2013/2/23

GOLANG

Network programming with Go

http://biz366.com/Netwotrk-programming-with-Go/zh/index.html

ARCHITECTUREcoiirtientiiteeneetsseressestesessssestesessssessesessssessessssessssessssessssessssessesessssenes 13
BERE] courevrerreresesssssssssssssssssssss s st s sas st s st as st bRt s R b R R Rt s e ntns 13
INTRODUCTION. ...cottiiiiiiiiitiitiee sttt b et e e e e e e s e bbb s s e e e e s s bbb e e e e e st e bbb s e e e e s s ss s esbasaeeeesssenbaaaseeeeesas 13
I oveveeveeeteetese et e et et et e et ete et et ete et e st et e eatebe s eaeeteatete et eatete s eateteteaeeteatete et s eaeeteatetesesseteateteeaeasereetensetetenes 13
PROTOCOL LAYERS ..ottt shb s b e b e s ba e ae s st sae e snes 13
B R ettt b ettt b b e te bt b et e s e bt e se bt ene et ebete et beseaneaas 13
FAYONONY 1o s oo LT PP UR TSP 14
ISO OST BB c.voveveeereeeeeeeeeeee ettt ettt sttt et st s e s e st et s st e s et et s st ess s s essasasans 14
OSTIAPELS ... 15

[0 XY) =~ ORI 15
TOP/IP PLOLOCOL. ...ttt ttee e et ttea e et e e e ettt e e e e etsa s e et e e e ettt e s e e s e sasaseessssaeessseaann 16
TOPSIP BB coeveveveeeeveeeteeieeeieestete st ste st s et ettt ettt e st e st et et st s s et e st et e ts s sessasans 16
S0MIE AIEINALVE PLOLOCOIS.cccuveeieeeiiesiiesieesitesieesttt et sttt estttestee s taessseesteasseessssesseessssessssessses 16
LTTITIPE ..ottt s ettt ettt ettt ettt ettt ettt ettt et 17

FA @) 4 1€ PP 17
RRIZB ..ottt et ettt e et eeeer et eeen e et ee et e e sraees 17
LN 2\ 7 TP 19
P D ettt et te et st ettt ettt sttt ettt et e st et et e R e b ent et e b e Rt e Rt b e Rt R e At e Rt b en Rt R e R s eReebe Rt Re b e Rt eRete st tensenenteneens 19
PACKET ENCAPSULATION0oiiutiitiiitieitie it st st s it sas e saa s sba e s bs s s bs e s abe s sab e s saa s shaessba s e ba e s e bassanesans 19
B B T i ettt bbbt et b et e b tese b beneneaas 19
CONNECTION MODELScciiuiiiiiiiiiiiie sttt ss s sae e b s b sasesas e b e e b e saa e sas e sae e be s eaaesasesbs e b 21
TEFBRET oo ettt b ettt b b r e bt eaeete b bebe e bt ene st ebete s ebeneneaas 21
CONNECHON OLIENEE.ccueeeeiieitesee ettt ettt e sa ettt et estee e eseesteesnee e 21
JBT TR FBERRETE .ottt t ettt ettt ettt ettt ettt r et n s 21
CONNECHONIESS ...ttt ettt ettt s e st e st e sseesaseenaneeas 21
TETETEBRETE oottt ettt aen 21
COMMUNICATIONS MODELSuoiiiiiiiiiiiiiiiitieie ittt a e b e a e s s sa e s b s s sae s aesane s sas b 22
TBAEAETR oo sttt b et a e bt eaeete st bt et bt ene s ebete s beneneaas 22
MESSAGE PASSING.....covevvevveuierienieieiiteete ettt ettt ettt ettt 22
TG oottt ettt ettt ettt n et aen 22
Remote procedure Call................uoeucueivveueiiiiiiiiieicic et 24
TR T TR IR oottt ettt s bttt 24
DISTRIBUTED COMPUTING MODELScoiiiiiuiiiiiiiiiiiieiieie st sas s s sb s s sns b s aesine s 25
AR TT BRI ..o e ettt bbbttt bt seaens 26

CLIENT/SERVER SYSTEM ...eceiuutieeitiieeeitteeeeitteeeaitseeeassseeeseaisssesasssssesssesesssssasassssssessssessssssssssessssesassens 27

