoice, err
}

This function is called to read each invoice in turn. It begins by creating a new
zero-valued invoice and storing a pointer to it in the invoice variable.

The invoice ID and customer ID are read using the custom readIntFromInt32()
function. The code is slightly subtle in that we iterate over pointers to the
invoice ID and customer ID and assign the int returned by the function to the
value that the pointer (pId) points to.

An alternative would be to handle each ID separately—for example, if invoice.
Id, err = readIntFromInt32(reader); err != nil { return err }, and so on.

Reading the raised and due dates follows exactly the same pattern as reading
the IDs, only this time we use a custom readInvDate() function.

Just as for the IDs, we could have handled each date separately and more
simply—for example, if invoice.Due, err = readInvDate(reader); err != nil {
return err }, and so on.

The paid Boolean and the note string are read in using helper functions that
we will review in a moment. After the invoice’s data has been read we read how

ptg7913109

8.1. CustomData Files 395

many items it has and then read them all in using the readInvItems() function,
passing it the io.Reader to read from and the number of items to read.

func readInvDate(reader io.Reader) (time.Time, error) {
var n int32
if err := binary.Read(reader, byteOrder, &n); err != nil {

return time.Time{}, err
 }

return time.Parse(invDateFormat, fmt.Sprint(n))
}

This function reads an int32 that represents a date (e.g., 20130501), and then
parses the string representation of the number as a date and returns the
corresponding time.Time (e.g., 2013-05-01).

func readBoolFromInt8(reader io.Reader) (bool, error) {
var i8 int8

 err := binary.Read(reader, byteOrder, &i8)
return i8 == 1, err

}

This simple helper returns true if the int8 it reads is 1; and false otherwise.

func readInvString(reader io.Reader) (string, error) {
var length int32
if err := binary.Read(reader, byteOrder, &length); err != nil {

return "", nil

 }
 raw := make([]byte, length)

if err := binary.Read(reader, byteOrder, &raw); err != nil {
return "", err

 }
return string(raw), nil

}

This function reads in a []byte, but the principle it uses applies to slices of
any type that have been written preceded by a count of how many items they
contain.

First, the number of items is read into the length variable. Then a slice of this
exact length is created. When the binary.Read() function is passed a pointer to
a slice it reads asmany items of the slice’s type as there are items in the slice (or
fails and returns a non-nil error).Notice that it is the slice’s length thatmatters,
not its capacity (which may equal or exceed the length).

ptg7913109

396 Chapter 8. File Handling

In this case the []byte holds UTF-8-encoded bytes that we return converted to
a string.

func readInvItems(reader io.Reader, count int) ([]*Item, error) {
 items := make([]*Item, 0, count)

for i := 0; i < count; i++ {
 item, err := readInvItem(reader)

if err != nil {
return nil, err

 }
 items = append(items, item)
 }

return items, nil

}

This function reads in all of an invoice’s items. It knowshowmany items to read
because it is passed the count.

func readInvItem(reader io.Reader) (item *Item, err error) {
 item = &Item{}

if item.Id, err = readInvString(reader); err != nil {
return nil, err

 }
if err = binary.Read(reader, byteOrder, &item.Price); err != nil {

return nil, err
 }

if item.Quantity, err = readIntFromInt16(reader); err != nil {
return nil, err

 }
 item.Note, err = readInvString(reader)

return item, nil

}

This function reads each individual item. Structurally, it is very similar to the
readInvInvoice() function in that it creates a zero-valued Item and stores a point-
er to it in the item variable, and then populates the item’s fields. The price can
be read directly since thatwaswritten as a float64—that is, as a sized type—and
the Item.Price field has the same type. (We have omitted the readIntFromInt16()
function since it is almost identical to the readIntFromInt32() function we saw
earlier; 393 ➤.)

This completes our review of writing and reading custom binary data. Working
with binary data isn’t difficult, so long as we are careful to use specifically
signed and sized integers and to precede variable-length values (e.g., slices)with
their length.

ptg7913109

8.1. CustomData Files 397

Go’s support for binary files includes randomaccess. In such caseswemust open
the file using the os.OpenFile() function (rather than os.Open()), and pass suit-
able permission flags and mode (e.g., os.O_RDWR “read–write”) arguments.★ We
can then use the os.File.Seek()method to position ourselves in the file for read-
ing or writing, or the os.File.ReadAt() and os.File.WriteAt() methods for read-
ing or writing from or to the file at specific byte offsets. Other useful methods
are also provided, including os.File.Stat() which returns an os.FileInfo that
provides details of the file’s size, permissions, and date/times.

8.2. Archive Files
Go’s standard library provides support for several compression formats. This
includes gzip, so it is easy to make Go programs able to seamlessly write and
read files with gzip compression if they end with a .gz suffix and without
compression otherwise. In addition, the library has packages which allow us
to write and read .zip files and tarballs (.tar and .tar.gz), and to read .bz2 files
(typically, .tar.bz2 files).

In this section we will review extracts from two programs. The first, pack (in file
pack/pack.go), accepts the name of an archive and a list of files to store in the
archive on the command line. It determines which file format to use based on
the archive filename’s suffix. The second, unpack (in file unpack/unpack.go), also
accepts the name of an archive on the command line, and attempts to extract all
the archive’s files, recreating the directory structure as it goes if necessary.

8.2.1. Creating Zip Archives

To use the zip package for zipping we must first open a file to write to and then
create a *zip.Writer to write into it. Then, for each file wewant to put in the .zip
archive, we must read the file and write its contents into an io.Writer obtained
from the *zip.Writer. The pack program uses two functions, createZip() and
writeFileToZip(), to create a .zip file using this approach.

func createZip(filename string, files []string) error {
 file, err := os.Create(filename)

if err != nil {
return err

 }
defer file.Close()

 zipper := zip.NewWriter(file)

★ File permission flags are traditionally written using octal numbers, as indicated by a leading
0. A value of 0666 makes the file readable and writable by everyone—however, a umask of 0022 (a
common setting) modifies this to 0644, thus making a file readable and writable by its creator and
readable but not writable by everyone else.

ptg7913109

398 Chapter 8. File Handling

defer zipper.Close()
for _, name := range files {

if err := writeFileToZip(zipper, name); err != nil {
return err

 }
 }

return nil

}

This function creates an empty .zip file, then creates a *zip.Writer (zipper) to
write to the file, and then iterates over all of the files, writing each one in turn
to the .zip file.

The createZip() and writeFileToZip() functions are both very short and so it
might be tempting to incorporate them into a single function. This would be
unwise since it would mean that in the for loop we would open file after file (i.e.,
all those in the files slice), andmight exceed the operating system’s capacity for
open files—something we discussed briefly in the previous chapter (352 ➤). Of
course, instead of deferring the os.File.Close() calls we could do them at each
iteration; but this would take some care to ensure that the file is closed whether
or not an error occurs. So, the simplest and cleanest solution it to always create
a separate function for handling each individual file as we have done here.

func writeFileToZip(zipper *zip.Writer, filename string) error {
 file, err := os.Open(filename)

if err != nil {
return err

 }
defer file.Close()

 info, err := file.Stat()
if err != nil {

return err
 }
 header, err := zip.FileInfoHeader(info)

if err != nil {
return err

 }
 header.Name = sanitizedName(filename)
 writer, err := zipper.CreateHeader(header)

if err != nil {
return err

 }
 _, err = io.Copy(writer, file)

return err
}

ptg7913109

8.2. Archive Files 399

We begin by opening the file to be zipped ready for reading, and defer closing it,
in the familiar way.

Next, we call the os.File.Stat() method to retrieve the file’s timestamp and
permission values as an os.FileInfo value. We then feed this value into the
zip.FileInfoHeader() function which returns a zip.FileHeader value that is
populated with the timestamp, permissions, and filename. We are not obliged
to use the same filename in the archive as the original filename, and here we
have chosen to overwrite the filename (in the zip.FileHeader.Name field) with a
sanitized version.

With the header set up we call the zip.CreateHeader() function, passing it the
header as argument. This creates an entry in the .zip archive with the header’s
timestamp,permissions,and filename, and returns an io.Writer that we can use
to write the contents of the file to be archived. For this purpose, we have used
the io.Copy() function—this returns the number of bytes copied (which we have
discarded), and either nil or an error.

If an error occurs at any point we return it immediately for the caller to handle.
And if there is no error, at the end, the .zip archive contains the given file.

func sanitizedName(filename string) string {
if len(filename) > 1 && filename[1] == ':' &&

 runtime.GOOS == "windows" {
 filename = filename[2:]
 }
 filename = filepath.ToSlash(filename)
 filename = strings.TrimLeft(filename, "/.")

return strings.Replace(filename, "../", "", -1)
}

If an archive contains files with absolute paths or paths that include .. path
components, when we unpack the archive we could end up overwriting impor-
tant files by accident. To reduce this risk we sanitize the name of every file we
store in the archive.

The sanitizedName() function gets rid of a leading drive letter and colon (if
present), then strips away any leading directory separators and periods, and
any .. path components. It also forces file separators to be slashes.

8.2.2. Creating Optionally Compressed Tarballs

Creating tarballs is fairly similar to creating .zip archives, with the key differ-
ences being that wewrite all the data to the samewriter, and that wemust write
a full header before each file’s data, not just a filename. Our implementation for
the pack program uses the createTar() and writeFileToTar() functions.

ptg7913109

400 Chapter 8. File Handling

func createTar(filename string, files []string) error {
 file, err := os.Create(filename)

if err != nil {
return err

 }
defer file.Close()
var fileWriter io.WriteCloser = file
if strings.HasSuffix(filename, ".gz") {

 fileWriter = gzip.NewWriter(file)
defer fileWriter.Close()

 }
 writer := tar.NewWriter(fileWriter)

defer writer.Close()
for _, name := range files {

if err := writeFileToTar(writer, name); err != nil {
return err

 }
 }

return nil

}

This function creates the given tarball file and adds gzip filtering if the file-
name’s suffix indicates that the tarball should be compressed. The gzip.
NewWriter() function returns a *gzip.Writer which fulfills the io.WriteCloser in-
terface (just as the opened *os.File does).

Once the file is ready for writing to, we create a *tar.Writer to write to it. Then
we iterate over all the files and attempt to write each one in turn.

func writeFileToTar(writer *tar.Writer, filename string) error {
 file, err := os.Open(filename)

if err != nil {
return err

 }
defer file.Close()

 stat, err := file.Stat()
if err != nil {

return err
 }
 header := &tar.Header{
 Name: sanitizedName(filename),
 Mode: int64(stat.Mode()),
 Uid: os.Getuid(),
 Gid: os.Getgid(),
 Size: stat.Size(),

ptg7913109

8.2. Archive Files 401

 ModTime: stat.ModTime(),
 }

if err = writer.WriteHeader(header); err != nil {
return err

 }
 _, err = io.Copy(writer, file)

return err
}

This function begins by opening the given file for reading and deferring closing
the file. It then does a stat call on the file to retrieve the file’s mode, size, and
modification date/time—this data is used to populate the *tar.Header that must
be created for each file that is written to the tarball. (In addition we set the
header’s user and group IDs; these are used on Unix-like systems.) We should
always at the very least set the header’s filename (the Name field), and we must
set its Size field to the size of the file, or the tarball will be invalid.

Once the *.tar.Header has been created and populated,we write the header into
the tarball. Then, finally, we copy the file’s contents into the tarball.

8.2.3. Unpacking Zip Archives

Unzipping a .zip file is just as straightforward as zipping one, only we must
re-create the directory structure if the archive contains filenames that include
paths.

func unpackZip(filename string) error {
 reader, err := zip.OpenReader(filename)

if err != nil {
return err

 }
defer reader.Close()
for _, zipFile := range reader.Reader.File {

 name := sanitizedName(zipFile.Name)
 mode := zipFile.Mode()

if mode.IsDir() {
if err = os.MkdirAll(name, 0755); err != nil {

return err
 }
 } else {

if err = unpackZippedFile(name, zipFile); err != nil {
return err

 }
 }
 }

ptg7913109

402 Chapter 8. File Handling

return nil

}

This function opens the given .zip file for reading. Instead of us having to call
os.Open() to open the file and then calling zip.NewReader(), the zip package
provides the zip.OpenReader() function which conveniently does both and re-
turns a *zip.ReadCloser for us to work with. The most important aspect of the
zip.ReadCloser is that it contains an exported zip.Reader struct field that con-
tains a []*zip.File—a slice of pointers to zip.File structs, each one represent-
ing a file inside the .zip file.

We iterate over each of the reader’s zip.File structs and create a sanitized file or
directory name (using the same sanitizedName() function as we used in the pack
program; 399 ➤), to reduce the risk of overwriting important files.

If we have a directory (as reported by the *zip.File’s os.FileMode’s IsDir()
method),we try to create thedirectory. The os.MkdirAll() functionhas theuseful
properties that it will create any intermediate directories that are necessary to
create the specified directory, and that it safely does nothing and returns nil if
the directory already exists.★ If we have a file,we pass on thework of unzipping
it to a custom unpackZippedFile() function.

func unpackZippedFile(filename string, zipFile *zip.File) error {
 writer, err := os.Create(filename)

if err != nil {
return err

 }
defer writer.Close()

 reader, err := zipFile.Open()
if err != nil {

return err
 }

defer reader.Close()
if _, err = io.Copy(writer, reader); err != nil {

return err
 }

if filename == zipFile.Name {
 fmt.Println(filename)
 } else {
 fmt.Printf("%s [%s]\n", filename, zipFile.Name)
 }

return nil

}

★Asnoted earlier,file permission flagsare traditionallywritten using octal numbers,with 0666 being
a sensible choice for files. For directories, a sensible choice is 0755.

ptg7913109

8.2. Archive Files 403

This function extracts a single file from the .zip archive file and writes it to the
file system. It begins in the usual way by creating the file to be written. Then it
opens the given .zip file’s file using the zip.File.Open() function and writes the
archived file’s data to the newly created file.

At the end, providing no error has occurred, the function prints the name of
the file it created to the console, with the original filename in brackets if the
sanitized filename is different.

Incidentally, the *zip.File type has other useful methods, such as zip.File.
Mode() (used earlier in the unpackZip() function), zip.File.ModTime() (which
returns the file’s modification time as a time.Time), and zip.FileInfo() which
returns the file’s os.FileInfo value.

8.2.4. Unpacking Optionally Compressed Tarballs

Unpacking tar files is slightly easier than packing them. However, just aswhen
we unzip a .zip file, we must re-create the directory structure if the archive
contains filenames that include paths.

func unpackTar(filename string) error {
 file, err := os.Open(filename)

if err != nil {
return err

 }
defer file.Close()
var fileReader io.ReadCloser = file
if strings.HasSuffix(filename, ".gz") {

if fileReader, err = gzip.NewReader(file); err != nil {
return err

 }
defer fileReader.Close()

 }
 reader := tar.NewReader(fileReader)

return unpackTarFiles(reader)
}

This function opens the tarball in Go’s conventional way and defers closing the
file. If the file is gzip-compressedwe create a gzip decompressionfilter and defer
closing it. The gzip.NewReader() function returns a *gzip.Reader which fulfills
the io.ReadCloser interface, just as the file (of type *os.File) does.

With the file reader set up, we create a *tar.Reader to read from it and pass on
the rest of the work to a helper function.

ptg7913109

404 Chapter 8. File Handling

func unpackTarFiles(reader *tar.Reader) error {
for {

 header, err := reader.Next()
if err != nil {

if err == io.EOF {
return nil // OK

 }
return err

 }
 filename := sanitizedName(header.Name)

switch header.Typeflag {
case tar.TypeDir:

if err = os.MkdirAll(filename, 0755); err != nil {
return err

 }
case tar.TypeReg:

if err = unpackTarFile(filename, header.Name, reader);
 err != nil {

return err
 }
 }
 }

return nil

}

This function has an infinite loop that iterates over each tarball entry until
io.EOF is reached (or until an error occurs). The tar.Next() method returns the
first—or next—tarball entry’s*tar.Header struct, or reportsan error. If the error
is io.EOF it just means that we have finished so we return a nil error value.

If a *tar.Header is successfully obtained we create a sanitized filename based on
the header’s Name field. Then we switch depending on the entry’s type flag. For
this simple example program we only consider directories and regular files, but
in fact, tarballs can contain various other entries (e.g., symbolic links).

If the entry is for a directory we create the directory just the same as we did for
directories in .zip files (402 ➤). And if the entry is for a file we pass on the work
to a helper function.

func unpackTarFile(filename, tarFilename string,
 reader *tar.Reader) error {
 writer, err := os.Create(filename)

if err != nil {
return err

 }
defer writer.Close()

ptg7913109

8.2. Archive Files 405

if _, err = io.Copy(writer, reader); err != nil {
return err

 }
if filename == tarFilename {

 fmt.Println(filename)
 } else {
 fmt.Printf("%s [%s]\n", filename, tarFilename)
 }

return nil

}

This function creates a new file for the tarball’s next entry, and defers closing
it. Then it copies the tarball’s next entry’s data to the file. And just like we did
for the unpackZippedFile() function, we print name of the file that was created
to the console, with the original filename in brackets if the sanitized filename
is different.

This concludesour coverage of compressed and archive files, and of file handling
in general. Go’s approach to file handling using the io.Reader, io.ReadCloser,
io.Writer, and io.WriteCloser interfaces makes it easy to read and write files
or other streams (such as network connections or even strings) using the same
consistent coding patterns.

8.3. Exercises
There are three exercises for this chapter. The first one involves a small but
slightly subtle modification to one of the programs presented in this chapter.
The second requires the writing of a short—but tricky—new program from
scratch. The third involves substantial changes to another of this chapter’s ex-
amples.

1. Copy the unpack directory to, say, my_unpack, and modify the unpack.go pro-
gram so that it can additionally unpack .tar.bz2 (bzip2-compressed) files.
This requires small changes to a couple of functions, and the addition of
about ten lines to the unpackTar() function. The change is a tiny bit tricky
because the bzip2.NewReader() function doesn’t return an io.ReadCloser. A
solution is provided in the file unpack_ans/unpack.go which is about ten lines
longer than the original example.

2. Windows text files (.txt) often use the UTF-16-LE (UTF-16 little-endian)
encoding. UTF-16-encoded filesmust always begin with a byte order mark,
[0xFF, 0xFE] for little-endian or [0xFE, 0xFF] for big-endian. Write a program
that reads a UTF-16-encoded file named on the command line, and writes
out the same text using the UTF-8 encoding either to os.Stdout or to a file
named on the command line. Be sure to read both little- and big-endian
UTF-16 encodings correctly. The book’s examples come with a couple of

ptg7913109

406 Chapter 8. File Handling

tiny test files:utf16-to-utf8/utf-16-be.txt and utf16-to-utf8/utf-16-le.txt.
The binary package’s Read() function can read uint16 values (which is what
UTF-16 charactersare)using a specified endianness. And the unicode/utf16
package’s Decode() function can convert a slice of uint16 values to a slice of
code points (i.e., to a []rune); so wrapping the result of a utf16.Decode() call
in string() is sufficient to produce a UTF-8-encoded string. A solution is
in the file utf16-to-utf8/utf16-to-utf8.go, and is around 50 lines excluding
imports.

3. Copy the invoicedata directory to, say, my_invoicedata, and modify the
invoicedata program in a few distinct ways. First, change the Invoice and
Item structs to those shown below.

type Invoice struct { // fileVersion
 Id int // 100
 CustomerId int // 100
 DepartmentId string // 101
 Raised time.Time // 100
 Due time.Time // 100
 Paid bool // 100
 Note string // 100
 Items []*Item // 100
}

type Item struct { // fileVersion
 Id string // 100
 Price float64 // 100
 Quantity int // 100
 TaxBand int // 101
 Note string // 100
}

Nowmodify the program so that it alwayswrites invoices in the new format
(i.e., one that handles the new structs), and can read in invoices in the
original format or in the new format.

When the program reads in data in the original format, the zero values
for the extra fields are not acceptable, so populate these fields with values
according to these rules: Set an invoice’s department ID to "GEN" if the
invoice ID is less than 3000, to "MKT" if the ID is less than 4000, to "COM" if
the ID is less than 5000, to "EXP" if the ID is less than 6000, to "INP" if the ID
is less than 7000, to "TZZ" if the ID is less than 8000, to "V20" if the ID is less
than 9000, and to "X15" otherwise. Set each item’s tax band to the integer
value of the item ID’s third character. For example, if the ID is "JU4661", the
tax band should be 4.

A solution is provided in the invoicedata_ans directory. The solution adds
three functions to invoicedata.go: one to update all the invoices in an []*In-
voice (i.e., to provide acceptable values for the new fields), one to update
an individual invoice, and one to update an individual item. The solution
needed changes to all the .go files, with the jsn.go, xml.go, and txt.go files
most affected. In all, the changes amount to around 150 lines of addition-
al code.

ptg7913109

9 Packages

§9.1. Custom Packages ➤ 408

§9.1.1. Creating Custom Packages ➤ 408

§9.1.2. Importing Packages ➤ 416

§9.2. Third-Party Packages ➤ 417

§9.3. A Brief Survey of Go’s Commands ➤ 418

§9.4. A Brief Survey of the Go Standard Library ➤ 419

§9.4.1. Archive and Compression Packages ➤ 419

§9.4.2. Bytes and String-Related Packages ➤ 419

§9.4.3. Collection Packages ➤ 421

§9.4.4. File, Operating System, and Related Packages ➤ 423

§9.4.5. Graphics-Related Packages ➤ 425

§9.4.6.Mathematics Packages ➤ 425

§9.4.7.Miscellaneous Packages ➤ 425

§9.4.8. Networking Packages ➤ 427

§9.4.9. The Reflect Package ➤ 427

The Go standard library has a large number of packages, which provide a wide
range of functionality out of the box. In addition, many third-party packages
are available from the Go Dashboard at godashboard.appspot.com/project.

Go also allows us to create our own custom packages. These packages can be
installed into our copy of Go’s standard library, or kept in our own Go tree (i.e.,
in the, or one of the, GOPATH paths).

In this chapter we will look at how to create and import packages, including our
own custom packages and third-party packages. Then we will very briefly re-
view someof the commands(programs)suppliedwith the gc compiler. Andfinal-
ly, we will briefly review Go’s standard library so that we can avoid reinventing
the wheel.

407

ptg7913109

408 Chapter 9. Packages

9.1. Custom Packages

Up to now, almost all of the examples we have reviewed have been in a single
package: main. For any given package, Go allows us to split the package’s code
over as many files as we like, providing only that they are all in the same di-
rectory. For example, Chapter 8’s invoicedata example uses a single package
(main), even though it consists of six separate files (invoicedata.go, gob.go, inv.go,
jsn.go, txt.go, and xml.go).This is achieved simply bymaking the first statement
in each file (excluding comments), package main.

For larger applications we might want to create application-specific packages
to help partition an application’s functionality into logical units. Also,wemight
want to create packages containing functionality that we want a family of ap-
plications to be able to use. Go doesn’t make any distinction between a pack-
age intended for use by a single application and a package to be shared across
our applications; however, we can create an implied distinction by putting our
application-specific packages in subdirectories of our application and shared
packages in subdirectories directly under a GOPATH source directory. A GOPATH
sourcedirectory isa directory called src; every directory in the GOPATH should con-
tain an src directory, since this iswhatGo’s tools (commands) expect. The source
code for our programs and packages should be kept in subdirectories under the
(or a, if there is more than one) GOPATH src directory.

It is also possible to install our own packagesdirectly into theGo tree (i.e., under
GOROOT), but there is no advantage to doing this and it could be inconvenient
on systems where Go is installed using a package management system or an
installer or even if it is built by hand.

9.1.1. Creating Custom Packages

It is best to create custom packages in the GOPATH src directory (or one of the
GOPATH src directories). Application-specific packages can be created within
the application directory, but packages we want to share ought to be created
directly under a GOPATH src directory, ideally under a unique directory to avoid
name conflicts.

By convention, the source code for a package is put in a directory with the same
name as the package. The source code may be split across as many files as we
like and the files can have arbitrary names (so long as they end with .go). In this
book we have adopted the convention of giving the .go file (or one of them, if
there is more than one) the same name as the package.

The stacker example from Chapter 1 (§1.5, 21 ➤) consists of a program (in file
stacker.go) and an application-specific package (stack in file stack.go), and uses
the following directory layout:

aGoPath/src/stacker/stacker.go

ptg7913109

9.1. Custom Packages 409

aGoPath/src/stacker/stack/stack.go

Here, aGoPath is the GOPATH directory (if there is just one), or one of the colon-
(semicolon on Windows) separated paths in the GOPATH environment variable.

If we are in the stacker directory and execute the command go build, we will get
an executable called stacker (stacker.exe on Windows).However, if we want the
executable to be in a GOPATH bin directory, or if wewant other programs to be able
to use the stacker/stack package, we must use go install.

When go install builds the stacker program it creates two directories (if they
don’t exist): aGoPath/bin containing the stacker executable, and aGoPath/pkg/
linux_amd64/stacker, which contains the static stack package’s binary library
file. (Naturally, the operating system/architecture directory will match those of
the machine being used, e.g., windows_386 for 32-bit Windows.)

The stack package can be imported by the stacker program with the statement
import "stacker/stack", that is, giving its full (Unix-style) path, but excluding
the aGoPath/src part. In fact, any program or package in the GOPATH can use
exactly this import since Go doesn’t distinguish between application-specific
and shared packages.

The ordered map from Chapter 6 (§6.5.3, 302 ➤; in file omap.go) is in package
omap. It is intended to be used by multiple applications. To avoid name conflicts,
we have created a directory for packages we want to share under our GOPATH
directory (or one of our GOPATH directories), and given it what should be a unique
name (in this case a domain name). Here is the directory structure:

aGoPath/src/qtrac.eu/omap/omap.go

Any of our programs (so long as they are in a GOPATH path) can access the or-
dered map package using import "qtrac.eu/omap". If we had other shared pack-
ages we would put them under aGoPath/src/qtrac.eu, alongside the orderedmap
package.

When go install builds the omap package it creates the aGoPath/pkg/linux_amd64/
qtrac.eu directory (if it doesn’t exist) containing the omap package’s binary li-
brary file, with the operating system/architecture subdirectory varying depend-
ing on the machine.

If we want to create packages inside other packages, we can do so without
formality. First we create a package directory, say, aGoPath/src/my_package.
And then we create one subdirectory per package underneath that, for exam-
ple, aGoPath/src/my_package/pkg1 and aGoPath/src/my_package/pkg2, along with
their corresponding files aGoPath/src/my_package/pkg1/pkg1.go and aGoPath/src/
my_package/pkg2/pkg2.go. Then, to import, say, pkg2, we would write import
"my_package/pkg2". The Go source code’s archive package is an example of this
approach. It is also possible to have code in the package itself (in this example,

ptg7913109

410 Chapter 9. Packages

by creating the file aGoPath/src/my_package/my_package.go). See the source code’s
image package for an example of this.

Go packages are imported from under GOROOT (specifically, $GOROOT/pkg/${GOOS}_
${GOARCH}, e.g., /opt/go/pkg/linux_amd64), and fromunder the directory or directo-
ries in the GOPATH environment variable. Thismeans that name conflicts are pos-
sible. The easiest way to avoid name conflicts is to ensure that GOPATH pathshave
a unique directory, such as a domain name as we used for the omap package.

The go programworks seamlessly with packages from the standard library and
from GOPATH paths, as well as understanding the platform-specific source files
discussed in the following subsubsection.

9.1.1.1. Platform-Specific Code

In some situations we need to have code that differs between platforms. For
example, on Unix-like systems the shell does wildcard expansion (called glob-
bing), so *.txt on the command line might be received by the program as, say,
["README.txt", "INSTALL.txt"] in the os.Args[1:] slice. But on Windows the pro-
gramwould just get ["*.txt"].We can get the program to do such globbing using
the filepath.Glob() function, but of course, we need only do this on Windows.

One solution is to decide whether to use filepath.Glob() at runtime by using
the test if runtime.GOOS == "windows" { … }, and this is what most of the book’s
examples do (e.g., cgrep1/cgrep.go). Another solution is to put platform-specific
code into its own .go file or files. For example, the cgrep3 program consists of
three files, cgrep.go, util_linux.go, and util_windows.go. Inside util_linux.go
there is a single function defined.

func commandLineFiles(files []string) []string { return files }

Clearly, this function doesn’t do any file globbing since there is no need to on
Linux. The util_windows.go file defines a different function that has the same
name.

func commandLineFiles(files []string) []string {
 args := make([]string, 0, len(files))

for _, name := range files {
if matches, err := filepath.Glob(name); err != nil {

 args = append(args, name) // Invalid pattern
 } else if matches != nil { // At least one match
 args = append(args, matches...)
 }
 }

return args
}

ptg7913109

9.1. Custom Packages 411

Figure 9.1 The omap package’s documentation

When we build cgrep3 using go build, on Linux machines the util_linux.go file
will be compiled and the util_windows.go file will be ignored—and vice versa
on Windows machines. This ensures that only one of the commandLineFiles()
functions is compiled for any particular build.

On Mac OS X and FreeBSD systems neither util_linux.go nor util_windows.go
will be compiled, so the build will fail. Since the shells on both these plat-
forms do globbing, we can either soft (symbolic) link or copy util_linux.go to
util_darwin.go and to util_freebsd.go (and similarly for any other platforms
that Go supports and that are required).With these links or copies in place, the
program will build on Mac OS X and FreeBSD platforms.

9.1.1.2. Documenting Packages

Packages, particularly those that are intended to be shared, need decent docu-
mentation. Go provides a documentation tool, godoc, that can be used to show
the documentation for packages and functions on the console, or can be used
as a web server to serve the documentation as web pages, as illustrated in Fig-
ure 9.1.★ If the package is in a GOPATH, godocwill automatically find it and provide
a link to it at the left of the “Packages” link. If the package is not in a GOPATH, run
godoc with the -path option (in addition to the -http option), giving it the path to

★ The documentation screenshots show godoc’s HTML rendering at the time of this writing; it may
have changed since.

ptg7913109

412 Chapter 9. Packages

the package, and again godocwill provide a link next to the “Packages” link. (We
discussed godoc in the sidebar “The Go Documentation”, 8 ➤.)

What constitutes good documentation is a contentiousmatter, so in this subsub-
section we will concern ourselves purely with themechanics of documenting Go
packages.

By default only exported types, classes, constants, and variables are shown by
godoc, so all of these should be documented. Documentation is written directly
in source code files.

// Package omap implements an efficient key-ordered map.
//
// Keys and values may be of any type, but all keys must be comparable
// using the less than function that is passed in to the omap.New()
// function, or the less than function provided by the omap.New*()
// construction functions.
package omap

For a package, the comment immediately preceding the package statement is
used as the package’s description, with the first line (up to the first period if
there is one,or to thenewline) serving asa one-line summary. This is an example
taken from the omap package (in file qtrac.eu/omap/omap.go—this package was
covered in Chapter 6, §6.5.3, 302 ➤).

// Map is a key-ordered map.
// The zero value is an invalid map! Use one of the construction functions
// (e.g., New()), to create a map for a specific key type.
type Map struct {

The documentation for an exported type must be written immediately before
the type statement and should always indicate whether the type’s zero value is
valid.

// New returns an empty Map that uses the given less than function to
// compare keys. For example:
// type Point { X, Y int }
// pointMap := omap.New(func(a, b interface{}) bool {
// α, β := a.(Point), b.(Point)
// if α.X != β.X {
// return α.X < β.X
// }
// return α.Y < β.Y
// })
func New(less func(interface{}, interface{}) bool) *Map {

ptg7913109

9.1. Custom Packages 413

Figure 9.2 The omap package’s New() function’s documentation

The documentation for functions and methods must immediately precede
their first line. This is the documentation for the omap package’s generic New()
construction function.

Figure 9.2 shows what the function’s documentation looks like when godoc is
used to serve it as a web page. This figure also illustrates that indented text in
the documentation is rendered as “code” in HTML.However, at the time of this
writing, godoc has no support for any kind of markup (e.g., bold, italic, links,
etc.).

// NewCaseFoldedKeyed returns an empty Map that accepts case-insensitive
// string keys.
func NewCaseFoldedKeyed() *Map {

The above snippet shows the documentation for one of the convenience construc-
tion functions that provides a predefined less than function.

// Insert inserts a new key-value into the Map and returns true; or
// replaces an existing key-value pair's value if the keys are equal and
// returns false. For example:
// inserted := myMap.Insert(key, value).
func (m *Map) Insert(key, value interface{}) (inserted bool) {

And here is the documentation for the Insert()method. Notice that it is conven-
tional in Go to start a function or method’s documentation with the function or
method’sname,and (unconventionally)not to use parentheseswhen referring to
functions or methods.

ptg7913109

414 Chapter 9. Packages

9.1.1.3. Unit Testing and Benchmarking Packages

The Go standard library includes good support for unit testing with the testing
packages. Setting up unit testing for a package is a simple matter of creating
a test file in the same directory as the package we want to test. This file’s name
should begin with the package name and end with _test.go. For example, the
omap package’s test file is called omap_test.go.

In the book’s examples, test files are put in their own unique package (e.g.,
omap_test), and they import the package they are testing and the testing pack-
age, plus any other packages that are needed. This constrains us to use black
box testing. However, some Go programmers prefer white box testing. This can
easily be done by putting test files in the same package as they are testing (e.g.,
omap), in which case there is no need to import the package being tested. This
latter approach means that nonexported types can be tested, and methods can
be added to nonexported types specifically to support testing.

The test file is unusual in that it has no main() function. Instead, it has one
or more exported functions whose name begins with Test and which take a
single argument of type *testing.T and that return nothing. We can add any
supporting functions we need, of course, providing their names don’t start with
Test.

func TestStringKeyOMapInsertion(t *testing.T) {
 wordForWord := omap.NewCaseFoldedKeyed()

for _, word := range []string{"one", "Two", "THREE", "four", "Five"} {
 wordForWord.Insert(word, word)
 }

var words []string
 wordForWord.Do(func(_, value interface{}) {
 words = append(words, value.(string))
 })
 actual, expected := strings.Join(words, ""), "FivefouroneTHREETwo"

if actual != expected {
 t.Errorf("%q != %q", actual, expected)
 }
}

Here is one of the tests in the omap_test.go file. It begins by creating an empty
omap.Map, then it inserts some string keys (which are treated case-insensitively),
and string values. We then iterate over all the key–value pairs in themap using
the Map.Do() method, and append each value to a slice of strings. Finally, we
join the strings into a single string and see if this matches what we expect. If
the match fails we call the testing.T.Errorf() method to report the failure and
provide some explanation. If no error or failure function is called then the test
is assumed to have passed.

ptg7913109

9.1. Custom Packages 415

Here is an example test run where the tests pass.

$ go test

ok qtrac.eu/omap
PASS

And here is the same test run, but this time with verbose output switched on
using the -test.v option.

$ go test -test.v

ok qtrac.eu/omap
=== RUN TestStringKeyOMapInsertion-4
--- PASS: TestStringKeyOMapInsertion-4 (0.00 seconds)
=== RUN TestIntKeyOMapFind-4
--- PASS: TestIntKeyOMapFind-4 (0.00 seconds)
=== RUN TestIntKeyOMapDelete-4
--- PASS: TestIntKeyOMapDelete-4 (0.00 seconds)
=== RUN TestPassing-4
--- PASS: TestPassing-4 (0.00 seconds)
PASS

If we change the constant string to force the test to fail and run the tests again
(in the default nonverbose mode), here is the output we will get.

$ go test

FAIL qtrac.eu/omap
--- FAIL: TestStringKeyOMapInsertion-4 (0.01 seconds)
 omap_test.go:35: "FivefouroneTHREETwo" != "FivefouroneTHREEToo"
FAIL

In addition to the Errorf() method used in the example, the testing package’s
*testing.T type has various other methods such as testing.T.Fail(), testing.
T.Fatal(), and so on. All these methods provide us with a good level of control
over how we respond to test failures.

In addition, the testing package has support for benchmarking. Benchmark
functions can be added to package_test.go files in the sameway as test functions,
only in this case the functions’ names must begin with Benchmark and they
receive a single *testing.B argument and return nothing.

func BenchmarkOMapFindSuccess(b *testing.B) {
 b.StopTimer() // Don't time creation and population
 intMap := omap.NewIntKeyed()

for i := 0; i < 1e6; i++ {
 intMap.Insert(i, i)

ptg7913109

416 Chapter 9. Packages

 }
 b.StartTimer() // Time the Find() method succeeding

for i := 0; i < b.N; i++ {
 intMap.Find(i % 1e6)
 }
}

This function begins by stopping the timer since we don’t want to time the
creation and population of the omap.Map. Then we create an empty omap.Map and
populate it with a million key–value pairs.

By default go test does not run any benchmarks, so if we want them to be run
we must explicitly say so by using the -test.bench option and providing it with
a regular expression thatmatches the names of the benchmarkswewant to run.
A regexp of .*matches anything, that is, all the benchmark functions in the test
file, but plain . also works.

$ go test -test.bench=.

PASS qtrac.eu/omap
PASS
BenchmarkOMapFindSuccess-4 1000000 1380 ns/op
BenchmarkOMapFindFailure-4 1000000 1350 ns/op

This output shows that two benchmarkswere run with 1000000 loop iterations
each, and with the given numbers of nanoseconds per operation. The number
of iterations (i.e., the value of b.N) is chosen by go test, but we can use the
-test.benchtime option to set the approximate number of seconds we want each
benchmark to run if we prefer.

In addition to the omap package, a few of the book’s other examples have pack-
age_test.go files.

9.1.2. Importing Packages

Go allows us to alias package names. This feature can be convenient and
useful—for example, making it easy to switch between two implementations of
a package. For instance,we could import a package like this:import bio "bio_v1",
so that in our code the bio_v1 package is accessed as bio instead of bio_v1. Later,
when amoremature implementation is available,we could switch to it by chang-
ing the import to import bio "bio_v2". This will work if both bio_v1 and bio_v2
provide the same APIs (or if bio_v2’s API is a superset of bio_v1’s), and means
that the rest of the code can be left unchanged. On the other hand, aliasing
standard library package names is probably best avoided, since it could cause
confusion or irritation to maintainers later on.

ptg7913109

9.1. Custom Packages 417

As we mentioned in Chapter 5 (§5.6.2, 224 ➤), when a package is imported its
init() functions are executed (if it has any). In some situationswe don’t want to
make explicit use of a package, but do want its init() functions to be executed.

For example, if we are processing imageswemightwant to register all the image
formats that Go supports, but not actually use any functions from the packages
that provide the formats. Here is the import statement for the imagetag1 pro-
gram’s imagetag1.go file (from Chapter 7’s exercises).

import (
"fmt"
"image"
"os"
"path/filepath"
"runtime"

 _ "image/gif"
 _ "image/jpeg"
 _ "image/png"
)

Here we import the image/gif, image/jpeg, and image/png packages purely to
execute their init() functions (which registers their image formatwith the image
package).Each of these packages is aliased to the blank identifier, so Go will not
complain about us not making explicit use of any of them in our code.

9.2. Third-Party Packages

The go tool that we have used throughout the book to build programs and pack-
ages (e.g., the omap package) can also be used to download, build, and install
third-party packages. (Of course, this assumes that our computer is connect-
ed to the Internet.) A list of third-party packages is maintained at godash-
board.appspot.com/project. (An alternative approach is to download the source
code—often obtained asa copy directly froma distributedversion control system
—and build the package ourselves locally.)

To install one of the Go Dashboard’s packages, first click its link to go to the
package’s home page. Somewhere on the package’s web site there should be a
go get command that shows how to download and install the package.

For example, if wewere to click the GoDashboard’s freetype-go.googlecode.com/
hg/freetype link, it would take us to the code.google.com/p/freetype-go/ page
which shows the installation command up front (at the time of this writing): go
get freetype-go.google- code.com/hg/freetype.

When it comes to third-party packages, go get must, of course, install them
somewhere. By default it will use the first path listed in the GOPATH environment

ptg7913109

418 Chapter 9. Packages

variable if that is set, and failing that it will put the package under the GOROOT
directory. If we want to force go get to use the GOROOT directory, we can simply
unset the GOPATH environment variable before running go get.

If we execute the go get command it will silently download, build, and install the
package. We can view the newly installed package’s documentation by running
godoc as a web server (e.g., godoc -http=:8000), and navigating to the package.

To avoid name conflicts, third-party packages usually use domain names
to ensure uniqueness. For example, to use the FreeType package we would
use an import statement of import "freetype-go.googlecode.com/hg/freetype".
Of course, when it comes to using functions from the package, as always we
only need to use the last component of the name—for example, font, err :=
freetype.ParseFont(fontdata). And in the unlikely event of a name collision
in the last component, we can always use aliasing, for instance, import ftype
"freetype-go.googlecode.com/hg/freetype", and then in our code font, err :=
ftype.ParseFont(fontdata).

Third party packages are normally available for Go 1, but somemight require a
later Go version, or have multiple downloads available—for example, ones that
work with the cutting edge development versions of Go. In general, it is best
to always use a stable version of Go (e.g., Go 1), and to use packages that are
compatible with it.

9.3. A Brief Survey of Go’s Commands

A Go installation for the gc compiler naturally includes compilers and linkers
(6g, 6l, etc.), but also a number of other tools. The most useful of these is go,
which can be used as a build tool for our own programs and packages, as a tool
for downloading and installing third-party programs and packages, and as a
tool for executing unit tests and for benchmarking, as we saw earlier (§9.1.1.3,
414 ➤). Execute go help for a full list of the commands available and go help
command for help on the specified command. There is also the godoc tool for showing
documentation (“The Go Documentation”, 8 ➤).

In addition to the tools we have used in the book, there are several other tools
and go tool commands, a few of which we will mention here. One is go vet
which does some simple error checking on Go programs, specifically on the fmt
package’s print functions.

Another command is go fix. Sometimes a new Go release incorporates changes
to the language—or more often, to library APIs—that invalidate existing code.
By running go fix over our code base, all of our code can be automatically
updated. We strongly recommend that .go files are registered with a version
control system,and that they are all checked in, or are at least backed up, before
running go fix. Thiswill allow us to easily seewhat changeswere applied and be
able to roll back any or all of them if the fixes break the code. We can also use

ptg7913109

9.3. A Brief Survey of Go’s Commands 419

go fix’s -diff option in the first place, since this shows the changes go fix would
apply without actually applying them.

The last command we will mention is gofmt. This command formatsGo code in a
standardized way and its use is highly recommended by the Go developers. The
advantages of gofmt are that it eliminates arguments over the best way to lay
out code, and that it ensures that all Go code has a uniform look. All the book’s
code was formatted using gofmt (but lines longer than 75 characters were then
manually wrapped to fit on the book’s pages).