B U MR G BE ZRGE ettt 27

CLIENT/SERVER APPLICATIONccuiuiiitiuiitiriisisnissste et sess b b s s bess bbb es st ns s 27
b Y T = = TP 28
SERVER DISTRIBUTION.uuuuuuuuuuuuueussssssssssssnssssssssssesesesseesssmmmmmmmmmmmmm. 28
70 i TSRS 28
COMPONENT DISTRIBUTIONcu0iitietiettiiteeiteesteetesitesteesteessesseesbsebesasessaesbe e beebesaaesteesbeesesanesareeasens 29
g S e ST 29
GALUEL CIASSIACALON. ...ttt sttt nns 30
GALHIEE 1 F oottt ettt ettt ettt ettt ettt et st et et sttt e s et b s et ettt ettt et et bt nneaen 30
Example: Disttibuted Database....................cooveuevuivuieriiiietieicie sttt 31
Sy T & 31
Example: Network FIIE SEIVICEcuvwvvvevueeiiiiiitictiiticticticie ettt 32
oy Bl B . 32
EXAIPIE: WED........ooeoeveetienieiieetetectetct ettt s 33
Bny L 7= T 33
Example: Terminnal EMUIAHOLN.cocovecveveeeiiiiiitietiitictieticnectecteeatentesessee e aens 33
ay 2 i = TN 33
028 o]) 2y oo 34
Bl T (Expect) ... 34
Example: X WindOW SYStEm..............cveveieieiieieiiitictictictccte ettt 34
oLy . G 3 34
TRLEE THEL MOMEIS...........ccevvoiveiiiiiiieiiiiiieeeet ettt st 35
By = b TN 35
FAL VS LRIttt ettt et e ettt e et e et e e et e e nareeennnes 37
= U 37
MIDDLEWARE MODEL......ccetettiiieieieiesesesasssssssssssannnsnssesesesesssssssssssssssssssssssssssssssssssssnsnsnssssssssssssssssssns 37
ey = TP 37
MIDDLEWAREcoeeeteieieieieieiesesesasssesssaansnanaassesssesssssssssssssssssssssssssssssnsssssssssnssnnssssssssssssssssssssssnssanannns 38
=TT P TP TP 38
MiddleWware EXAMPIEScooevevveeviiiiitietiiticticicee e 39
L TR 39
MiAAIEWALE FUACHOLNIS. ...ttt sttt s 39
BB EHZIBE «.vovoveveveeeieieieieieisssis s ts st e ettt bttt sttt sttt sttt sttt et ettt sns et e setetntnses 39
CONTINUUM OF PROCESSING......u0eittetiittiitieitiestiete sttt et ettt st st be e be b saaesbeesbeenesnnessbnenbees 40
FEBEABTE ..ottt ee e e e e eee e eneeees 40
POINTS OF FATLUREuuuuuuuuuuuuuuuuuuuusuutessesesereneseseresesasssnssssssssssssssssssssssssssssssssssssseteseeeeesmmmmmm...——————. 41
ERE S oo oo e e a1
ACCEPTANCE FACTORScooviitiitiiticiicticcete sttt st e ae e 42
27 [T TRTPRRRSTRN 42
TRANSPARENCY ...covtiitiiiiiniiiniiitieiti ettt sae et st sae s sa s bbb e et e bbb e b e e b e et e sa e sb e e b s e e s sbe s ebe e b eas 42
D3 - 2T ST TSRS 42
EIGHT FALLACIES OF DISTRIBUTED COMPUTINGcc.uuutrereeeseainneeeeesssennrereeessaessesnnneeesesssennnnneeeessnas 43

OVERVIEW OF THE GO LANGUAGEcoviiiccnsniiicesesessssssessasens 46

GO TB BTG evvvereessessessecssssssssessssssssssesssssssssesssssssssesssssssssessssssesssesssssssssssssssssses 46
INTRODUGTION. ... uuuutuuutututeunseneseseessesseseserereseeessenesesenesssssesesssesesssssssesesssssssseseeeeesssmnnmsnmessrsrsmsmermsemnnnne 46
2 TR 46

Google+ N FAGOIANG vttt 46

SOCKET-LEVEL PROGRAMMING.......cccecererertrrrenentsresesesssssessssesssessssssessssssesssesssssses 48

B R IRER ot 48
INTRODUCGTION. ... uuuuuuuututuseneneneseseenssesesesereeesesessssenasessssssnssesssessssssssssssssssssseeseeeeesssmmsmmmmerererememsmmmemmmnn 48
] 2 TSP 48
THE TCP/IP STACKcuviiiiuiiiiiiiitiiic ittt s s 49
O 1 oY PP 49