9.4. A Brief Survey of the Go Standard Library

The Go standard library includes a large number of packages that between
them provide a wide range of functionality. The overview provided here is
highly selective and very brief. This is because the contents of the library are
likely to continue to grow after this book is published, so it is best to look at the
library APIs online (golang.org/pkg/) or locally using godoc, both to see the most
up-to-date information and to get a comprehensive overview of what is available
in each package.

The exp “experimental” package is where packages that might potentially be
added to the standard library begin life, so these packages should not be used
unless we specifically want to participate in their development (e.g., testing,
commenting, or submitting patches). The exp package is normally available
when pulling Go fromGoogle’s Go source tree, and but it may not be included in
prebuilt packages. All the other packages are okay to use, although at the time
of this writing, some were incomplete.

9.4.1. Archive and Compression Packages

Go can read and write tarballs and .zip files. The relevant packages are
archive/tar and archive/zip, and for compressed tarballs, compress/gzip and
compress/bzip2. The book’s pack and unpack examples illustrate the use of these
(§8.2, 397 ➤).

Other compression formats are also supported; for example, Lempel-Ziv-Welch
(compress/lzw) which is used for .tiff images and .pdf files.

9.4.2. Bytes and String-Related Packages

The bytes and strings packages have many functions in common, only the
former operates on []byte values and the latter on string values. For strings, the
strings package provides all the most useful utilities to find substrings, replace
substrings, split strings, trim strings, and change case (see §3.6.1, 107 ➤). The
strconv package provides conversions fromnumbersandBooleans to stringsand
vice versa (see §3.6.2, 113 ➤).

ptg7913109

420 Chapter 9. Packages

The fmt package provides a variety of extremely useful print and scan functions.
The print functions were covered in Chapter 3 (§3.5, 93 ➤) with examples of
use shown throughout the book, and the scan functions are shown in Table 8.2
(383 ➤), with some examples of use nearby (§8.1.3.2, 380 ➤).

The unicode package provides functions for determining character properties,
such as whether a character is a printable character, or whether it is a digit (see
§3.6.4, 118 ➤). The unicode/utf8 and unicode/utf16 packages provide functions
for decoding and encoding runes (i.e., Unicode code points/characters). For the
unicode/utf8 package, see §3.6.3, 117 ➤. Some use of the unicode/utf16 package
is shown in Chapter 8’s utf16-to-utf8 exercise solution.

The text/template and html/template packages can be used to create tem-
plates which can then be used to generate textual output (e.g., HTML), based
on data that is fed into them. Here is a tiny and very simple example of the
text/template package in use.

type GiniIndex struct {
 Country string
 Index float64
}
gini := []GiniIndex{{"Japan", 54.7}, {"China", 55.0}, {"U.S.A.", 80.1}}
giniTable := template.New("giniTable")
giniTable.Parse(

`<TABLE>` +
`{{range .}}` +
`{{printf "<TR><TD>%s</TD><TD>%.1f%%</TD></TR>" .Country .Index}}`+
`{{end}}` +
`</TABLE>`)

err := giniTable.Execute(os.Stdout, gini)

<TABLE>
<TR><TD>Japan</TD><TD>54.7%</TD></TR>
<TR><TD>China</TD><TD>55.0%</TD></TR>
<TR><TD>U.S.A.</TD><TD>80.1%</TD></TR>
</TABLE>

The template.New() function creates a new *template.Template with the given
name. Template names are useful to identify templates that are in effect nested
inside other templates. The template.Template.Parse() function parses a tem-
plate (typically from an .html file), ready for use. The template.Template.Exe-
cute() function executes the template sending the resultant output to the given
io.Writer, and reading the data that should be used to populate the template
from its second argument. In this example, we have output to os.Stdout and
passed the gini slice of GiniIndex structs as the data. (We have split the output
over several lines to make it clearer.)

ptg7913109

9.4. A Brief Survey of the Go Standard Library 421

Inside a template, actions are enclosed in double braces ({{ and }}). The
{{range}} … {{end}} action can be used to iterate over every item in a slice; here
we have set each GiniIndex in the slice to the dot (.), that is, to be the current
item. We can access a struct’s exported fields using their names, preceded, of
course,with the dot to signify the current item. The {{printf}} actionworks just
like the fmt.Printf() function, but with spaces replacing the parentheses and
argument-separating commas.

The text/template and html/template packages support a sophisticated templat-
ing language in their own right,with many actions, including iteration and con-
ditional branching, support for variables and method calls, and much else be-
sides. In addition, the html/template package is safe against code injection.

9.4.3. Collection Packages

Slices are the most efficient collection type provided by Go, but sometimes
it is useful or necessary to use a more specialized collection type. For many
situations the built-in map type is sufficient, but the Go standard library also
provides the container package which contains various collection packages.

The container/heap package provides functions for manipulating a heap, where
the heap must be a value of a custom type that satisfies the heap.Interface
defined in the heap package. A heap (strictly speaking, a min-heap) maintains
its values in an order such that the first element is always the smallest (or
largest for amax-heap)—this is known as the heap property. The heap.Interface
embeds the sort.Interface and adds Push() and Pop() methods. (We discussed
the sort.Interface in §4.2.4, 160 ➤and §5.7, 244 ➤.)

It is easy to create a simple custom heap type that satisfies the heap.Interface.
Here is an example of such a heap in use.

ints := &IntHeap{5, 1, 6, 7, 9, 8, 2, 4}
heap.Init(ints) // Heapify
ints.Push(9) // IntHeap.Push() doesn't preserve the heap property
ints.Push(7)
ints.Push(3)
heap.Init(ints) // Must reheapify after heap-breaking changes
for ints.Len() > 0 {
 fmt.Printf("%v ", heap.Pop(ints))
}
fmt.Println() // prints: 1 2 3 4 5 6 7 7 8 9 9

Here is the complete custom heap implementation.

type IntHeap []int

func (ints *IntHeap) Less(i, j int) bool {

ptg7913109

422 Chapter 9. Packages

return (*ints)[i] < (*ints)[j]
}

func (ints *IntHeap) Swap(i, j int) {
 (*ints)[i], (*ints)[j] = (*ints)[j], (*ints)[i]
}

func (ints *IntHeap) Len() int {
return len(*ints)

}

func (ints *IntHeap) Pop() interface{} {
 x := (*ints)[ints.Len()-1]

*ints = (*ints)[:ints.Len()-1]
return x

}

func (ints *IntHeap) Push(x interface{}) {

*ints = append(*ints, x.(int))
}

This implementation is sufficient for many situations. We could make the code
slightly nicer to read by specifying the type as type IntHeap struct { ints []int },
since then we could refer to ints.ints rather than *ints inside the methods.

The container/list package provides a doubly linked list. Items added to the
list are added as interface{} values. Items retrieved from the list have type
list.Element, with the original value accessible as list.Element.Value.

items := list.New()
for _, x := range strings.Split("ABCDEFGH", "") {
 items.PushFront(x)
}
items.PushBack(9)
for element := items.Front(); element != nil; element = element.Next() {

switch value := element.Value.(type) {
case string:

 fmt.Printf("%s ", value)
case int:

 fmt.Printf("%d ", value)
 }
}
fmt.Println() // prints: H G F E D B A 9

In this example we push eight single-letter strings onto the front of a new list
and then push an int onto the end. Then we iterate over the list’s elements
and print each element’s value. We didn’t really need the type switch since we

ptg7913109

9.4. A Brief Survey of the Go Standard Library 423

could have printed using fmt.Printf("%v ", element.Value), but if we weren’t
merely printing we would need the type switch if the list contained elements of
different types. Of course, if all the elements had the same type we could use a
type assertion—for example, element.Value.(string) for string elements. (Type
switches were covered in §5.2.2.2, 197 ➤and type assertions in §5.1.2, 191 ➤.)

In addition to the methods shown in the snippet above, the list.List type
provides many other methods, including Back(), Init() (to clear the list), In-
sertAfter(), InsertBefore(), Len(), MoveToBack(), MoveToFront(), PushBackList() (to
push one list onto the end of another), and Remove().

The standard library also provides the container/ring package which imple-
ments a circular list.★

While all the collection types hold their data in memory, Go also has a database/
sql package that provides a generic interface for SQL databases. To work with
actual databases, separate database-specific driver packagesmust be installed.
These, along with many other collection packages, are available from the
Go Dashboard (godashboard.appspot.com/project). And as we saw earlier, the
book’s source code includes the ordered map omap.Map type which is based on a
left-leaning red-black tree (§6.5.3, 302 ➤).

9.4.4. File, Operating System, and Related Packages

The standard library providesmany packages to support file and directory han-
dling and interaction with the operating system. In many cases these packages
provide operating-system-neutral abstractions that make it straightforward to
create cross-platform Go applications.

The os (“operating system”) package provides functions for operating-system
interactions, such as changing the currentworking directory, changing filemode
and ownership, getting and setting environment variables, and creating and
removing files and directories. In addition, this package provides functions for
creating and opening files (os.Create() and os.Open()), and for retrieving file
attributes (e.g., via the os.FileInfo type), all of which we have seen used in
earlier chapters. (See, for example, §7.2.5, 349 ➤, and Chapter 8.)

Once a file is opened, especially in the case of text files, it is very common to
want to access it via a buffer (e.g., to read lines as strings rather than as byte
slices). The functionality we need is provided by the bufio package, and again,
we have seen many examples of its use in earlier chapters. In addition to using
bufio.Readers and bufio.Writers for reading and writing strings, we can also
read (and unread) runes, read (and unread) single bytes, read multiple bytes, as
well as write runes and single or multiple bytes.

★ Older versions of Go may have the container/vector package. This package is deprecated—use
slices and the built-in append() function instead (§4.2, 148 ➤).

ptg7913109

424 Chapter 9. Packages

The io (“input/output”) package provides a large number of functions for work-
ing with io.Readers and io.Writers. (Both of these interfaces are satisfied by
*os.File values.) For example,we have used the io.Copy() function to copy data
from a reader to a writer (§8.2.1, 397 ➤). This package also contains functions
for creating synchronous in-memory pipes.

The io/ioutil package provides a few high-level convenience functions. Among
others, the package provides the ioutil.ReadAll() function that reads all of
an io.Reader’s data and returns it as a []byte; the ioutil.ReadFile() function
that does the same but accepts a string argument (the filename) rather than
an io.Reader; the ioutil.TempFile() function which returns a temporary file (an
*os.File); and the ioutil.WriteFile() function which writes a []byte to a file
whose name it is given.

The path package has functions for manipulating Unix-style paths such as
Linux and Mac OS X paths, URL paths, git “references”, FTP files, and so on.
The path/filepath package provides the same functions as path—and many
others—and is designed to provide platform-neutral path handling. This pack-
age also provides the filepath.Walk() function for recursively iterating over all
the files and directories in a given path, as we saw in an earlier chapter (§7.2.5,
349 ➤).

The runtime package contains many functions and types that give access to Go’s
runtime system. Most of theseare advancedand shouldnot beneededwhen cre-
ating standard maintainable Go programs. However, a couple of the package’s
constants can be useful—for example, runtime.GOOS which holds a string (e.g.,
"darwin", "freebsd", "linux", or "windows"), and runtime.GOARCH which also holds
a string (e.g., "386", "amd64", or "arm"). The runtime.GOROOT() function returns the
GOROOT environment variable’s value (or the Go build’s root if the environment
variable isn’t set), and the runtime.Version() function returns the Go version (as
a string).We sawhow to use the runtime.GOMAXPROCS() and runtime.NumCPU() func-
tions to ensure that Go uses all the machine’s processors, in Chapter 7 (327 ➤).

9.4.4.1. File Format-Related Packages

Go’s excellent support for file handling applies both to text files (using the 7-bit
ASCII encoding or the UTF-8 and UTF-16 Unicode encodings), and to binary
files. Go provides specific packages for handling JSON and XML files, as well
as its own very fast, compact, and convenient Go binary format. (All of these
formats, plus custom binary formats, were covered in Chapter 8.)

In addition, Go has a csv package for reading .csv (“comma-separated values”)
files. This package treats such files as records (one per line) each of which con-
sists of (comma-separated) fields. The package is quite versatile—for example,
it is possible to change the delimiter (e.g., from a comma to a tab or other char-
acter), as well as other aspects of how it reads and writes records and fields.

ptg7913109

9.4. A Brief Survey of the Go Standard Library 425

The encoding package contains several packages, one of which, encoding/binary,
we have already used for reading and writing binary data (§8.1.5, 387 ➤). The
other packages provide encoding and decoding for various other formats—for
example, the encoding/base64 package can be used to encode and decode URLs
which often use this format.

9.4.5. Graphics-Related Packages

Go’s image package provides some high-level functions and types for creating
and holding image data. It also has a number of packages that provide encoders
and decoders for various standard graphics file formats, such as image/jpeg and
image/png.We discussed some of these earlier in this chapter (§9.1.2, 416 ➤), and
in one of Chapter 7’s exercises.

The image/draw package provides some basic drawing functionality as we saw in
Chapter 6 (§6.5.2, 289 ➤).The third-party freetype package addsmore functions
for drawing. The freetype package itself can draw text using any specified
TrueType font, and the freetype/raster package can draw lines and cubic and
quadratic curves. (We discussed obtaining and installing the freetype package
earlier; §9.2, 417 ➤.)

9.4.6. Mathematics Packages

The math/big package provides unlimited (except by memory) size integers
(big.Int) and rationals (big.Rat); these were discussed earlier (§2.3, 57 ➤). The
pi_by_digits example shows the use of big.Ints (§2.3.1.1, 61 ➤). The math/big
package also provides a big.ProbablyPrime() function.

The math package provides all the standard mathematical functions (based
on float64s) and several standard constants. See Tables 2.8, 2.9, and 2.10
(65–67 ➤).

The math/cmplx package provides some standard functions for complex numbers
(based on complex128s). See Table 2.11 (71 ➤).

9.4.7. Miscellaneous Packages

In addition to the packages that can be roughly grouped together, the standard
library contains a number of packages that stand more or less alone.

The crypto package can provide hashes using the MD5, SHA-1, SHA-224,
SHA-256, SHA-384, and SHA-512 algorithms. (Support for each algorithm is
supplied by a package, e.g., crypto/sha512.) In addition, the crypto package has
packages that provide encryption and decryption using a variety of algorithms,
such as AES, DES, and so on, each in packages with corresponding names (e.g.,
crypto/aes, crypto/des).

ptg7913109

426 Chapter 9. Packages

The exec package is used to run external programs. This can also be done using
the os.StartProcess() function, but the exec.Cmd type is much more convenient
to use.

The flag package provides a command-line parser. It accepts X11-style options
(e.g., -width, not GNU-style -w and --width). The package produces a very basic
usage message and does not provide any validation beyond a value’s type. (So,
the package can be used to specify an int option, but not what values are ac-
ceptable.) Several alternatives are available from the Go Dashboard (godash-
board.appspot.com/project).

The log package provides functions for logging information (by default to
os.Stdout), and for terminating the program or panicking with a log mes-
sage. The log package’s output destination can be changed to any io.Writer
using the log.SetOutput() function. Log messages are output in the form of a
timestamp and then the message; the timestamp can be eliminated by calling
log.SetFlags(0) before the first log function call. It is also possible to create cus-
tom loggers using the log.New() function.

The math/rand package provides many useful pseudo-random number generat-
ing functions including rand.Int()which returns a random int and rand.Intn(n)
which returns a random int in the range [0, n). The crypto/rand package has a
function for producing cryptographically strong pseudo-random numbers.

The regexp package provides a very fast and powerful regular expression engine
that supports the RE2 engine’s syntax. We have used this package in several of
the book’s examples, although we have deliberately used simple regexeps and
not used the package’s full power so as not to stray off-topic. The package was
introduced earlier (§3.6.5, 120 ➤).

The sort package provides convenience functions for sorting slices of ints,
float64s, and strings, and for performing fast (binary chop) searches on such
sorted slices. It also provides generic sort.Sort() and sort.Search() functions
that can be used for custom data. (See, for example, §4.2.4, 160 ➤; Table 4.2,
161 ➤; and §5.6.7, 238 ➤.)

The time package has functions for measuring time and for parsing and for-
mating date, date/time, and time values. The time.After() function can be
used to send the current time on the channel it returns after a specified num-
ber of nanoseconds have passed, as we saw in an earlier example (332 ➤). The
time.Tick() and time.NewTicker() functions can be used to provide a channel to
which a “tick” is sent repeatedly at a specified interval. The time.Time struct has
methods for providing the current time, for formatting a date/time as a string,
and for parsing date/times. (We saw time.Time examples in Chapter 8, e.g.,
375 ➤).

ptg7913109

9.4. A Brief Survey of the Go Standard Library 427

9.4.8. Networking Packages

TheGo standard library hasmany packages that support networking and relat-
ed programming. The net package provides functions and types for communi-
cating using Unix domain and network sockets, TCP/IP, and UDP. The package
also provides functions for domain name resolution.

The net/http package makes use of the net package and has functionality for
parsing HTTP requests and replies, and provides a basic HTTP client. The
net/http package also includes an easy-to-extend HTTP server, as we saw in
Chapter 2 (§2.4, 72 ➤) and Chapter 3’s exercises. The net/url package provides
URL parsing and query escaping.

Some other high-level networking packagesare included in the standard library.
One is the net/rpc (“Remote Procedure Call”) package which allows a server
to provide objects whose exported methods can be called by clients. Another is
the net/smtp (“Simple Mail Transport Protocol”) package which can be used to
send email.

9.4.9. The Reflect Package

The reflect package provides runtime reflection (also called introspection), that
is, the ability to access and interact with values of arbitrary types at runtime.

The package also provides some useful utility functions such as reflect.Deep-
Equal() which can compare any two values—for example, slices, which aren’t
comparable using the == and != operators.

Every value in Go has two attributes: its actual value and its type. The reflect.
TypeOf() function can tell us the type of any value.

x := 8.6
y := float32(2.5)
fmt.Printf("var x %v = %v\n", reflect.TypeOf(x), x)
fmt.Printf("var y %v = %v\n", reflect.TypeOf(y), y)

var x float64 = 8.6
var y float32 = 2.5

Here we have output two floating-point variables and their types as Go var
declarations using reflection.

When the reflect.ValueOf() function is called on a value it returns a reflect.
Value which holds the value but isn’t the value itself. If we want to access the
held value we must use one of the reflect.Value methods.

word := "Chameleon"
value := reflect.ValueOf(word)

ptg7913109

428 Chapter 9. Packages

text := value.String()
fmt.Println(text)

Chameleon

The reflect.Value type has many methods for extracting the underlying type
including reflect.Value.Bool(), reflect.Value.Complex(), reflect.Value.Float(),
reflect.Value.Int(), and reflect.Value.String().

The reflect package can also work with collection types such as slices andmaps,
as well as with structs; it can even access structs’ tag text. (This ability is used
by the json and xml encoders and decoders, as we saw in Chapter 8.)

type Contact struct {
 Name string "check:len(3,40)"
 Id int "check:range(1,999999)"
}
person := Contact{"Bjork", 0xDEEDED}
personType := reflect.TypeOf(person)
if nameField, ok := personType.FieldByName("Name"); ok {
 fmt.Printf("%q %q %q\n", nameField.Type, nameField.Name, nameField.Tag)
}

"string" "Name" "check:len(3,40)"

The underlying value held by a reflect.Value can be changed if it is “settable”.
The setability can be checked by calling reflect.Value.CanSet(), which returns
a bool.

presidents := []string{"Obama", "Bushy", "Clinton"}
sliceValue := reflect.ValueOf(presidents)
value = sliceValue.Index(1)
value.SetString("Bush")
fmt.Println(presidents)

[Obama Bush Clinton]

AlthoughGo stringsare immutable,any given item in a []string can be replaced
by another string, and this is what we have done here. (Naturally, in this
particular example, the easiest way to perform the change would be to write
presidents[1] = "Bush", and not use introspection at all.)

It is not possible to change immutable values themselves, but we can replace an
immutable value with another value if we have the original value’s address.

count := 1
if value = reflect.ValueOf(count); value.CanSet() {

ptg7913109

9.4. A Brief Survey of the Go Standard Library 429

 value.SetInt(2) // Would panic! Can't set an int.
}
fmt.Print(count, " ")
value = reflect.ValueOf(&count)
// Can't call SetInt() on value since value is a *int not an int
pointee := value.Elem()
pointee.SetInt(3) // OK. Can replace a pointed-to value.
fmt.Println(count)

1 3

This snippet’s output shows that the if condition’s conditional evaluates to
false, so its body isn’t executed. Although we cannot set immutable values
such as ints, float64s, or strings, we can use the reflect.Value.Elem()method to
retrieve a reflect.Value through which we can set a pointed-to value, and this
is what we do at the end of the snippet.

It is also possible to use reflection to call arbitrary functions andmethods. Here
is an example that calls a custom TitleCase() function (not shown) twice, once
conventionally and once using reflection.

caption := "greg egan's dark integers"
title := TitleCase(caption)
fmt.Println(title)

titleFuncValue := reflect.ValueOf(TitleCase)
values := titleFuncValue.Call([]reflect.Value{reflect.ValueOf(caption)})
title = values[0].String()
fmt.Println(title)

Greg Egan's Dark Integers
Greg Egan's Dark Integers

The reflect.Value.Call() method takes and returns a slice of type []reflect.
Value. In this case we pass in a single value (i.e., as a slice of length 1), and
retrieve a single result value.

We can call methods similarly—and in fact,we can even query to see if a method
exists and call it only if it does.

a := list.New() // a.Len() == 0
b := list.New()
b.PushFront(1) // b.Len() == 1
c := stack.Stack{}
c.Push(0.5)
c.Push(1.5) // c.Len() == 2
d := map[string]int{"A": 1, "B": 2, "C": 3} // len(d) == 3

ptg7913109

430 Chapter 9. Packages

e := "Four" // len(e) == 4
f := []int{5, 0, 4, 1, 3} // len(f) == 5
fmt.Println(Len(a), Len(b), Len(c), Len(d), Len(e), Len(f))

0 1 2 3 4 5

Herewe create two lists (using the container/list package), one of whichwe add
an item to. We also create a stack (using the custom stacker/stack package we
created in Chapter 1; §1.5, 21 ➤), and add two items to it. Andwe create amap,a
string, and a slice of ints, all of different lengths. We then use a generic custom
Len() function to get their lengths.

func Len(x interface{}) int {
 value := reflect.ValueOf(x)

switch reflect.TypeOf(x).Kind() {
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice,

 reflect.String:
return value.Len()

default:
if method := value.MethodByName("Len"); method.IsValid() {

 values := method.Call(nil)
return int(values[0].Int())

 }
 }

panic(fmt.Sprintf("'%v' does not have a length", x))
}

This function returns the length of the value it is passed or panics if the value’s
type isn’t one that supports the notion of length.

We begin by getting the value as a reflect.Value since we will need this further
on. Then we switch depending on the value’s reflect.Kind. If the value’s kind is
one of the built-in types that supports the built-in len() function,we can call the
reflect.Value.Len() function directly on the value. Otherwise, we have either a
type that doesn’t support the notion of length, or a type that has a Len()method.
We use the reflect.Value.MethodByName() method to retrieve the method—or to
retrieve an invalid reflect.Value. If the method is valid we call it. There are
no arguments to pass in this case because conventional Len() methods take
no arguments.

When we retrieve a method using the reflect.Value.MethodByName()method, the
returned reflect.Value holds both the method and the value. So, when we call
reflect.Value.Call(), the value is passed as the receiver.

The reflect.Value.Int() method returns an int64; we have converted this to a
plain int to match the generic Len() function’s return value’s type.

ptg7913109

9.4. A Brief Survey of the Go Standard Library 431

If a value is passed in that doesn’t support the built-in len() function and
doesn’t have a Len() method, the generic Len() function panics. We could have
handled this error case in other ways—for example, by returning -1 to signify
“no length available”, or by returning an int and an error.

Go’s reflect package is incredibly flexible and allows us to do things at runtime
that depend on the program’s dynamic state. However, to quote Rob Pike,
reflection is “a powerful tool that should be used with care and avoided unless
strictly necessary”.★

9.5. Exercises
This chapter has three inter-related exercises. The first exercise involves the
creation of a small custompackage. The second exercise involves the creation of
a test for the package. And the third exercise is to write a program that makes
use of the package. The exercises increase in difficulty with the third one being
rather challenging.

1. Create a package, called, say, my_linkutil (in file my_linkutil/my_linkutil.
go). The package should provide two functions. The first function is
LinksFromURL(string) ([]string, error) which given a URL string (e.g.,
"http://www.qtrac.eu/index.html"), returns a slice of all the web page’s
unique anchor links (i.e., <a> tags’ href attribute values), and nil (or nil
and an error). The second function is LinksFromReader(io.Reader) ([]string,
error) which does the same thing only it reads from an io.Reader (e.g., an
open file or an http.Response.Body). The LinksFromURL() function should use
the LinksFromReader() function internally.

A solution is given in linkcheck/linkutil/linkutil.go. The solution’s
first function is about 11 lines and makes use of the net/http package’s
http.Get() function. The second function is around 16 lines and makes use
of the regexp.Regexp.FindAllSubmatch() function.

2. Go’s standard library provides support for HTTP testing (e.g., the net/http/
httptest package), but for this exercise we will be content with testing the
my_linkutil.LinksFromReader() function developed in the previous exer-
cise. To this end, create a test file (e.g., my_linkutil/my_linkutil_test.go)
containing a single test, TestLinksFromReader(*testing.T). The test should
read in an HTML file from the file system and a links file which lists the
file’s unique anchor links, and it should then compare the links found in the
HTML file by the my_linkutil.LinksFromReader() function with the links in
the links file.

★ Rob Pike has written an interesting and useful blog entry on Go reflection, blog.golang.org/2011/
09/laws-of-reflection.html .

http://www.qtrac.eu/index.html
http.Response.Body
http.Get()

ptg7913109

432 Chapter 9. Packages

It may be convenient to copy the linkcheck/linkutil/index.html and link-
check/linkutil/index.links files into the my_linkutil directory for use by the
test program.

A solution is given in the file linkcheck/linkutil/linkutil_test.go. The solu-
tion’s test function is around 40 lines and makes use of the sort.Strings()
function to order the found and expected links and the reflect.DeepEqual()
function to do the comparison. To help testers the test function lists the first
nonmatching links if the test fails.

3. Write a program called, say, my_linkcheck which accepts a single URL on
the command line (with or without the http:// prefix), and that checks that
every link is valid. The program should work recursively, checking every
linked-to page—but excluding non-HTTP links, non-HTML files, and links
to external sites. Every page that is checked should be checked in a separate
goroutine—thiswill result inmany concurrentnetwork accesses,whichwill
be much faster than doing each access sequentially. Naturally, some of the
same links will be present on different pages and such links should only be
checked once. The program should, of course, use the my_linkutil package
developed in the first exercise.

A solution is given in linkcheck/linkcheck.go and is around 150 lines. To
avoid checking duplicate links the solution keeps a map of the URLs it has
seen. The map is kept inside a separate goroutine and three channels are
used to communicate with it—one to add a URL, one to query whether a
URL has been seen, and one to respond to the query. (An alternative would
be to use the safemap from Chapter 7.) An extract from the solution’s output
for the command line linkcheck www.qtrac.eu is shown below (with many
lines elided either completely or partially).

+ read http://www.qtrac.eu
...
+ read http://www.qtrac.eu/gobook.html
+ read http://www.qtrac.eu/gobook-errata.html
...
+ read http://www.qtrac.eu/comparepdf.html
+ read http://www.qtrac.eu/index.html
...
+ links on http://www.qtrac.eu/index.html

+ checked http://ptgmedia.pearsoncmg.com/.../python/python2python3.pdf
+ checked http://www.froglogic.com
- can't check non-http link: mailto:someone@somewhere.com
+ checked http://savannah.nongnu.org/projects/lout/

+ read http://www.qtrac.eu/py3book-errata.html
+ links on http://www.qtrac.eu

+ checked http://endsoftpatents.org/innovating-without-patents

www.qtrac.eu
http://www.qtrac.eu
http://www.qtrac.eu/gobook.html
http://www.qtrac.eu/gobook-errata.html
http://www.qtrac.eu/comparepdf.html
http://www.qtrac.eu/index.html
http://www.qtrac.eu/index.html
http://ptgmedia.pearsoncmg.com/.../python/python2python3.pdf
http://www.froglogic.com
http://savannah.nongnu.org/projects/lout/
http://www.qtrac.eu/py3book-errata.html
http://www.qtrac.eu
http://endsoftpatents.org/innovating-without-patents

ptg7913109

9.5. Exercises 433

+ links on http://www.qtrac.eu/gobook.html
+ checked http://golang.org
+ checked http://www.qtrac.eu/gobook.html#eg
+ checked http://www.informit.com/store/product.aspx?isbn=0321680561
+ checked http://safari.informit.com/9780321680563
+ checked http://www.qtrac.eu/gobook.tar.gz
+ checked http://www.qtrac.eu/gobook.zip
- can't check non-http link: ftp://ftp.cs.usyd.edu.au/jeff/lout/
+ checked http://safari.informit.com/9780132764100
+ checked http://www.qtrac.eu/gobook.html#toc
+ checked http://www.informit.com/store/product.aspx?isbn=0321774637

...

http://www.qtrac.eu/gobook.html
http://golang.org
http://www.qtrac.eu/gobook.html#eg
http://www.informit.com/store/product.aspx?isbn=0321680561
http://safari.informit.com/9780321680563
http://www.qtrac.eu/gobook.tar.gz
http://www.qtrac.eu/gobook.zip
http://safari.informit.com/9780132764100
http://www.qtrac.eu/gobook.html#toc
http://www.informit.com/store/product.aspx?isbn=0321774637

ptg7913109

This page intentionally left blank

ptg7913109

A Epilogue

The Go developers took a long hard look at some of the most widely used pro-
gramming languages and tried to discern which featureswere really useful and
productive to have, and which were redundant or even counterproductive. They
also drewon themany decadesof programming experience that they collectively
have had. As a result they produced the Go programming language.

In the tradition of Objective-Cand C++,Go is an object-oriented “better C”.Like
Java,Go has its own syntax, so it doesn’t have tomaintain C compatibility in the
way that Objective-C and C++ do. But unlike Java, Go compiles to native code
and isn’t limited to the speed of a virtual machine.

In addition to Go’s novel approach to object orientation with its emphasis on ab-
stract interfaces and concrete typeswith smart embedding and aggregation,Go
also supports advanced features such as function literals and closures. AndGo’s
built-in map and slice types between them serve almost every data structure
need. Go’s Unicode-based string type uses the world’s de facto standard encod-
ing (UTF-8),and the standard library providesexcellent support at both thebyte
and character level.

Go’s support for concurrency is outstanding. Its lightweight goroutines and
its type-safe and high-level channels make it much easier to create concurrent
programs compared with many other languages (e.g., C, C++, or Java). And Go’s
lightning-fast compilation times are a breath of fresh air, especially to anyone
used to building large C++ programs and libraries.

Go is already being used by a variety of commercial and noncommercial
organizations. And Go is used internally by Google, as well as being available
alongside Java and Python, as a language for developing web applications with
the Google App Engine (code.google.com/appengine/docs/go/overview.html).

The language is still evolving quite quickly,yet thanks to the go fix tool, it is easy
to update code to work with the latest release. Furthermore, the Go developers
intend to keep all Go 1.x versions backward compatible with Go 1 to ensure
that Go users have a language that is both stable and being improved at the
same time.

Go’s standard library is very wide ranging, but even in those cases where it
doesn’t have the functionality we need, we can always see if what we want is
available from the Go Dashboard (godashboard.appspot.com/project), or in some

435

ptg7913109

436 Appendix A. Epilogue

cases we can use external libraries written in other languages. The best place
to go for the latest information on Go is golang.org; this web site has the current
release’s documentation, the (very readable) language specification, the Go
Dashboard, blogs, videos, and numerous other supporting documents.

Most people learning Go will have knowledge of some other programming
language (e.g., C++, Java, Python), and will come to Go with experience of
inheritance-based object orientation. Go deliberately doesn’t support inheri-
tance, so while it is relatively easy to convert code between, say, C++ and Java,
when it comes to Go it is best to go back to the fundamentals of what the code
is designed to do—rather than how it does it—and rewrite from scratch in Go.
Perhaps the most important distinction is that inheritance-based languages
allow code and data to be mixed, whereas Go forces them to be kept separate.
This separation gives great flexibility, and also makes it much easier to create
concurrent programs, but it can take time and practice for programmersused to
inheritance-based languages to adapt to the Go approach. Russ Cox, one of Go’s
core developers, says:

“It’s unfortunate that every timesomeoneasks for inheritance theanswer
is ‘well, there’s embedding’. Embedding is useful and a kind of inheri-
tance,butwhenpeoplecomelooking for inheritance,embedding isnot the
answer. The answer is: you’re thinking in C++, or in Python or Java or
Eiffel or whatever. Don’t do that. Think in Go.”

Go is a fascinating language to learn and use, as well as being a pleasure to pro-
gram with. Go programmers may well find it worth their while to join the Go
mailing list—this has many excellent posters and is an ideal place for discus-
sion and for questions (groups.google.com/group/golang-nuts). And since Go is
developed in the open, it is possible to become a Go developer to help maintain,
improve, and extend the language itself (golang.org/doc/contribute.html).

ptg7913109

B The Dangers of
Software Patents

Patents are a curious anomaly in capitalist economies, since they are the grant
of a privatemonopoly by the State. Adam Smith roundly condemnsmonopolies
in TheWealth of Nations.

In modern times patents enjoy widespread support from a broad range of
businesses—fromsmall vacuumcleanermanufacturersto giant pharmaceutical
companies. But when it comes to software patents, it is difficult to find anyone
who positively supports them except for patent trolls (companies that buy and
lease out patent rights but which create nothing themselves), and their lawyers.
Back in 1991 Bill Gates said, “If people had understood how patents would be
granted when most of today’s ideas were invented, and had taken out patents,
the industrywould be at a complete standstill today.”Of course,his viewappears
to be somewhat more nuanced today.

Software patents affect every business that produces software—whether for
sale or for in-house use. Even nonsoftware giants such as Kraft Foods and Ford
Motor Co. are having to spend large sums of money defending against software
patent lawsuits. But every programmer is exposed to risk. For example, linked
lists have been patented—but not by their inventors Allen Newell, Cliff Shaw,
and Herbert Simon when they came up with the idea back in 1955–6, but by
someone else, 50 years later (www.google.com/patents/about?id=26aJAAAAEBAJ&dq=
linked+list). The same thing has happened with skip lists, invented by William
Pugh in 1990 and patented over a decade later by someone else. Sadly, there are
tens of thousands of other software patents that could be cited as examples, al-
though wewill mention just onemore, “A system andmethod causes a computer
to detect and performactions on structures identified in computer data” granted
to Apple in 1999 andwhich covers all software thatmanipulates data structures
(www.google.com/patents?id=aFEWAAAAEBAJ&dq=5,946,647).

It is easy to imagine that overly broad, obvious, or otherwise meritless patents
would be easy to invalidate, but in practice, even giants like Google have found
themselves paying out millions of dollars in legal fees to defend themselves.
How then can startups and small and medium-sized enterprises (SMEs) hope
to bring innovative software to market without being shaken down—again
and again—by patent troll “businesses” which feed like parasites on the work
of others?

437

www.google.com/patents/about?id=26aJAAAAEBAJ&dq=linked+list
www.google.com/patents/about?id=26aJAAAAEBAJ&dq=linked+list
www.google.com/patents?id=aFEWAAAAEBAJ&dq=5,946,647

ptg7913109

438 Appendix B. The Dangers of Software Patents

Here is how the system works in the U.S.—and anywhere else that has similar
patent systems. First of all, keep in mind that patents are enforceable even if
the “violator” doesn’t know about the patent. Also, fines for patent violation can
be huge. Now imagine that a software developer working on some closed-source
software completely independently develops a smart algorithm for performing
some operation. A patent troll hears on the grapevine that the developer’s com-
pany has a new innovation that might make some money. So the troll takes
out an injunction against the developer claiming a violation of one of their re-
ally general patents (such as the Apple one mentioned above). Now the source
code must be submitted for independent analysis. Naturally, the analysis will
cover not just the cited patent, but all of the patents held by the troll. The troll
now gets to see the developer’s smart algorithm and might even try to patent
it—after all they have deep pockets for legal fees and SMEs usually don’t. Of
course, trolls don’t want to go to court since their “business model” is based on
extortion: They want the developer to sell their products and to pay license fees
for the general patents that the troll says have been violated. Of course,most if
not all of the patentsare unenforceable, in that they have nomerit—butfighting
in the courts would bankrupt most SMEs, so they end up paying license fees.
And once they are paying this gives added legitimacy to the troll who can then
cite their list of licensees to their next victim.

Big companies can afford to acquire patents and defend themselves from patent
trolls, and don’t necessarily have much sympathy for SMEs which might be,
or grow to be, potential rivals—so most of them don’t seem to be concerned.
Some companies, including open source company Red Hat, are filing software
patents as a defense that can be used to do cross-licensing deals and minimize
legal costs. How effective such action will be when giants like Apple, Google,
and Microsoft have built up or acquired patent portfolios at a cost of billions of
dollars, remains to be seen. Companies that have made such huge investments
are unlikely to want to end the patent regime—however destructive it is—as
thiswould incurmassivewrite-offs that would be hard to justify to shareholders
or to CEOs whose compensation depends on their company’s share price.

SMEs and individual innovators usually don’t have the financial muscle to de-
fend themselves from patent troll shakedowns. A very few might try their luck
by moving overseas, but most will end up paying serious money for defense (or
going out of business in the process), or paying license fees onmeritless patents.
Software patents are already having a chilling effect on individual and SME
software innovation in the U.S., making it harder and more expensive for these
businesses—and thereby reducing their capacity to expand and createmore jobs
for programmers. Of course,many lawyersdo benefit from softwarepatents—to
the tune of US$11.2 billion in 2008 alone★—while even prosoftware patent
economists don’t seem to be able to count a single cent in economic benefits de-
riving from software patents.

★See esp.wikidot.com/local--files/2008-state-of-softpatents/feb_08-summary_report.pdf.

ptg7913109

Appendix B. The Dangers of Software Patents 439

Nor do software developers outside the U.S. have cause for joy either; some
have already had to withdraw their software from the U.S. market to avoid the
patent troll protection racket. This means that some innovative software is
no longer available in the U.S., potentially giving a competitive advantage to
non-U.S. businesses. Furthermore, the Anti-Counterfeiting Trade Agreement
(ACTA) specifically covers patents of all kinds, and is being adopted by many
countries throughout the world—including the European Union—but not, at
the time of thiswriting,Brazil,China, or Russia. And in addition, the European
so called “unitary patent” (www.unitary-patent.eu) is likely to bring U.S.-style
patents to the entire EU.

Software is a form of intellectual property that is perfectly well protected
by copyright. (For example, Bill Gates was, for a time, the world’s richest
person—purely on the basis of software copyright, and prior to the pernicious
idea of patenting software.) Despite the success of applying copyright to soft-
ware, the U.S. and many other countries have chosen—or been forced by inter-
national trade agreements—to incorporate software into their patent regimes.
Let us imagine for a moment that all the meritless patents (e.g., those that are
overly broad, obvious, or for which there is prior art)were somehow to disappear.
This would greatly reduce the shakedowns and would be a boon for innovation.
But it still leaves open the key question: Should software be patentable at all?

Inmost countries—including theU.S.—it is not possible to patentmathematical
formulas, no matter how new or original they are. Yet mathematical formulas
are ideas (which is what patents are designed to “protect”). And we know from
the Church-Turing thesis that the logic of any software can be reduced to a
mathematical formula, so really, software is mathematics written in a very
particular form. This is exactly the argument Donald Knuth makes against the
patenting of software. (See Professor Knuth’s short and fascinating letter on
this topic: www.progfree.org/Patents/knuth-to-pto.txt.)

The problem is solvable—but will require legislation to outlaw software patents
(or to designate software as mathematics, which is what it is), and to reign in
patent offices (whose income is often proportional to the number of patents they
grant, irrespective of merit). This is difficult because gaining the attention of
politicians is expensive, and, of course, those who can afford to acquire patents
can certainly afford to lobby. Also, the subject is so dry and industry-specific
that it will hardlymakeany politician’s career. But there are people lobbying for
change, and doing so in a bipartisan manner. Probably the best starting point
to learn more about why software patents are so disastrous and how to combat
them is endsoftpatents.org (and in Europe, www.nosoftwarepatents.com).

www.unitary-patent.eu
www.progfree.org/Patents/knuth-to-pto.txt
www.nosoftwarepatents.com

ptg7913109

This page intentionally left blank

ptg7913109

C Selected
Bibliography

Advanced Programming in the UNIX® Environment,Second Edition
W.Richard Stevens and Stephen A. Rago (Addison-Wesley, 2005,
ISBN-13: 978-0-201-43307-4)
A thorough in-depth introduction to Unix programming using the Unix
system call APIs and the standard C library. (The book’s examples are
in C.)

The Art of Multiprocessor Programming
Maurice Herlihy and Nir Shavit (Morgan Kaufmann, 2008,
ISBN-13: 978-0-12-370591-4)
This book providesa thorough introduction tomostly low-levelmultithread-
ed programming, including small but complete working examples (in Java)
that demonstrate all the key techniques.

Clean Code: A Handbook of Agile Software Craftsmanship
Robert C.Martin (Prentice Hall, 2009, ISBN-13: 978-0-13-235088-4)
This book addresses many of the “tactical” issues in programming: good
naming, function design, refactoring, and similar. The book has many
interesting and useful ideas that should help any programmer improve
their coding style andmake their programsmoremaintainable. (The book’s
examples are in Java.)

Code Complete: A Practical Handbook of Software Construction,Second
Edition
Steve McConnell (Microsoft Press, 2004, ISBN-13: 978-0-7356-1967-8)
This book shows how to build solid software, going beyond the language
specifics into the realms of ideas, principles, and practices. The book is
packedwith ideas that will make any programmer thinkmore deeply about
their programming.

Design Patterns: Elements of Reusable Object-Oriented Software
Erich Gamma,RichardHelm,Ralph Johnson, and John Vlissides (Addison-
Wesley, 1995, ISBN-13: 978-0-201-63361-0)
One of the most influential programming books of modern times, even if it
isn’t always easy to read. The design patterns are fascinating and of great
practical use in everyday programming.

441

ptg7913109

442 Appendix C. Selected Bibliography

Domain-DrivenDesign: Tackling Complexity in the Heart of Software
Eric Evans (Addison-Wesley, 2004, ISBN-13: 978-0-321-12521-7)
A very interesting book on software design, particularly useful for large
multipersonprojects. At heart it isabout creating and refining domainmod-
els that represent what the system is designed to do, and about creating a
ubiquitous language throughwhich all those involvedwith the system—not
just software engineers—can communicate their ideas.

Don’t MakeMe Think!: A Common Sense Approach to WebUsability,Second
Edition
Steve Krug (New Riders, 2006, ISBN-13: 978-0-321-34475-5)
A short, interesting, and very practical book on web usability backed up by
considerable research and experience. Applying the easy-to-understand
ideas in this book will improve any web site of any size.

Linux Programming by Example: The Fundamentals
Arnold Robbins (Prentice Hall, 2004, ISBN-13: 978-0-13-142964-2)
A useful and accessible introduction to Linux programming using the
Linux system call APIs. (The book’s examples are in C.)

Mastering Regular Expressions,Third Edition
Jeffrey E.F. Friedl (O’Reilly, 2006, ISBN-13: 978-0-596-52812-6)
This is the standard text on regular expressions—a very interesting and
useful book.

ptg7913109

Index

Symbols & Numbers
! logical NOT operator, 57
!= inequality operator, 56–57, 68–69,

70, 164
" " double quotes, 83
#! shebang scripts, 10
$ replacements in regular expres-

sions, 120, 126, 129
% modulus operator and formatting

placeholder, 47, 60, 69; see also
format specifier

%= augmented modulus operator, 60
& address of and bitwise AND opera-

tor, 45, 46, 55, 60, 142, 143, 144,
167, 246, 247, 248, 267, 269, 284,
382, 383, 384, 387, 393, 394, 395

&& logical AND operator, 56, 57
&= augmented bitwise AND operator,

60
&^ bitwise clear operator, 60
&^= augmented bitwise clear opera-

tor, 60
* multiplication, dereference, point-

er declaration operator and for-
matting placeholder, 26, 59, 69,
96, 100, 142, 143, 144, 178, 247,
248, 249, 259, 284, 305, 370, 382,
394

*= augmented multiplication opera-
tor, 59, 147

+ addition, concatenation, and unary
plus operator, 20, 59, 84, 85, 226

++ increment operator, 20, 59, 186,
188

+= augmented addition and string
append operator, 20, 59, 84, 85,
88, 140; see also append()

- subtraction and unary minus oper-
ator, 59

-- decrement operator, 20, 59, 186,
188

-= augmented subtraction operator,
59

. selector operator, 148, 275

... ellipsis operator, 149, 156, 158,
160, 176, 219, 221, 222, 233, 242,
268, 287, 378

/ division operator, 59
/* */ multiline comments, 14, 51
// single-line comments, 14, 51
/= augmented division operator, 59
:= short variable declaration opera-

tor, 15, 18, 36, 53, 188, 189, 198,
203

; semicolon, 15, 186
< less than comparison operator,

56–57
<- send/receive communication oper-

ator, 44, 45, 207, 210, 318–357
<< bitwise shift left operator, 55, 60
<<= augmented bitwise shift left op-

erator, 60
<= less than or equal comparison op-

erator, 56–57
= assignment operator, 16, 18, 36,

188, 212
== equality operator, 56–57, 68–69,

70, 164
> greater than comparison operator,

56–57
>= greater than or equal comparison

operator, 56–57
>> bitwise right shift operator, 60
>>= augmented bitwise right shift

operator, 60
[] index and slice operator,16,28,85,

91, 203, 242, 339, 355, 357, 393

443

ptg7913109

444 Index

\ (backslash), 84
\a (alert or bell), 84
\b (backspace), 84
\f (form feed), 84
\n (newline), 51, 84
\r (carriage return), 84
\t (tab), 84
\Uhhhhhhhh (rune literal), 84
\uhhhh (rune literal), 84
\v (vertical tab), 84
\xhh (rune literal), 84
^ bitwise XOR and complement opera-

tor, 60
^= augmented bitwise XOR operator,

60
_ blank identifier, 36, 52–53, 154,

170, 188, 291, 358, 417; see also
identifiers

` ` backticks, 75, 78, 96
{ } braces, 15, 186
| bitwise OR operator, 55, 60
|= augmented bitwise OR operator,

60
|| logical OR operator, 56, 57, 178
5g, 6g, 8g (tool), 9
5l, 6l, 8l (tool), 9
7-bit ASCII encoding, 82

A
Abs()

cmplx package, 71
math package, 65, 68

abstract vs. concrete types, 22
abstraction and abstract types; see

interfaces
access operator; see [] index oper-

ator
access, serialized, 318–319, 335, 341
accessing maps, 39, 168–169, 231
accuracy, floating-point, 64
Acos()

cmplx package, 71
math package, 65

Acosh()
cmplx package, 71
math package, 65

Add()
Int type, 63
WaitGroup type, 350, 351, 352, 354

address; see pointers
After() (time package), 332, 333, 426
aggregation, 254–256, 275–282; see

also embedding
alert or bell (\a), 84
aliasing, package names, 409, 418
americanise (example), 29–40
and, logical; see && operator
anonymous fields, struct keyword
anonymous functions, 36, 37, 110,

112, 206, 208, 212, 216, 218, 225,
226, 239, 240, 243, 290

anonymous struct, 275
apachereport (example), 341–349
API (Application Programming In-

terface); see interfaces
App Engine, Google, 2, 435
append() (built-in), 25, 27, 55, 77, 129,

132, 150, 151, 156–157,158, 159,
160, 170, 176, 178, 179, 187, 232,
240, 247, 249, 272, 355, 374, 382,
392, 410; see also +=

AppendBool() (strconv package), 114
AppendFloat() (strconv package), 114
AppendInt() (strconv package), 114
AppendQuote() (strconv package), 114
AppendQuoteRune() (strconv package),

114
AppendQuoteRuneToASCII() (strconv

package), 114
AppendUInt() (strconv package), 114
archive files; see .tar files and .zip

files
archive (package)

tar (package); see top-level entry
zip (package); see top-level entry

archive_file_list (exercise), 250

ptg7913109

Index 445

Args slice (os package), 14, 15, 17, 19,
131–132, 232

arguments, command line, 16, 17, 19,
232; see also flag package and
commandLineFiles()

arguments, function and method;
see parameters

arrays, 140, 148–150; see also slices
iterating, 203
multidimensional, 148
mutability, 149

ASCII encoding, 82
Asin()

cmplx package, 71
math package, 65

Asinh()
cmplx package, 71
math package, 65

assertions, type; see type assertions
assertions, zero-width in regular ex-

pressions, 122
assignment operators; see = and :=

operators
assignments,multiple, 31, 188
associative array; see map type
asynchronous, channel, 207; see also

channels
Atan()

cmplx package, 71
math package, 65

Atan2() (math package), 65
Atanh()

cmplx package, 71
math package, 65

Atoi() (strconv package), 116, 134,
390

atomic updates, 338
audio format, Vorbis, 130

B
backslash (\), 84
backreferences, in regular expres-

sions, 126

backspace (\b), 84
backticks (̀ `), 75, 96
backtracking,in regular expressions,

120
balanced binary tree; see omap exam-

ple
bare returns, 34, 189, 219
Base() (filepath package), 19,

131–132, 194, 327
benchmarking, 415–416
big (package; math package)

Int (type); see top-level entry
NewInt(), 63
ProbablyPrime(), 425
Rat (type); see top-level entry

big-O notation, 89
bigdigits (example), 16–21, 48
bigdigits (exercise), 48
BigEndian (variable; binary package),

389
binary files, 387–397; see also .gob

files
binary number, formatting as, 98
binary (package; encoding package),

388, 391
BigEndian (variable), 389
LittleEndian (variable), 388, 389
Read(), 391, 393, 395
Write(), 388

binary tree; see omap example
binary vs. linear search, 162–163
bisectLeft() (example), 314
blank identifier (_), 36, 52–53, 154,

170, 188, 291, 358, 417; see also
identifiers

blocking, channel, 207–208, 209; see
also channels

bool (type; built-in), 53, 56–57, 195,
204, 318
formatting, 97

Bool() (Value type), 428
Boolean expressions, 193, 204
braces ({ }), 15, 186

ptg7913109

446 Index

branching, 192–202
break (statement), 24, 177, 186, 204,

205, 331
Buffer (type; bytes package), 111,

200, 201, 243
ReadRune(), 113
String(), 88, 200, 243
WriteRune(), 111
WriteString(), 88, 111, 200, 243

buffers; see bufio package and File
type

bufio (package), 30, 34, 38
NewReader(), 35, 176, 333, 380
NewWriter(), 35, 378
Reader (type); see top-level entry
Writer (type); see top-level entry

building Go programs, 11–13
built-in functions

append(), 25, 27, 55, 77, 129, 132,
150, 151, 156–157, 158, 159,
160, 170, 176, 178, 179, 187,
232, 240, 247, 249, 272, 355,
374, 382, 392, 410; see also
+=

cap(), 24, 149, 151, 152, 157, 187,
324

close(), 44, 187, 211, 320, 321,
324, 325, 329, 330, 340, 343

complex(), 58, 187; see also cmplx
package

copy(), 157–158, 159, 187, 268
delete(), 165, 169, 187, 339
imag(), 70, 101, 187
len(), 15, 20, 24, 27, 69, 85, 90,

148, 149, 151, 152, 157, 159,
165, 169, 187, 340

make(), 26, 38, 39, 43, 44, 127, 129,
150, 151, 152, 157, 159, 165,
172, 176, 178, 179, 187, 207,
208, 209, 211, 240, 242, 246,
247, 323, 324, 328, 337, 339,
341, 346, 348, 355, 374, 392,
393, 395, 410

new(), 145, 146, 152, 187, 346

panic(), 32, 69, 70, 113, 187, 191,
196, 213–218, 219, 220, 243

real(), 70, 101, 187
recover(), 32, 187, 213–218
see also functions and special

functions
built-in types; see bool, byte, error,

int, map, rune, string, uint; see
also standard library’s types

byte ordering, 83, 389
byte (type; built-in), 20, 59, 60, 82,

104, 132, 190
conversion from string, 89–90,

164, 373, 391
conversion of []byte to string, 38,

85, 164, 334, 395
formatting, 102
see also rune and string types

bytes (package), 419
Buffer (type); see top-level entry
TrimRight(), 333, 334

C
C code, external, 9
Call() (Value type), 429, 430
Caller() (runtime package), 291
calling functions, 220–221; see also

functions
CanBackquote() (strconv package),

114
CanSet() (Value type), 428
cap() (built-in), 24, 149, 151, 152,

157, 187, 324
carriage return (\r), 84
case (keyword); see select and switch

statements
Cbrt() (math package), 65
Ceil() (math package), 65
cgo (tool), 9
cgrep (example), 326–334
chan (keyword), 43, 44, 208, 209, 210,

318–357; see also channels

ptg7913109

Index 447

channels, 41, 43–44, 206–212,
318–357
infinite, 208
iterating, 203

character; see rune type
character classes in regular expres-

sions, 122
character encoding,fixed vs.variable

width, 83
character literal, 20; see also rune

type
checked type assertion; see type as-

sertions
class, 254; see also type keyword
close() (built-in), 44, 187, 211, 320,

321, 324, 325, 329, 330, 340, 343
Close() (File type), 31, 176, 213, 293,

333, 343, 353, 398, 400
closures, 40, 163, 225–227, 239, 240,

243, 244, 352
cmplx (package; math package), 70

Abs(), 71
Acos(), 71
Acosh(), 71
Asin(), 71
Asinh(), 71
Atan(), 71
Atanh(), 71
Conj(), 71
Cos(), 71
Cosh(), 71
Cot(), 71
Exp(), 71
Inf(), 71
IsInf(), 71
IsNaN(), 71
Log(), 71
Log10(), 71
NaN(), 71
Phase(), 71
Polar(), 71
Pow(), 71
Rect(), 71

Sin(), 71
Sinh(), 71
Sqrt(), 71
Tan(), 71
Tanh(), 71

code point, Unicode; see rune type
collection packages, 421–423
collections, slices, map type, and omap

example
color (package)

RGBA (type); see top-level entry
command-line arguments, 16, 17, 19,

232; see also flag package
commandLineFiles() (example), 176,

410
commas() (example), 357
comments, Go, 14, 51
CommonPathPrefix() (exercise), 250
CommonPrefix() (exercise), 250
Communicating Sequential Process-

es (CSP), 3, 315
communication,between goroutines;

see channels,goroutines,and the
chan and go keywords

comparisons, 56–57, 70, 84, 86–87;
see also <, <=, ==, !=, >=, and > op-
erators

compilation speed, 2
Compile() (regexp package), 37, 121,

214, 327
CompilePOSIX() (regexp package), 121
complex() (built-in), 58, 70, 187; see

also cmplx package
Complex() (Value type), 428
complex64 (type; built-in), 64, 70
complex128 (type; built-in), 64, 70,

101, 187
comparisons, 70
conversion to complex64, 70
formatting, 101
literals, 53, 70
see also cmplx package and imag()

and real()

ptg7913109

448 Index

composing functionality, 35
composite literals, 18, 45, 150, 152,

153, 166, 167
compositing, image, 290
composition;seeaggregationand em-

bedding
compress (package)

gzip (package), see top-level en-
try

concatenation, fast string, 88
concatenation,string;see+ and += op-

erators
concrete vs. abstract types, 22
concurrency; see channels, gorou-

tines, and the chan and go key-
words

conditional branching, 192–202
Conj() (cmplx package), 9
console; see Stderr, Stdin, and Std-

out streams
const (keyword), 45, 53, 54, 58, 133,

336, 364, 379, 390
constant expressions, 58
constants,numeric;seeunder literals

and specific types
construction functions, 27, 263, 264,

306
constructors; see construction func-

tions
container (package), 421–423

heap (package), 421–422
list (package), 422–423
ring (package), 423

containers; see slices, map type, and
omap example

Contains() (strings package), 108
contents of; see pointers and * deref-

erence operator
continue (statement), 132, 133, 186,

204, 205, 324
conversions,42, 57, 61, 162,190–191,

288
[]byte to string, 38, 85, 164, 334,

395

[]rune to string, 91, 272
complex128 to complex64, 70
downsizing, 58, 61
float64 to int, 69
int to float64, 61, 73
int to int64, 63
rune to string, 87–88, 246
string to []byte, 85, 164, 373, 391
string to []rune, 85
string to float64, 77
see also the strconv package

copy() (built-in), 157–158, 159, 187,
268

Copy() (io package), 353, 354, 399,
401, 402, 405

copy on write, of strings, 140
Copysign() (math package), 65
coroutines; see channels, goroutines,

and the chan and go keywords
Cos()

cmplx package, 71
math package, 45, 65

Cosh()
cmplx package, 71
math package, 65

Cot() (cmplx package), 9
Count() (strings package), 108, 172,

173
Cox, Russ, 2, 120, 436
Create() (File type), 31, 293, 397,

400
CreateHeader() (Writer type), 398,

399
cross-platform code, 410–411
crypto (package), 425

rand (package), see top-level en-
try

sha1 (package), see top-level en-
try

.csv files, 424
csv (package; encoding package), 424
currying; see closures

ptg7913109

Index 449

custom packages, 24–29, 408–417;
see also packages

custom types, 55, 103, 255–282
named vs. unnamed, 22
see also type

D
Dashboard, Go, 2
data structures, slices, map type, and

struct
database (package)

sql (package), 423
deadlock, 317–318, 340
debugging, 55, 103–106
decimal number, formatting as, 99;

see also int type
declarations, order of, 21
Decode()

gob package
Decoder type, 387

json package
Decoder type, 369, 370

xml package
Decoder type, 375, 377

DecodeConfig() (image package), 358
DecodeLastRune() (utf8 package), 118
DecodeLastRuneInString() (utf8 pack-

age), 91, 118, 229, 230
Decoder (type)

gob package
Decode(), 387

json package), 369
Decode(), 369, 370

xml package
Decode(), 375, 377

DecodeRune() (utf8 package), 118
DecodeRuneInString() (utf8 package),

91, 92, 93, 118, 203, 229, 230
DeepEqual() (reflect package), 57,

236, 427
default (keyword); see select and

switch statements

defer (statement), 31–32, 35, 36, 44,
97, 176, 211–213, 216, 218, 333,
343, 353, 378, 398, 400

defining methods, 25
definitions, order of, 21
delegation; see embedding
delete() (built-in), 165, 169, 187,

339
dereferencing pointers; see pointers
dictionary; see map type
Dim() (math package), 65
Div() (Int type), 63
division by zero, 68
documentation, Go, 8
documentation, package, 411–413
domain name resolution; see net

package
Done() (WaitGroup type), 350, 352,

354
double quotes (" "), 83
doubly linked list; see list package
downloading Go, 9
downsizing; see conversions
Draw() (draw package), 290
draw (package; image package)

Draw(), 290
Image (interface), 290, 293, 319

duck typing, 21, 32, 254–255, 268
Duration (type; time package), 332,

333

E
E (constant; math package), 65, 104,

105
Elem() (Value type), 429
else (keyword); see if statement
embedding, 254–256, 261, 270–274,

275–282, 294, 300; see also ag-
gregation

empty interface; see interface{}
empty struct, 328

ptg7913109

450 Index

Encode()
gob package

Encoder type, 385, 386
json package

Encoder type, 367, 370
xml package

Encoder type, 373, 375
Encoder (type)

gob package
Encode(), 385, 386

json package, 367
Encode(), 367, 370

xml package, 373
Encode(), 373, 375

EncodeRune() (utf8 package), 118
encoding

ASCII (7-bit, US-), 82
of characters, fixed vs. variable

width, 83
UTF-8; seeUnicode

encoding (package)
binary (package), see top-level en-

try
csv (package); see top-level entry
gob (package); see top-level entry
json (package), see top-level en-

try
xml (package); see top-level entry

end of file; see EOF
endianness, 83, 389
endsoftpatents.org (web site), 439
entry point, 14, 224–225
enumerations, 54–56; see also const

and iota
environment variables

GOPATH, 8, 13, 23, 408, 409, 410,
411, 417, 418

GOROOT, 8, 10, 11, 23, 408, 410, 418,
424

PATH, 10
see also variables

EOF (io package), 34, 35, 37, 113, 177,
268, 333, 343, 381, 404

EqualFloat() (example), 68–69
EqualFloatPrec() (example), 69
EqualFold() (strings package), 108,

163
equality comparisons (==, !=), 56–57,

68–69, 70, 164
Erf() (math package), 65
Erfc() (math package), 65
error handling, 24, 32, 145, 213
Error() (method), 31
error (type; built-in), 24, 27, 34, 58,

93, 134, 145, 213, 214, 216, 284,
285

Errorf() (fmt package), 33, 58, 94, 97,
216, 285, 293, 365, 382, 384

errors (package), 24
New(), 27, 33, 194, 384

escapes, 84, 102, 375, 377; see also
regexp package’s escapes

EscapeString() (html package), 78
examples, 10

americanise, 29–40
apachereport, 341–349
bigdigits, 16–21, 48
bisectLeft(), 314
cgrep, 326–334
commandLineFiles(), 176, 410
commas(), 357
EqualFloat(), 68–69
EqualFloatPrec(), 69
filter, 322–326
Filter(), 240–241
findduplicates, 349–357
FuzzyBool, 282–288
guess_separator, 171–174
hello, 14–16
Humanize(), 100
indent_sort, 244–249
InsertStringSlice(), 158
InsertStringSliceCopy(),

157–158
invoicedata, 362–397
logPanics(), 218

ptg7913109

Index 451

m3u2pls, 130–135
Memoize(), 242–244
omap, 302–310, 409, 412–413,

414–416
pack, 397–405
Pad(), 99
palindrome, 232
pi_by_digits, 62–64
polar2cartesian, 40–47
RemoveStringSlice(), 160
RemoveStringSliceCopy(),

159–160
RomanForDecimal(), 243–244
safemap, 334–340
shaper, 289–301
SimplifyWhitespace(), 111
SliceIndex(), 238–239
stacker, 21–29, 408–409
statistics, 72–78
statistics_nonstop, 216–218
unpack, 397–405
wordfrequencies, 174–180

exceptions; see panic() and recov-
er()

exec (package; os package), 426
exercises

archive_file_list, 250
bigdigits, 48
CommonPathPrefix(), 250
CommonPrefix(), 250
Flatten(), 181
font, 311
imagetag, 358
.ini file to map, 181
invoicedata, 406
IsPalindrome(), 250
linkcheck, 432
linkutil, 431–432
Make2D(), 181
map to .ini file, 182
oslice, 313–314
playlists, 135–136
quadratic, 79
safeslice, 357–358

shaper, 311–313
sizeimages, 359
soundex, 136–137
statistics, 79
UniqueInts(), 180
unpack, 405
utf16-to-utf8, 405

Exit() (os package), 19, 20, 32,
131–132, 327

exiting; see termination and Exit()
Exp()

cmplx package, 71
Int type, 63
math package, 65

Exp2() (math package), 65
Expand() (Regexp type), 124
ExpandString() (Regexp type), 124
Expm1() (math package), 65
exponential notation, 64, 101
exported identifiers, 52, 202, 264
expression switches, 195–197
Ext() (filepath package), 293, 324,

325
extension, file, 194
external C code, 9

F
factory function, 226, 291, 298
fallthrough (statement), 186, 195,

196–197
false (built-in); see bool type
fast compilation, 2
fast string concatenation, 88
Fatal() (log package), 19, 20, 32,

131–132, 342
Fatalf() (log package), 20, 327
FieldByName() (Value type), 428
fields; see struct keyword
Fields() (strings package), 38, 39,

76, 77, 107–110, 108, 111
FieldsFunc() (strings package), 108,

178

ptg7913109

452 Index

file globbing, 176, 410–411
file suffix, 194
File (type; os package), 31, 32, 176

Close(), 31, 176, 213, 293, 333,
343, 353, 398, 400

Create(), 31, 293, 397, 400
Open(), 31, 176, 212, 333, 342, 353,

398, 400
OpenFile(), 31, 397
ReadAt(), 397
Readdir(), 361
Readdirnames(), 361
Seek(), 397
Stat(), 397, 398, 399, 400
WriteAt(), 397

file types
.csv, 424
.go, 84, 408, 410
.gob, 385–387
.ini, 131, 181–182
.jpg and .jpeg, 293
.m3u, 130–135
.pls, 130–135
.png, 293
.tar, 399–401, 403–405
.txt, 377–384
.zip, 397–399, 401–403

FileInfo (interface; os package), 351,
361, 397, 399

Mode(), 351, 401
ModTime(), 401
Size(), 351, 353, 401

FileInfoHeader() (zip package), 398,
399

filepath (package; path package), 17,
19, 424

Base(), 19, 131–132, 194, 327
Ext(), 293, 324, 325
FromSlash(), 135
Glob(), 176, 410
Separator (constant), 134, 135
ToSlash(), 399
Walk(), 349, 352

filter (example), 322–326
Filter() (example), 240–241
Find() (Regexp type), 124
FindAll() (Regexp type), 124
FindAllIndex() (Regexp type), 124
FindAllString() (Regexp type), 124,

127
FindAllStringIndex() (Regexp type),

124
FindAllStringSubmatch() (Regexp

type), 124, 127
FindAllStringSubmatchIndex() (Regexp

type), 124, 128
FindAllSubmatch() (Regexp type), 124
FindAllSubmatchIndex() (Regexp type),

124
findduplicates (example), 349–357
FindIndex() (Regexp type), 124
FindReaderIndex() (Regexp type), 124
FindReaderSubmatchIndex() (Regexp

type), 124
FindString() (Regexp type), 124
FindStringIndex() (Regexp type), 124
FindStringSubmatch() (Regexp type),

124, 127, 343, 344, 348
FindStringSubmatchIndex() (Regexp

type), 124
FindSubmatch() (Regexp type), 125
FindSubmatchIndex() (Regexp type),

125
fixed vs. variable-width character

encoding, 83
flag (package), 426
flags, regular expression, 123
Flatten() (exercise), 181
Float() (Value type), 428
float32 (type; built-in), 61, 64, 70,

283, 285, 427
Float32bits() (math package), 65
Float32frombits() (math package), 65
float64 (type; built-in), 61, 62, 64–70,

73, 100, 187, 221, 304, 318
accuracy, 64

ptg7913109

Index 453

comparisons, 57, 68–69
conversion from int, 61, 69, 73
conversion from string, see Parse-

Float()
formatting, 100–101
literals, 53, 58
see also math package

Float64bits() (math package), 65
Float64frombits() (math package), 65
Float64s() (sort package), 73, 161
Float64sAreSorted() (sort package),

161
Floor() (math package), 66
Flush() (Writer), 35, 36, 378
fmt (package), 55, 93–106, 192

Errorf(), 33, 58, 94, 97, 216, 285,
293, 365, 382, 384

format specifier, 96, 97; see also
% symbol

Fprint(), 76, 94, 96
Fprintf(), 76, 94, 97, 200, 201,

378
Fprintln(), 45, 94, 96
Fscan(), 383
Fscanf(), 383, 384
Fscanln(), 383
Print(), 94, 96
Printf(), 19, 47, 94–106, 113, 178,

192
Println(), 19, 24, 45, 53, 72,

94–106
Scan(), 383
Scanf(), 383
Scanln(), 383
Sprint(), 94, 99, 178, 242, 357
Sprintf(), 43, 55, 69, 78, 85, 94,

97, 100, 101, 242, 286, 355
Sprintln(), 94
Sscan(), 383
Sscanf(), 45, 46, 382, 383
Sscanln(), 383
Stringer (interface), 265,

266–267, 286
font (exercise), 311

for loop, 19, 23, 24, 38, 39, 74, 89,
110, 132, 147, 154, 155, 168, 170,
172, 177, 186, 200, 203–205,320,
321, 324, 325, 330, 331, 339, 343,
355, 390

form feed (\f), 84
Form (field; Request type), 76
format specifier, fmt package, 96, 97;

see also % symbol
Format() (Time type), 368, 379, 390
FormatBool() (strconv package), 114,

116
FormatFloat() (strconv package), 114
FormatInt() (strconv package), 114,

117
formatting

bools, 97
complex numbers, 101
floating-point numbers, 100–101
for debugging, 103–106
integers, 98–99
maps, 106
pointers, 96, 104
runes, 99
slices, 101–103
strings, 101–103

FormatUInt() (strconv package), 114
Fprint() (fmt package), 76, 94, 96
Fprintf() (fmt package), 76, 94, 97,

200, 201, 378
Fprintln() (fmt package), 45, 94, 96
Frexp() (math package), 66
FromSlash() (filepath package), 135
Fscan() (fmt package), 383
Fscanf() (fmt package), 383, 384
Fscanln() (fmt package), 383
FullRune() (utf8 package), 118
FullRuneInString() (utf8 package),

118

ptg7913109

454 Index

func (keyword), 14, 15, 25, 35, 45, 55,
208, 216, 218, 219, 223, 226, 232,
238, 240, 241, 243, 246, 291, 303,
305, 323, 324, 343, 378, 379, 388,
389, 413

FuncForPC() (runtime package), 291,
292

functionality, composing, 35
functions, 219–244

anonymous, 36, 37, 110, 112, 206,
208, 212, 216, 218, 225, 226,
239, 240, 243, 290

calling, 220–221
closures, 40, 163, 225–227, 239,

240, 243, 244
construction, 27, 306
factory, 226, 291, 298
generic, 232–238; see also higher

order functions
higher order, 37, 38, 238–244,

257
literal; see closures
optional parameters, 222–223
parameters, 220–223, 254–255
pure, 241; see alsomemoizing
recursive, 227–230, 247, 307
references to, 92, 110, 112, 140,

148, 223, 226, 230–231, 242,
310

variadic, 198, 219, 221–222
wrapper, 218, 226
see also built-in functions and

special functions
FuzzyBool (example), 282–288

G
Gamma() (math package), 66
garbage collector, 3, 32, 40, 139, 141
gc (tool), 9
gccgo (tool), 9
generic functions, 232–238; see also

higher order functions
Gerrand, Andrew, 2, 207

Getgid() (os package), 401
getters, 264–265
Getuid() (os package), 401
GID; see Getgid()
Glob() (filepath package), 176, 410
globbing, file, 176, 410–411
Go

building programs, 11–13
comments, 14, 51
Dashboard, 2
documentation, 8
downloading, 9
history of, 1
identifiers, 9, 42, 52–53, 58; see

also blank identifier
installing, 9, 10–11
shebang (#!) scripts, 10
source code encoding, 9
specification, 69

go build (tool), 11–12, 23, 409, 411
.go files, 84, 408, 410
go fix (tool), 418
go get (tool), 417–418
go install (tool), 1, 13, 409
go (statement), 45, 206, 208, 209,

211, 224, 320–357; see also gor-
outines

go test (tool), 415–416
go version (tool), 11
go vet (tool), 418
GOARCH (constant; runtime package),

410, 424
.gob files, 385–387
gob (package; encoding package), 385

GobDecoder (interface), 386
GobEncoder (interface), 386
NewDecoder(), 386
NewEncoder(), 385

godashboard.appspot.com (web site),
407, 417, 423, 426

godoc (tool), 8, 411–413, 419
gofmt (tool), 186, 188, 419
golang.org (web site), 8, 436

ptg7913109

Index 455

GOMAXPROCS() (runtime package), 327
gonow (third-party tool), 10
Google, 1–2

App Engine, 2, 435
GOOS (constant; runtime package), 43,

176, 399, 410, 424
GOPATH (environment variable), 8, 13,

23, 408, 409, 410, 411, 417, 418
GOROOT (environment variable), 8, 10,

11, 23, 408, 410, 418, 424
GOROOT() (runtime package), 424
goroutines, 3, 41, 45, 206–212,

318–357
gorun (third-party tool), 10
goto (statement), 205
greedy matching in regular expres-

sions, 123, 127
Griesemer, Robert, 1
grouping constants, imports, and

variables, 54
grouping in regular expressions,

123
guard, type switch, 198, 199
guess_separator (example), 171–174
gzip (package; compress package),

400
NewReader(), 403
NewWriter(), 400
Reader (type), 403
Writer (type), 400

H
HandleFunc() (http package), 75, 218
handling errors, 24, 32, 213
hash table; see map type
HasPrefix() (strings package), 108,

132, 194, 246, 260, 382
HasSuffix() (strings package), 108,

131–132, 226, 400, 403
Header (constant; xml package), 373
Header (type; tar package), 401, 404
heap (package; container package),

421–422

hello (example), 14–16
hexadecimal number, formatting as,

98, 102
higher order functions, 37, 38,

238–244, 257
history, of Go, 1
Hoare, C. A. R, 3
html (package)

EscapeString(), 78
template (package), see top-level

entry
HTMLEscape() (template package), 78
http (package; net package)

HandleFunc(), 75, 218
ListenAndServe(), 75
Request (type); see top-level entry
ResponseWriter (interface), 76

Humanize() (example), 100
Hyphen (constant; unicode package),

272
Hypot() (math package), 66, 304

I
identifiers, Go, 9, 42, 52–53, 58; see

also blank identifier
IEEE-754 floating-point format, 64
if (statement), 15, 189, 192–194,

220; see also switch statement
Ilogb() (math package), 66
imag() (built-in), 70, 101, 187
Image (interface)

draw package, 290, 293, 319
image package, 289, 293, 319

image (package), 289, 425
DecodeConfig(), 358
draw (package), 290
Image (interface), 289, 293, 319
jpeg (package), 293
NewRGBA(), 290, 319
png (package), 293
RGBA (type), 290
Uniform(), 290

ptg7913109

456 Index

image (package) (continued)
ZP (zero Point), 290

imagetag (exercise), 358
imaginary numbers; see complex128

type and imag()
immutability, of strings, 84
import paths, 23
import (statement), 14, 15, 358, 409,

416–417, 418
indent_sort (example), 244–249
Index()

reflect package, 235, 236, 428
strings package, 92, 103, 108,

133, 134, 383
index operator; see [] index and slice

operator
IndexAny() (strings package), 108,

133, 134
IndexFunc() (strings package), 92,

93, 108
indexing slices, 153–154
indexing strings, 20, 90–93
IndexRune() (strings package), 108
indirection; see pointers and * deref-

erence operator
Inf()

cmplx package, 71
math package, 66

inferred type, 53, 70
infinite channel, 208
infinite loop, 24, 203, 208; see also

for loop
inheritance, 240, 294, 300, 436
.ini file to map (exercise), 181
.ini files, 131, 181–182
init() (special function), 43, 215,

224–225, 231–232, 241, 242,
243, 290, 417

initializing, 27
slices, 17
variables, 15, 74

input/output (I/O); see File type and
fmt package

InsertStringSlice() (example), 158
InsertStringSliceCopy() (example),

157–158
installing Go, 9, 10–11
instances; see values
Int (type; big package), 57, 61–64

Add(), 63
Div(), 63
Exp(), 63
Mul(), 63
Sub(), 63

int (type; built-in), 55, 57, 58, 59–61,
69, 116, 117, 188, 208, 215, 237,
318, 390, 394
comparisons, 57
conversion from int64, 63
conversion to float64, 61, 69
conversion to string, 85
formatting, 98–99
literals, 53, 58
see also strconv package

Int() (Value type), 428, 430
int8 (type; built-in), 60, 391, 395
int16 (type; built-in), 60, 392
int32 (type;built-in), 59, 60, 388, 390,

395; see also rune type
int64 (type;built-in), 60, 61, 116, 117,

215, 241, 356, 391, 401, 430
conversion from int, 63

integer literals, 53, 58
integers; see int and similar types

and Int and Rat types
Interface (interface; sort package),

161, 162, 246, 249, 421
interface (keyword), 220, 237,

265–274, 294, 295, 335, 364
interface{}, 24, 27, 150, 165, 191,

192, 197, 198, 199, 220, 234,
235, 237, 241, 242, 243, 255,
265, 284, 303, 337, 378, 388, 389,
421–423

Interface() (reflect package), 235

ptg7913109

Index 457

interfaces, 22, 202, 255, 265–274,
301, 319
see also Image, Interface, Reader,

ReaderWriter, ResponseWriter,
Stringer, and Writer inter-
faces

interpreted string literals, 83
Intn() (rand package), 209, 426
introspection; see reflect package
Ints() (sort package), 161, 180
IntsAreSorted() (sort package), 161
inversion, map, 170–171, 179
invoicedata (example), 362–397
invoicedata (exercise), 406
io (package), 30, 34, 424

Copy(), 353, 354, 399, 401, 402,
405

EOF, 34, 35, 37, 113, 177, 268, 333,
343, 381, 404

Pipe(), 322
ReadCloser (interface), 403
Reader (interface), 32, 34, 35, 255,

268, 269–270, 364, 365, 369,
375, 380, 384, 386, 392, 393

ReaderWriter (interface), 32
WriteCloser (interface), 400
Writer (interface), 32, 34, 35, 93,

255, 354, 364, 366, 373, 378,
385, 388, 399

iota (keyword), 54, 336
ioutil (package; io package), 30,

424
ReadAll(), 424
ReadFile(), 38, 131–132, 424
TempFile(), 424
WriteFile(), 424

Is() (unicode package), 118, 119, 258,
272

IsControl() (unicode package), 119
IsDigit() (unicode package), 119
IsGraphic() (unicode package), 119
IsInf()

cmplx package, 71
math package, 66

IsLetter() (unicode package), 119,
178

IsLower() (unicode package), 119
IsMark() (unicode package), 119
IsNaN()

cmplx package, 71
math package, 66

IsOneOf() (unicode package), 119
IsPalindrome() (exercise), 250
IsPrint() (strconv package), 114
IsPrint() (unicode package), 119
IsPunct() (unicode package), 119
IsSorted() (sort package), 161
IsSpace() (unicode package), 92, 111,

119, 272
IsSymbol() (unicode package), 119
IsTitle() (unicode package), 119
IsUpper() (unicode package), 119
IsValid() (Value type), 430
iterating; see for loop and range
iterating arrays, 203
iterating channels, 203
iterating maps, 170, 203
iterating slices, 154–156, 203
iterating strings, 88–90, 203
Itoa() (strconv package), 85, 114,

117

J
J0() (math package), 66
J1() (math package), 66
JavaScript Object Notation; see

JSON
Jn() (math package), 66
Join() (strings package), 14, 16, 55,

108, 111, 180, 414
.jpeg and .jpg files, 293
jpeg (package; image package), 293
JSON (JavaScript Object Notation),

199–202, 363, 365–371
json (package; encoding package),

202, 366

ptg7913109

458 Index

json (package; encoding package)
(continued)

Decoder (type); see top-level entry
Encoder (type); see top-level entry
Marshal(), 368, 370
NewDecoder(), 369
NewEncoder(), 367
Unmarshal(), 199, 201, 202, 369,

370
justification, of output, 96, 98

K
keywords, 52

case; see select and switch state-
ments

chan, 43, 44, 208, 209, 210,
318–357; see also channels

const, 45, 53, 58, 133, 336, 364,
379, 390

default; see select and switch
statements

else; see if statement
func, 14, 15, 25, 35, 45, 55, 208,

216, 218, 219, 223, 226, 232,
238, 240, 241, 243, 246, 291,
303, 305, 323, 324, 343, 378,
379, 388, 389, 413

interface, 220, 237, 265–274, 294,
295, 335, 364

iota, 54, 336
nil, 27, 216, 257, 305
range, 19, 38, 39, 74, 89, 110, 147,

154, 155, 168, 170, 172, 200,
203–205, 324, 325, 330, 331,
339, 343, 355, 390

struct, 42, 73, 96, 104, 132, 167,
199, 202, 222, 223, 233, 237,
241, 245, 255, 259–260,
261–262, 275–282, 284, 285,
305, 308, 326, 328, 330, 335,
337, 343, 350, 354, 362, 366,
372, 387

type, 24, 42, 55, 73, 132, 198–199,
202, 223, 245, 246, 254, 255,
256–257, 265, 284, 294, 295,
305, 335, 366, 379, 389, 412

var, 23, 53, 188, 192, 201, 241,
257, 272, 378, 382, 388

see also statements
Kind (type; reflect package), 430
Kind() (Value type), 235

L
label, 205, 331
LastIndex() (strings package), 92,

108, 194
LastIndexAny() (strings package),

108
LastIndexFunc() (strings package),

92, 108
Ldexp() (math package), 66
left-justification, of output, 96, 98
left-leaning red-black tree; see omap

example
len() (built-in), 15, 20, 24, 27, 69, 85,

90, 148, 149, 151, 152, 157, 159,
165, 169, 187, 340

Len() (reflect package), 235, 430
Lgamma() (math package), 66
library types; see standard library’s

types
linear vs. binary search, 162–163
linefeed; see newline
linkcheck (exercise), 432
linkutil (exercise), 431–432
list (package; container package),

422–423
ListenAndServe() (http package), 75
LiteralPrefix() (Regexp type), 125
literals, 58

character, 20
complex, 53, 70
composite, 18, 45, 150, 152, 153,

166, 167

ptg7913109

Index 459

floating point, 53; see also float64
type

function; see closures
integer, 53; see also int and simi-

lar types
string, 75, 83

LittleEndian (variable; binary pack-
age), 388

Ln2 (constant; math package), 66
Ln10 (constant; math package), 66
local variables, 40, 45, 141
Lock() (RWMutex type), 346
Log()

cmplx package, 71
math package, 66

log (package), 426
Fatal(), 19, 20, 32, 131–132, 342
Fatalf(), 20, 327
Printf(), 134, 217, 291
Println(), 176, 177, 353
SetFlags(), 426
SetOutput(), 426

Log2E (constant; math package), 66
Log10()

cmplx package, 71
math package, 66

Log10E (constant; math package), 66
Log1p() (math package), 66
Log2() (math package), 66
Logb() (math package), 66
logic, short circuit, 56
logical operators; see !, &&, ^, and ||

operators
logPanics() (example), 218
lookups, map, 39, 168–169, 231
looping; see for loop

M
.m3u files, 130–135
m3u2pls (example), 130–135
main (package), 14, 15, 206, 224

main() (special function), 14, 15, 206,
214, 215, 224–225, 327

make() (built-in), 26, 38, 39, 43, 44,
127, 129, 150, 151, 152, 157, 159,
165, 172, 176, 178, 179, 187, 207,
208, 209, 211, 240, 242, 246, 247,
323, 324, 328, 337, 339, 341, 346,
348, 355, 374, 392, 393, 395, 410

Make2D() (exercise), 181
Map() (strings package), 108,

111–112, 132, 133, 258
map to .ini file (exercise), 182
map (type; built-in), 38, 39, 77, 127,

146, 164–171, 175–180, 199,
242, 243, 298, 318, 335, 339, 345,
346, 348, 355, 356
accessing, 39, 168–169, 231
formatting, 106
inversion, 170–171, 179
iterating, 170, 203
modifying, 169
multivalued, 175
operations, 165
see also omap example

Marshal() (json package), 368, 370
Match()

regexp package, 121
Regexp type, 125, 333, 334

MatchReader()
regexp package, 121
Regexp type, 125

MatchString()
regexp package, 121
Regexp type, 125

math (package), 69
Abs(), 65, 68
Acos(), 65
Acosh(), 65
Asin(), 65
Asinh(), 65
Atan(), 65
Atan2(), 65
Atanh(), 65

ptg7913109

460 Index

math (package) (continued)
big (package); see top-level entry
Cbrt(), 65
Ceil(), 65
cmplx (package), see top-level en-

try
Copysign(), 65
Cos(), 45, 65
Cosh(), 65
Dim(), 65
E (constant), 65, 104, 105
Erf(), 65
Erfc(), 65
Exp(), 65
Exp2(), 65
Expm1(), 65
Float32bits(), 65
Float32frombits(), 65
Float64bits(), 65
Float64frombits(), 65
Floor(), 66
Frexp(), 66
Gamma(), 66
Hypot(), 66, 304
Ilogb(), 66
Inf(), 66
IsInf(), 66
IsNaN(), 66
J0(), 66
J1(), 66
Jn(), 66
Ldexp(), 66
Lgamma(), 66
Ln2 (constant), 66
Ln10 (constant), 66
Log(), 66
Log2E (constant), 66
Log10(), 66
Log10E (constant), 66
Log1p(), 66
Log2(), 66
Logb(), 66
Max(), 66

MaxInt32 (constant), 69, 215, 239
MaxUint8 (constant), 58
Min(), 66, 68
MinInt32 (constant), 69, 215
Mod(), 66, 68
Modf(), 67, 68, 69, 70, 100
NaN(), 67, 68
Nextafter(), 67, 68
Phi (constant), 67, 105
Pi (constant), 45, 67, 105
Pow(), 67
Pow10(), 67
rand (package), see top-level en-

try
Remainder(), 67
Signbit(), 67
Sin(), 45, 67
SinCos(), 67
Sinh(), 67
SmallestNonzeroFloat64 (con-

stant), 68
Sqrt(), 67, 221
Sqrt2 (constant), 67
SqrtE (constant), 67
SqrtPhi (constant), 67
SqrtPi (constant), 67
Tan(), 67
Tanh(), 67
Trunc(), 67
Y0(), 67
Y1(), 67
Yn(), 67

Max() (math package), 66
maximum characters to output, 96,

103
MaxInt32 (constant;math package),69,

215, 239
MaxRune (constant; unicode package),

82
MaxUint8 (constant; math package),

58
Memoize() (example), 242–244
memoizing, 241–244

ptg7913109

Index 461

memory management; see garbage
collection

method expressions, 263
method sets, 22, 191, 260
MethodByName() (Value type), 430
methods, 29, 255, 258–265, 277–278

defining, 25
Error(), 31
overriding, 261–262
String(), 31, 55, 96, 103, 155, 166,

260, 265, 266–267, 286
Min() (math package), 66, 68
minimum field width, 96, 103
MinInt32 (constant; math package),

69, 215
MkdirAll() (os package), 401, 402,

404
Mod() (math package), 66
Mode() (FileInfo interface), 351, 401
ModeType (constant; os package), 351,

352
Modf() (math package), 67, 69, 70, 100
modifying maps, 169
modifying slices, 147, 156–160
ModTime() (FileInfo interface), 401
Mul() (Int type), 63
multidimensional arrays, 148
multidimensional slices, 17–18, 150,

204–205
multiple assignments, 31, 188
multivalued maps, 175
MustCompile() (regexp package), 35,

37, 121, 126, 214, 343, 348
MustCompilePOSIX() (regexp package),

121
mutability, of arrays, 149
mutability, of slices, 140
mutual recursion, 227, 228–229

N
Name (type; xml package), 372, 374
named fields; see struct keyword

named replacements in regular ex-
pressions, 126

named return values, 36, 189, 212,
219, 221, 309

named vs. unnamed custom types,
22

NaN()
cmplx package, 71
math package, 67

net (package), 427
http (package), see top-level en-

try
rpc (package), 427
smtp (package), 427
url (package), 427

New()
errors package, 27, 33, 194, 384
sha1 package, 353, 354

new() (built-in), 145, 146, 152, 187,
346

NewDecoder()
gob package, 386
json package, 369
xml package, 375

NewEncoder()
gob package, 385
json package, 367
xml package, 373

NewInt() (big package), 63
newline (\n), 51, 84
NewReader()

bufio package, 35, 45, 176, 333,
380

gzip package, 403
strings package, 108
tar package, 403

NewReplacer() (strings package), 108
NewRGBA() (image package), 290, 319
NewTicker() (time package), 426
NewWriter()

bufio package, 35, 378
gzip package, 400
tar package, 400

ptg7913109

462 Index

NewWriter() (continued)
zip package, 398

Nextafter() (math package), 67
nil (keyword), 27, 216, 257, 305
nonblocking, channel, 207, 209; see

also channels
nongreedy matching in regular ex-

pressions, 123, 127
normalization, of whitespace, 111
normalization, Unicode, 86
not, logical; see ! operator
null; see nil
number formatting, 98–101
numbers; see float64, int, and other

specific numeric types
NumCPU() (runtime package), 327, 328
NumGoroutine() (runtime package),

351, 353
NumSubexp() (Regexp type), 125

O
O_RDWR (constant; os package), 397
objects; see values
octal number, formatting as, 98
Ogg container, 130
omap (example), 302–310, 409,

412–413, 414–416
Open() (File type), 31, 176, 212, 333,

342, 353, 398, 400
OpenFile() (File type), 31, 397
OpenReader() (zip package), 401, 402
operations on maps, 165
operations on slices, 151
operators

! logical NOT, 57
!= inequality, 56–57, 68–69, 70,

164
% modulus and formatting place-

holder, 47, 60, 69; see also for-
mat specifier

%= augmented modulus, 60

& address of and bitwise AND, 45,
46, 55, 60, 142, 143, 144, 167,
246, 247, 248, 267, 269, 284,
382, 383, 384, 387, 393, 394,
395

&& logical AND, 56, 57
&= augmented bitwise AND, 60
&^ bitwise clear, 60
&^= augmented bitwise clear, 60
* multiplication, dereference,

pointer declaration and for-
matting placeholder, 26, 59,
69, 96, 100, 142, 143, 144,
178, 247, 248, 249, 259, 284,
305, 370, 382, 394

*= augmented multiplication, 59,
147

+ addition, concatenation, and
unary plus, 20, 59, 85, 226

++ increment, 20, 59, 186, 188
+= augmented addition and

string append, 20, 59, 84, 85,
88, 140

- subtraction and unary minus,
59

-- decrement, 20, 59, 186, 188
-= augmented subtraction, 59
. selector, 148, 275
... ellipsis, 149, 156, 158, 160,

176, 219, 221, 222, 233, 242,
268, 287, 378

/ division, 59
/= augmented division, 59
:= short variable declaration, 15,

18, 36, 53, 140, 188, 189, 198,
203

< less than comparison, 56–57
<- send/receive communication,

44, 45, 207, 210, 318–357
<< bitwise shift left, 55, 60
<<= augmented bitwise shift left,

60
<= less than or equal comparison,

56–57

ptg7913109

Index 463

= assignment, 16, 18, 36, 188,
212

== equality, 56–57, 68–69, 70,
164

> greater than comparison,
56–57

>= greater than or equal compari-
son, 56–57

>> bitwise right shift, 60
>>= augmented bitwise right

shift, 60
[] index and slice, 15, 28, 85, 91,

203, 242, 339, 355, 357, 393
^ bitwise XOR and complement,

60
^= augmented bitwise XOR, 60
| bitwise OR, 55, 60
|= augmented bitwise OR, 60
|| logical OR, 56, 57, 178
overloading, 61

optional parameters, 222–223
optional statement, 193, 195, 198,

203
or, logical; see || operator
order of declarationsand definitions,

21
ordered comparisons (<, <=, >=, >),

56–57
ordered map; see omap example
os (package), 423

Args (slice), 14, 15, 17, 19,
131–132, 232

exec (package), see top-level en-
try

Exit(), 19, 20, 32, 131–132, 327
File (type); see top-level entry
FileInfo (interface), see top-level

entry
Getgid(), 401
Getuid(), 401
MkdirAll(), 401, 402, 404
ModeType (constant), 351, 352
O_RDWR (constant), 397
Stderr (stream), 20, 32, 46

Stdin (stream), 31, 32
Stdout (stream), 31, 32, 46, 94,

131
oslice (exercise), 313–314
overloading, 258
overloading, operator, 61
overriding methods, 261–262

P
pack (example), 397–405
package, 14, 215–216, 407–431

aliasing names, 409, 418
collection, 421–423; see also con-

tainer package
custom, 24–29, 408–417
documenting, 411–413
main, 14, 15
third-party, 417–418
variables, 18
see also bufio, bytes, cmplx, con-

tainer, crypto, draw, encoding,
errors, filepath, fmt, http, im-
age, io, ioutil, json, math, net,
os, rand, regexp, reflect, run-
time, sha1, sort, strings, sync,
and time packages

package (statement), 408, 412
Pad() (example), 99
padding, of output, 96, 98
palindrome (example), 232
panic() (built-in), 32, 69, 70, 113,

187, 191, 196, 213–218,219, 220,
243

parameters, 22, 141–142, 220–223,
254–255

Parse() (time package), 370, 376, 377,
383, 395

ParseBool() (strconv package), 98,
115, 116

ParseFloat() (strconv package), 77,
115, 116

ParseForm() (Request type), 76

ptg7913109

464 Index

ParseInt() (strconv package), 115,
116

ParseUInt() (strconv package), 115,
116

patents, software, 437–439
PATH (environment variable), 10
path, import, 23
path (package), 424
path/filepath package; see filepath

package
Phase() (cmplx package), 9
Phi (constant; math package), 67, 105
Pi (constant; math package), 45, 67,

105
pi_by_digits (example), 62–64
Pike, Rob, 1, 385, 431
Pipe() (io package), 322
placeholder (%, *); see %, Printf(), and

Sprintf(); see also blank identi-
fier

plain text files; see .txt files
platform-specific code, 410–411
playlists (excercise), 135–136
.pls files, 130–135
.png files, 293
png (package; image package), 293
pointers, 26, 27, 28, 29, 139, 141–148,

152, 167, 247–248,260, 267, 285,
318, 362, 369
formatting, 96, 104

Polar() (cmplx package), 9
polar2cartesian (example), 40–47
polymorphism, 198
Porter-Duff image compositing, 290
Pow()

cmplx package, 71
math package, 67

Pow10() (math package), 67
predefined identifiers, 52
Print() (fmt package), 94, 96
Printf()

fmt package, 19, 47, 94–106, 113,
178, 192

log package, 134, 217, 291
Println()

fmt package, 19, 24, 45, 53, 72,
94–106

log package, 176, 177, 353
private; see unexported identifiers
ProbablyPrime() (big package), 425
public; see exported identifiers
pure functions, 241; see alsomemo-

izing

Q
quadratic (exercise), 79
quantifiers in regular expressions,

123
Quote() (strconv package), 115, 117
QuoteMeta() (regexp package), 121,

128
QuoteRune() (strconv package), 115
QuoteRuneToASCII() (strconv pack-

age), 115
quotes; see" " double quotes and raw

strings

R
rand (package)

crypto package, 426
math package, 426

Intn(), 209, 426
range (keyword), 19, 38, 39, 74, 89,

110, 147, 154, 155, 168, 170, 172,
200, 203–205,324, 325, 330, 331,
339, 343, 355, 390

Rat (type; big package), 57, 61
rationals; see Rat type
raw string (̀ `), 75, 96
RE2 regular expression engine; see

regexp package
Read() (binary package), 391, 393,

395
ReadAll() (ioutil package), 424
ReadAt() (File type), 397

ptg7913109

Index 465

ReadBytes() (Reader type), 333, 334
ReadCloser (interface; io package),

403
ReadCloser (type; zip package), 401
Readdir() (File type), 361
Readdirnames() (File type), 361
Reader (interface; io package), 32, 34,

35, 255, 268, 269–270, 364, 365,
369, 375, 380, 384, 386, 392, 393

Reader (type)
bufio package, 35, 38, 177

ReadBytes(), 333, 334
ReadString(), 35, 37, 45, 177,

343, 381
gzip package, 403
strings package, 113
tar package, 403, 405

ReaderWriter (interface; io package),
32

ReadFile() (ioutil package), 38,
131–132

reading files; see File type and ioutil
package

ReadRune() (Buffer type), 113
ReadString() (Reader type), 35, 37, 45,

177, 343, 381
real() (built-in), 70, 101, 187
real numbers; see float64 and com-

plex128 types and real()
receive, channel; see channels, <- op-

erator, and chan keyword
receiver, 25, 28, 258, 261, 266, 267,

269, 277, 367
recover() (built-in), 32, 187,

213–218
Rect() (cmplx package), 9
recursion, mutual, 227, 228–229
recursive functions, 227–230, 247,

307
red-black tree; see omap example
references, 26, 27, 39, 92, 110, 112,

140, 141, 146, 148, 150, 153, 223,
226, 230–231, 242, 310, 318

reflect (package), 235–236,
427–431

DeepEqual(), 57, 236, 427
Kind (type), 430
Slice (constant), 235
TypeOf(), 427, 428, 430
Value (type); see top-level entry
ValueOf(), 235, 427, 428, 429, 430

regexp (package), 36, 120–129, 214
assertions, zero-width, 122
character classes, 122
Compile(), 37, 121, 214, 327
CompilePOSIX(), 121
escapes, 121
flags, 123
greedy and nongreedy matching,

123, 127
grouping, 123
Match(), 121
MatchReader(), 121
MatchString(), 121
MustCompile(), 35, 37, 121, 126,

214, 343, 348
MustCompilePOSIX(), 121
quantifiers, 123
QuoteMeta(), 121, 128
Regexp (type); see top-level entry
zero-width assertions, 122

Regexp (type; regexp package), 35, 37,
318, 328, 344

Expand(), 124
ExpandString(), 124
Find(), 124
FindAll(), 124
FindAllIndex(), 124
FindAllString(), 124, 127
FindAllStringIndex(), 124
FindAllStringSubmatch(), 124, 127
FindAllStringSubmatchIndex(),

124, 128
FindAllSubmatch(), 124
FindAllSubmatchIndex(), 124
FindIndex(), 124

ptg7913109

466 Index

Regexp (type; regexp package) (contin-
ued)

FindReaderIndex(), 124
FindReaderSubmatchIndex(), 124
FindString(), 124
FindStringIndex(), 124
FindStringSubmatch(), 124, 127,

343, 344, 348
FindStringSubmatchIndex(), 124
FindSubmatch(), 125
FindSubmatchIndex(), 125
LiteralPrefix(), 125
Match(), 125, 333, 334
MatchReader(), 125
MatchString(), 125
NumSubexp(), 125
ReplaceAll(), 120, 125
ReplaceAllFunc(), 125
ReplaceAllLiteral(), 125
ReplaceAllLiteralString(), 125,

128–129
ReplaceAllString(), 120, 125, 126,

129
ReplaceAllStringFunc(), 35,

36–37, 125, 129, 359
String(), 125
SubexpNames(), 125

Remainder() (math package), 67
remote procedure call (RPC), 427
RemoteAddr (field; Request type), 217
RemoveStringSlice() (example), 160
RemoveStringSliceCopy() (example),

159–160
Repeat() (strings package), 48, 99,

108, 243, 246
Replace() (strings package), 76, 77,

109, 110, 399
ReplaceAll() (Regexp type), 120, 125
ReplaceAllFunc() (Regexp type), 125
ReplaceAllLiteral() (Regexp type),

125
ReplaceAllLiteralString() (Regexp

type), 125, 128–129

ReplaceAllString() (Regexp type),
120, 125, 126, 129

ReplaceAllStringFunc() (Regexp type),
35, 36–37, 125, 129, 359

replacement character, Unicode
(U+FFFD), 85, 118

replacements, $ in regular expres-
sions, 120, 126, 129

reporting errors; see error handling
Request (type; http package), 76

Form (field), 76
ParseForm(), 76
RemoteAddr (field), 217

ResponseWriter (interface; http pack-
age), 76

return (statement), 28, 34, 70, 186,
189, 194, 219, 220, 240, 309

return values, 24, 28, 31, 33, 40, 45,
53, 145, 189, 219
bare, 34, 189, 219
named, 36, 212, 221, 309
unnamed, 190

RGBA (color type), 147
RGBA (image type), 290
right-justification, of output, 96, 98
ring (package; container package),

423
RLock() (RWMutex type), 346
RomanForDecimal() (example),

243–244
rpc (package; net package), 427
rune (type; built-in), 59, 60, 82, 83,

87–90, 104, 190, 230, 246, 420
conversion to string, 87–88,

89–90, 91, 246, 272
formatting, 96, 99
literal, 84
see also int32 and string types

RuneCount() (utf8 package), 118
RuneCountInString() (utf8 package),

85, 99, 177, 178, 229
RuneLen() (utf8 package), 118

ptg7913109

Index 467

RuneStart() (utf8 package), 118
RUnlock() (RWMutex type), 346
runtime (package), 424

Caller(), 291
FuncForPC(), 291, 292
GOARCH (constant), 410, 424
GOMAXPROCS(), 327
GOOS (constant), 43, 176, 399, 410,

424
GOROOT(), 424
NumCPU(), 327, 328
NumGoroutine(), 351, 353
Version(), 424

runtime system, Go’s, 32
RWMutex (type; sync package), 345,

346
Lock(), 346
RLock(), 346
RUnlock(), 346
Unlock(), 346

S
safemap (example), 334–340
safeslice (exercise), 357–358
Scan() (fmt package), 383
Scanf() (fmt package), 383
Scanln() (fmt package), 383
scientific notation, 64, 101
scope, 141, 225, 239, 240
scoping problem; see shadow vari-

ables
Search() (sort package), 161, 163
SearchFloat64s() (sort package), 161
searching, slices, 162–164
searching, strings, 87
SearchInts() (sort package), 161
SearchStrings() (sort package), 161
Seek() (File type), 397
select (statement), 209–212, 321,

331, 333
self; see receiver
semicolon (;), 15, 186

send, channel; see channels,<- opera-
tor, and chan keyword

Separator (constant; filepath pack-
age), 134, 135

serialized access, 318–319, 335, 341
SetFlags() (log package), 426
SetInt() (Value type), 429
SetOutput() (log package), 426
SetString() (Value type), 428
setters, 264–265
SHA-1 (Secure Hash Algorithm),

349, 354–53
sha1 (package; crypto package)

New(), 353, 354
Size (constant), 355

shadow variables, 36, 189, 192, 200,
201, 281, 282, 300, 301

shaper (example), 289–301
shaper (exercise), 311–313
shebang (#!) scripts, 10
short circuit logic, 56
short variable declaration, 15, 53,

140, 188
Signbit() (math package), 67
Simple Mail Transport Protocol

(SMTP), 427
simple statement, 193, 195, 203
SimpleFold() (unicode package), 119
simplification, of whitespace, 111,

128–129
SimplifyWhitespace() (example), 111
Sin()

cmplx package, 71
math package, 45, 67

SinCos() (math package), 67
Sinh()

cmplx package, 71
math package, 67

Size (constant; sha1 package), 355
Size() (FileInfo interface), 351, 353,

401
sizeimages (exercise), 359

ptg7913109

468 Index

Slice (constant; reflect package),
235

slice operator; see [] index and slice
operator

SliceIndex() (example), 238–239
slices, 17, 140, 146–147, 149–164,

232, 234, 318
formatting, 101–103
indexing, 153–154
initializing, 17
iterating, 154–156, 203
modifying, 147, 156–160
multidimensional, 17–18, 150,

204–205
mutability, 140
operations on, 151
searching, 162–164
slicing, 153–154
sorting, 160–164
see also under types, e.g., byte

for []byte and string for
[]string

slicing, slices, 153–154
slicing, strings, 90–93
SmallestNonzeroFloat64 (constant;

math package), 68
smtp (package; net package), 427
sockets; see net package
software patents, 437–439
sort (package), 160–164, 246

Float64s(), 73, 161
Float64sAreSorted(), 161
Interface (interface), 161, 162,

246, 249, 421
Ints(), 161, 180
IntsAreSorted(), 161
IsSorted(), 161
Search(), 161, 163
SearchFloat64s(), 161
SearchInts(), 161
SearchStrings(), 161
Sort(), 161, 162, 248, 249

Strings(), 160, 161, 163, 170, 178,
180, 356

StringsAreSorted(), 161
Sort() (sort package), 161, 162, 248,

249
sorted map; see omap example
sorting, slices, 160–164
sorting, strings, 87
soundex (exercise), 136–137
source code encoding, Go, 9
special functions

init(), 43, 215, 224–225,
231–232, 241, 242, 243, 290,
417

main(), 14, 15, 206, 214, 215,
224–225, 327

see also built-in functions and
functions

specification, Go, 69
Split() (strings package), 38, 39,

107, 109, 132, 133, 422
SplitAfter() (strings package), 107,

109
SplitAfterN() (strings package), 107,

109
SplitN() (strings package), 39, 107,

109
Sprint() (fmt package), 94, 99, 178,

242, 357
Sprintf() (fmt package), 43, 55, 69,

78, 85, 94, 97, 100, 101, 242, 286,
355

Sprintln() (fmt package), 94
sql (package; database package), 423
Sqrt()

cmplx package, 71
math package, 67

Sqrt2 (constant; math package), 67
SqrtE (constant; math package), 67
SqrtPhi (constant; math package), 67
SqrtPi (constant; math package), 67
Sscan() (fmt package), 383
Sscanf() (fmt package), 45, 46, 382,

383

ptg7913109

Index 469

Sscanln() (fmt package), 383
stack trace, 214
stacker (example), 21–29, 408–409
standard library, 419–431

types; see File, Int, Rat, Reader,
Regexp, and Writer

startup, application; see entry point
stat call; see FileInfo interface
Stat() (File type), 397, 398, 399, 400
statements

break, 24, 177, 186, 204, 205, 331
continue, 132, 133, 186, 204, 205,

324
defer, 31–32, 35, 36, 44, 176,

211–213, 216, 218, 333, 343,
353, 378, 398, 400

fallthrough, 186, 195, 196–197
for loop, 19, 23, 24, 38, 39, 74,

89, 110, 132, 147, 154, 155,
168, 170, 172, 177, 186, 200,
203–205, 320, 321, 324, 325,
330, 331, 339, 343, 355, 390

go, 45, 206, 208, 209, 211, 224,
320–357; see also goroutines

goto, 205
if, 15, 189, 192–194, 220; see also

switch statement
import, 14, 15, 358, 409, 416–417,

418
optional, 193, 195, 198, 203
package, 408, 412
return, 28, 34, 70, 186, 189, 194,

219, 220, 240, 309
select, 209–212, 321, 331, 333
simple, 193, 195, 203
switch, 110, 129, 174, 195–202,

220, 233, 235, 282, 285, 365;
see also if statement

terminator, (;), 186
see also keywords

statistics (example), 72–78
statistics (exercise), 79
statistics_nonstop (example),

216–218

Stderr stream (os package), 20, 32,
46

Stdin stream (os package), 31, 32, 46
Stdout stream (os package), 31, 32,

94, 131
strconv (package), 113–117

AppendBool(), 114
AppendFloat(), 114
AppendInt(), 114
AppendQuote(), 114
AppendQuoteRune(), 114
AppendQuoteRuneToASCII(), 114
AppendUInt(), 114
Atoi(), 116, 134, 390
CanBackquote(), 114
FormatBool(), 114, 116
FormatFloat(), 114
FormatInt(), 114, 117
FormatUInt(), 114
IsPrint(), 114
Itoa(), 85, 114, 117
ParseBool(), 98, 115, 116
ParseFloat(), 77, 115, 116
ParseInt(), 115, 116
ParseUInt(), 115, 116
Quote(), 115, 117
QuoteRune(), 115
QuoteRuneToASCII(), 115
Unquote(), 115, 117
UnquoteChar(), 115
see also conversions

String()
Buffer type, 88, 200, 243
Regexp type, 125
Value type, 428, 429

String() (method), 31, 55, 96, 103,
155, 166, 260, 265, 266–267,
286

string (type; built-in), 20, 81–129,
140, 190, 238, 318
comparisons, 57, 84, 86–87
concatenation; see + and += oper-

ators
concatenation, fast, 88

ptg7913109

470 Index

string (type; built-in) (continued)
conversion from []byte, 38, 85,

164, 334, 373, 395
conversion from []rune, 85, 91
conversion from float64; see

ParseFloat()
conversion from rune, 89–90, 246
conversion to []byte, 85, 89–90,

164, 391
conversion to []rune, 85, 87–88,

246, 272
conversion to int, 85
formatting, 101–103
immutability, 84, 140
indexing, 20, 90–93
interpreted literals, 83
iterating, 88–90, 203
literals, 75, 83
raw (̀ `), 75, 78, 96
searching, 87
slicing, 90–93
sorting, 87
see also byte and rune types

Stringer (interface; fmt package),
265, 266–267, 286

strings package, 91, 107–113, 419
Contains(), 108
Count(), 108, 172, 173
EqualFold(), 108, 163
Fields(), 38, 39, 76, 77, 107–110,

108, 111
FieldsFunc(), 108, 178
HasPrefix(), 108, 132, 194, 246,

260, 382
HasSuffix(), 108, 131–132, 226,

400, 403
Index(), 92, 103, 108, 133, 134,

383
IndexAny(), 108, 133, 134
IndexFunc(), 92, 93, 108
IndexRune(), 108
Join(), 14, 16, 55, 108, 111, 180,

414

LastIndex(), 92, 108, 194
LastIndexAny(), 108
LastIndexFunc(), 92, 108
Map(), 108, 111–112, 132, 133,

258
NewReader(), 108, 113
NewReplacer(), 108
Reader (type); see top-level entry
Repeat(), 48, 99, 108, 243, 246
Replace(), 76, 77, 109, 110, 399
Split(), 38, 39, 107, 109, 132, 133,

422
SplitAfter(), 107, 109
SplitAfterN(), 107, 109
SplitN(), 39, 107, 109
Title(), 109
ToLower(), 109, 162, 163, 177, 194,

246, 259, 293, 306, 324
ToTitle(), 109
ToUpper(), 37, 109, 259, 302
Trim(), 109
TrimFunc(), 109
TrimLeft(), 109, 399
TrimLeftFunc(), 109
TrimRight(), 109, 127
TrimRightFunc(), 109
TrimSpace(), 111, 132, 177, 246,

376, 383
Strings() (sort package), 160, 161,

163, 170, 178, 180, 356
StringsAreSorted() (sort package),

161
strong typing, 15, 20, 24
struct (keyword), 42, 73, 96, 104,

132, 167, 199, 202, 222, 223, 245,
254, 255, 259–260, 261–262,
275–282, 284, 285, 305, 308, 326,
328, 330, 335, 337, 343, 350, 354,
362, 366, 372, 387

Sub() (Int type), 63
SubexpNames() (Regexp type), 125
substrings; see string type’s slicing
suffix, file, 194
swapping values, 188

ptg7913109

Index 471

switch (statement), 110, 174,
195–202, 220, 233, 235, 282, 285,
365; see also if statement

sync (package)
RWMutex (type); see top-level entry
WaitGroup (type), see top-level en-

try
synchronization, 44, 315, 318, 321
synchronous, channel, 207; see also

channels

T
tab (\t), 84
tags, struct, 279, 371, 372, 428
Tan()

cmplx package, 71
math package, 67

Tanh()
cmplx package, 71
math package, 67

.tar files, 399–401, 403–405
tar (package; archive package),

399–401, 403–405
Header (type), 401, 404
NewReader(), 403
NewWriter(), 400
Reader (type), 403, 405
Writer (type); see top-level entry

Taylor, Ian Lance, 2
TCP/IP; see net package
TempFile() (ioutil package), 424
template (package; html package),

420–421
template (package; text package),

420–421
HTMLEscape(), 78

terminal; see Stderr, Stdin, and Std-
out streams

Terminal_Punctuation (constant; uni-
code package), 258

termination, 15, 317, 321
terminator, statement (;), 186
testing (package), 414–416

text; see string type
text files; see .txt files
text (package)

template (package), see top-level
entry

third-party packages, 417–418
this; see receiver
Thompson, Ken, 1
threads; see channels, goroutines,

and the chan and go keywords
Tick() (time package), 426
time (package), 426

After(), 332, 333, 426
Duration (type), 332, 333
NewTicker(), 426
Parse(), 370, 376, 377, 383, 395
Tick(), 426
Time (type); see top-level entry
Unix(), 391

Time (type; time package), 362, 363,
368, 377, 383, 390, 394, 395, 426

Format(), 368, 379, 390
Unix(), 391

Title() (strings package), 109
To() (unicode package), 119
ToLower()

strings package, 109, 162, 163,
177, 194, 246, 259, 293, 306,
324

unicode package, 119, 272
tools

5g, 6g, 8g, 9
5l, 6l, 8l, 9
cgo, 9
gc, 9
gccgo, 9
go build, 11–12, 23, 409, 411
go fix, 418
go get, 417–418
go install, 1, 13, 409
go test, 415–416
go version, 11
go vet, 418

ptg7913109

472 Index

tools (continued)
godoc, 8, 411–413, 419
gofmt, 186, 188, 419

tools (third-party)
gonow, 10
gorun, 10

ToSlash() (filepath package), 399
ToTitle()

strings package, 109
unicode package, 119

ToUpper()
strings package, 37, 109, 259,

302
unicode package, 119, 272

trace, stack, 214
Trim() (strings package), 109
TrimFunc() (strings package), 109
TrimLeft() (strings package), 109,

399
TrimLeftFunc() (strings package),

109
TrimRight()

bytes package, 333, 334
strings package, 109, 127

TrimRightFunc() (strings package),
109

TrimSpace() (strings package), 111,
132, 177, 246, 376, 383

true (built-in); see bool type
Trunc() (math package), 67
.txt files, 377–384
type

abstract vs. concrete, 22
deduction, 18
method sets; see 22, 191, 260; see

alsomethods
see also built-in types, custom

types, and standard library’s
types

type assertions, 191–192, 200, 233,
234, 237, 242, 300, 319

type conversions, 190–191; see also
conversions and the strconv
package

type, inference, 53, 70
type (keyword), 24, 42, 55, 73, 132,

161, 190, 198–199, 202, 223,
233, 237, 241, 245, 246, 254, 255,
256–257, 265, 284, 294, 295, 305,
335, 366, 379, 389, 412

type modifier; see pointers and *
pointer declaration operator

type safety; see duck typing and in-
terfaces

type switch guard, 198, 199
type switches, 197–202, 233, 235,

282, 285; see also switch state-
ment

TypeOf() (reflect package), 427, 428,
430

typing, duck, 21, 32, 268
typing, strong, 15, 20, 24

U
UDP; see net package
UID; see Getuid()
uint (type; built-in), 60, 69
uint8 (type; built-in); see byte type
uint16 (type; built-in), 60, 388, 393
uint32 (type; built-in), 60, 388, 393
uint64 (type; built-in), 60
uintptr (type; built-in), 60
unbound methods (method expres-

sions), 263
unchecked type assertion; see type

assertions
unexported identifiers, 52, 264
Unicode, 52, 82–84, 86–87

normalization, 86
U+FFFD replacement character, 85,

118
whitespace, 92

Unicode code point; see rune type
unicode (package), 118, 420

Hyphen (constant), 272
Is(), 118, 119, 258, 272
IsControl(), 119

ptg7913109

Index 473

IsDigit(), 119
IsGraphic(), 119
IsLetter(), 119, 178
IsLower(), 119
IsMark(), 119
IsOneOf(), 119
IsPrint(), 119
IsPunct(), 119
IsSpace(), 92, 111, 119, 272
IsSymbol(), 119
IsTitle(), 119
IsUpper(), 119
MaxRune (constant), 82
SimpleFold(), 119
Terminal_Punctuation (constant),

258
To(), 119
ToLower(), 119, 272
ToTitle(), 119
ToUpper(), 119, 272
utf8 (package), see top-level en-

try
utf16 (package), 420

Uniform() (image package), 290
UniqueInts() (exercise), 180
unit testing, 414–415
Unix()

time package, 391
Time type, 391

Unlock() (RWMutex type), 346
Unmarshal() (json package), 199, 201,

202, 369, 370
unnamed return values, 190, 219
unnamed struct, 275
unnamed vs. named custom types,

22
unpack (example), 397–405
unpack (exercise), 405
Unquote() (strconv package), 115,

117
UnquoteChar() (strconv package), 115
untyped constants; seeunder literals

and specific types

url (package; net package), 427
US-ASCII encoding, 82
UTF-8; see string type and Unicode
utf8 (package; unicode package), 117,

420
DecodeLastRune(), 118
DecodeLastRuneInString(), 91,

118, 229, 230
DecodeRune(), 118
DecodeRuneInString(), 91, 92, 93,

203, 229, 230
EncodeRune(), 118
FullRune(), 118
FullRuneInString(), 118
RuneCount(), 118
RuneCountInString(), 85, 99, 177,

178, 229
RuneLen(), 118
RuneStart(), 118
UTFMax (constant), 177
Valid(), 118
ValidString(), 118

utf16 (package; unicode package),
420

utf16-to-utf8 (exercise), 405
UTFMax (constant; utf8 package), 177

V
Valid() (utf8 package), 118
validation, 263–265
ValidString() (utf8 package), 118
Value (type; reflect package), 235,

427–431
Bool(), 428
Call(), 429, 430
CanSet(), 428
Complex(), 428
Elem(), 429
FieldByName(), 428
Float(), 428
Index(), 235, 236, 428
Int(), 428, 430
Interface(), 235

ptg7913109

474 Index

Value (type; reflect package) (contin-
ued)

IsValid(), 430
Kind(), 235
Len(), 235, 430
MethodByName(), 430
SetInt(), 429
SetString(), 428
String(), 428, 429

ValueOf() (reflect package), 235,
427, 428, 429, 430

values, 140–148, 255; see also vari-
ables

values, swapping, 188
var (keyword), 23, 53, 188, 192, 201,

241, 257, 272, 378, 382, 388
variable vs. fixed-width character

encoding, 83
variables, 140–148, 242, 265, 290

declaration, short, 15, 53, 140,
188

initializing, 15, 74
local, 40, 45, 141
package, 18
shadow, 36, 189, 192, 200, 201,

281, 282, 300, 301
see also environment variables

variadic function, 198, 219, 221–222
variant; see interface{}
Version() (runtime package), 424
vertial tab (\v), 84
virtual functions, 254
Vorbis audio format, 130

W
Wait() (WaitGroup type), 317, 350,

354
WaitGroup (type; sync package), 317,

350
Add(), 350, 351, 352, 354
Done(), 350, 352, 354
Wait(), 317, 350, 354

Walk() (filepath package), 349, 352

web applications, 2, 72, 79–80
web sites

endsoftpatents.org, 439
godashboard.appspot.com, 407,

417, 423, 426
golang.org, 8, 436
www.nosoftwarepatents.com, 439
www.qtrac.eu, 1

while loop; see for loop
whitespace, 92, 111, 128–129
wordfrequencies (example), 174–180
wrapper function, 218, 226
Write() (binary package), 388
WriteAt() (File type), 397
WriteCloser (interface; io package),

400
WriteFile() (ioutil package), 424
WriteHeader() (Writer type), 401
Writer (interface; io package), 32, 34,

35, 93, 255, 354, 364, 366, 373,
378, 385, 388, 399

Writer (type)
bufio package, 35, 38

Flush(), 35, 36, 378
WriteString(), 35, 37

gzip package, 400
tar package, 400

WriteHeader(), 401
zip package, 397, 398

CreateHeader(), 398, 399
WriteRune() (Buffer type), 111
WriteString()

Buffer type, 88, 111, 200, 243
Writer type, 35, 37

writing files; see File type and ioutil
package

X
XML format, 363, 371–377
xml (package; encoding package), 371,

372
Decoder (type); see top-level entry

www.nosoftwarepatents.com
www.qtrac.eu

ptg7913109

Index 475

Encoder (type); see top-level entry
Header (constant), 373
Name (type), 372, 374
NewDecoder(), 375
NewEncoder(), 373

xor, logical; see ^ operator

Y
Y0() (math package), 67
Y1() (math package), 67
Yn() (math package), 67

Z
zero, division by, 68
zero value, 27, 33, 39, 53, 54, 149,

150, 152, 168, 173, 189, 191, 216,
222, 257, 263, 275, 308, 346, 383

zero-width assertions in regular ex-
pressions, 122

.zip files, 397–399, 401–403
zip (package; archive package),

397–399, 401–403
FileHeader (type), 399
FileInfoHeader(), 398, 399
NewWriter(), 398
OpenReader(), 401, 402
ReadCloser (type), 401
Writer (type); see top-level entry

ZP (zero Point; image package), 290

ptg7913109

Mark Summerfield

Mark is a computer science graduate with many years of experience working
in the software industry, primarily as a programmer. He has also spent many
years writing and editing technical documentation. Mark owns Qtrac Ltd.
(www.qtrac.eu), where he works as an independent programmer, author, editor,
and trainer, specializing in the C++, Go, and Python languages, and the Qt,
PyQt, and PySide libraries.

Other books by Mark Summerfield:

•Advanced Qt Programming (2011, ISBN-13: 978-0-321-63590-7)
•Programming in Python 3 (First Edition, 2009, ISBN-13:
978-0-13-712929-4; Second Edition, 2010, ISBN-13: 978-0-321-68056-3)

•Rapid GUI Programming with Python and Qt (2008, ISBN-13:
978-0-13-235418-9)

Other books by Jasmin Blanchette and Mark Summerfield:

•C++ GUI Programming with Qt 4 (First Edition, 2006, ISBN-13:
978-0-13-187249-3; Second Edition, 2008, ISBN-13: 978-0-13-235416-5)

•C++ GUI Programming with Qt 3 (2004, ISBN-13:!978-0-13-124072-8)

Production

The text waswritten using gvim. The typesetting—including all the diagrams—
wasdoneusing the lout typesetting language. All of the code snippetswereauto-
matically extracted directly from the example programsand from test programs
using a custom tool written in Go. The index was compiled by the author. The
text and source code was version-controlled using Mercurial. The monospaced
code font was derived from a condensed version of DejaVu Mono and modified
using FontForge. The book was previewed using evince and gv,and converted to
PDF by Ghostscript. The cover was provided by the publisher. Note that only
printed editions are definitive: eBook versions are not under the author’s control
and are often retypeset, which can introduce errors.

All the editing and processing was done on Debian and Ubuntu systems. All
the example programs have been tested using the official gc Go compiler on
Linux,Mac OSX, andWindowsusing Go 1 and should work with all subsequent
Go 1.x versions.

www.qtrac.eu

	Contents
	Tables
	Introduction
	Why Go?
	The Structure of the Book
	Acknowledgments

	Chapter 1. An Overview in Five Examples
	1.1. Getting Going
	1.2. Editing, Compiling, and Running
	1.3. Hello Who?
	1.4. Big Digits—Two-Dimensional Slices
	1.5. Stack—Custom Types with Methods
	1.6. Americanise—Files, Maps, and Closures
	1.7. Polar to Cartesian—Concurrency
	1.8. Exercise

	Chapter 2. Booleans and Numbers
	2.1. Preliminaries
	2.1.1. Constants and Variables

	2.2. Boolean Values and Expressions
	2.3. Numeric Types
	2.3.1. Integer Types
	2.3.2. Floating-Point Types

	2.4. Example: Statistics
	2.4.1. Implementing Simple Statistics Functions
	2.4.2. Implementing a Basic HTTP Server

	2.5. Exercises

	Chapter 3. Strings
	3.1. Literals, Operators, and Escapes
	3.2. Comparing Strings
	3.3. Characters and Strings
	3.4. Indexing and Slicing Strings
	3.5. String Formatting with the Fmt Package
	3.5.1. Formatting Booleans
	3.5.2. Formatting Integers
	3.5.3. Formatting Characters
	3.5.4. Formatting Floating-Point Numbers
	3.5.5. Formatting Strings and Slices
	3.5.6. Formatting for Debugging

	3.6. Other String-Related Packages
	3.6.1. The Strings Package
	3.6.2. The Strconv Package
	3.6.3. The Utf8 Package
	3.6.4. The Unicode Package
	3.6.5. The Regexp Package

	3.7. Example: M3u2pls
	3.8. Exercises

	Chapter 4. Collection Types
	4.1. Values, Pointers, and Reference Types
	4.2. Arrays and Slices
	4.2.1. Indexing and Slicing Slices
	4.2.2. Iterating Slices
	4.2.3. Modifying Slices
	4.2.4. Sorting and Searching Slices

	4.3. Maps
	4.3.1. Creating and Populating Maps
	4.3.2. Map Lookups
	4.3.3. Modifying Maps
	4.3.4. Key-Ordered Map Iteration
	4.3.5. Map Inversion

	4.4. Examples
	4.4.1. Example: Guess Separator
	4.4.2. Example: Word Frequencies

	4.5. Exercises

	Chapter 5. Procedural Programming
	5.1. Statement Basics
	5.1.1. Type Conversions
	5.1.2. Type Assertions

	5.2. Branching
	5.2.1. If Statements
	5.2.2. Switch Statements

	5.3. Looping with For Statements
	5.4. Communication and Concurrency Statements
	5.4.1. Select Statements

	5.5. Defer, Panic, and Recover
	5.5.1. Panic and Recover

	5.6. Custom Functions
	5.6.1. Function Arguments
	5.6.2. The init() and main() Functions
	5.6.3. Closures
	5.6.4. Recursive Functions
	5.6.5. Choosing Functions at Runtime
	5.6.6. Generic Functions
	5.6.7. Higher Order Functions

	5.7. Example: Indent Sort
	5.8. Exercises

	Chapter 6. Object-Oriented Programming
	6.1. Key Concepts
	6.2. Custom Types
	6.2.1. Adding Methods
	6.2.2. Validated Types

	6.3. Interfaces
	6.3.1. Interface Embedding

	6.4. Structs
	6.4.1. Struct Aggregation and Embedding

	6.5. Examples
	6.5.1. Example: FuzzyBool—A Single-Valued Custom Type
	6.5.2. Example: Shapes—A Family of Custom Types
	6.5.3. Example: Ordered Map—A Generic Collection Type

	6.6. Exercises

	Chapter 7. Concurrent Programming
	7.1. Key Concepts
	7.2. Examples
	7.2.1. Example: Filter
	7.2.2. Example: Concurrent Grep
	7.2.3. Example: Thread-Safe Map
	7.2.4. Example: Apache Report
	7.2.5. Example: Find Duplicates

	7.3. Exercises

	Chapter 8. File Handling
	8.1. Custom Data Files
	8.1.1. Handling JSON Files
	8.1.2. Handling XML Files
	8.1.3. Handling Plain Text Files
	8.1.4. Handling Go Binary Files
	8.1.5. Handling Custom Binary Files

	8.2. Archive Files
	8.2.1. Creating Zip Archives
	8.2.2. Creating Optionally Compressed Tarballs
	8.2.3. Unpacking Zip Archives
	8.2.4. Unpacking Optionally Compressed Tarballs

	8.3. Exercises

	Chapter 9. Packages
	9.1. Custom Packages
	9.1.1. Creating Custom Packages
	9.1.2. Importing Packages

	9.2. Third-Party Packages
	9.3. A Brief Survey of Go’s Commands
	9.4. A Brief Survey of the Go Standard Library
	9.4.1. Archive and Compression Packages
	9.4.2. Bytes and String-Related Packages
	9.4.3. Collection Packages
	9.4.4. File, Operating System, and Related Packages
	9.4.5. Graphics-Related Packages
	9.4.6. Mathematics Packages
	9.4.7. Miscellaneous Packages
	9.4.8. Networking Packages
	9.4.9. The Refiect Package

	9.5. Exercises

	Appendix A. Epilogue
	Appendix B. The Dangers of Software Patents
	Appendix C. Selected Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