IP QAEAGLAITISocvevcveteeeieeee ettt 51
TP BT oottt e ettt ettt bbbttt ettt st 51
UDRP ...ttt ettt ettt ettt ettt 52
TICP......eoeeeeeeeet ettt e ettt ettt ettt e e 52
INTERNET ADDRESSES.......uuuuuuuuuuusususssssssssssssssssesssesesesesssssnssssssssssssssssssssssssssssssssssssseseseeeemmmmmmmmm.. 52
BB HIIEE ..ottt et st bt e e s ene st enenenas 52
IPVA AAALESSES........ocoveeeiiiiiiiieeiieseet ettt 53
1 i TSN 53
IPVG AAALESSES........ocouvveieiiiiiiiieseet ettt 55
1 i TS 55
TP ADIDRESS TYPEuuuuuuuuuutuuuuuseussssenssnssssssssssssesesessseessmssnmessssssmsssmssssnnnns 56
TP HIHEZETR e ettt et ne et et et s sene st e e aenas 56
T 57 2 = /N 56
< TSRS 56
TRE tPPE IPMIASKoceeoevenvenieieiectettctctcete et s 58
17 T 58
TRE tPPE IPAAAE ...ttt s 61
1 2 Ve Lo g =< TN 61
HOSEIOOKUPD..........oovecviieieieetecteetctte ettt ettt s 63
By -/ T 63
SERVICES......uuuuuuuuuuuuuuueusneussessssesnsesesesesssesessssssssssssessssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssnessmesesnnnn 65
TSRS 65
POLES ...ttt ettt et 66
B AT 66
TRE tPPE TCPAUL............eoevvevtttetteteeeeet ettt e 68
L0 Ve Lo =< 68

10 S 700 ' N 69

TOP CLIENL ...ttt ettt e et e e et e e st e e e st e e e saseaenaneeeenaneeeeas 70
o =L S 70

BN /1T o = R 75
—Nf /ﬂ@zy@c)ﬂﬁﬁ# .. 75
MUlti-thtEAAEA SEIVELeeeeeeeeeee ettt ettt ettt e et e ettt e e e ssteenanees 80
B % T 80
CONTROLLING TCP CONNECTIONStevtvtestssesesesessesessssesesssesesessensssesessssesessssesesssesessssesesessssesenssss 84
T TCP JETE o v v ettt e sttt ettt bbbttt s s e s e s e sttt e s s e b e s es ettt s st ettt ntnsnes 84
TETICOUL v....ovveeeeeeeeeeeee e e e ettt e e e s et s et e e e e e s s ssteaaeeessasssteaeaeasssssteaaesaasesssanssnaaasssnssnsssneaassannas 84
. 84
SEAPIAG ALIVEcovoveeeeeeeteete ettt s 84
R T 84
UDDP DATAGRAMS. ...ccceetieiuiteetteeeeaieieeete e e s e sttt eeseeesaaassreteeesssennreeeeessaannratetesssansnnesnraeeeesesannnnreneeessas 85
1803 . SO OO OO 85
SERVER LISTENING ON MULTIPLE SOCKETSucvtutettstentesessentesessenessessenessensessensesessensesesseneesensenessensens 89
L TR 2 D5 -2 <R 89
THE TYPES CONN, PACKETCONN AND LISTENERccutetttettsterterestenestessesestensesessestessenessessesessensesensens 90
CONN, PACKETCONN F{] LISTENER ZEF ..ottt 90
RAW SOCKETS AND THE TYPE IPCONNcoutteutitiietirieeetessenessessenessessestessesesseneesessenessessenessensesessensens 96
JFIAEREFTI IPCONN ZERY .ottt ettt ettt s et a e seas 96
CONGLUSIONvttutteteseseesesessssesessssesesessesessasessesesensssesesssesessssesesessssesessssesensssessssesensssesesessesesessnsesens 101
BEI ettt 101
DATA SERTALISATION.......ootteteerteetrereeeteesssesseessssssessssessesessssensesessssessesessssessensses 102
BEARTETUAL, e s st as s e s sas s asens 102
INTRODUGTION. c...vteutstetesessesesessssesessssesesessesessssensesesessssesensssesessssesesessesesessssesensssessnsesessssesesssesensssases 102
BBl e eeeeeeeee e ee e e ettt ettt ettt e et et e s eee e etane e et e ee e e eeee s e e enaeee 102
MUTUAL AGREEMENTccooiuiitittteteiainrreeteessesannrereeessaessesnnnetetesssaasnsseeeeessaasnreresesssannnnneenneeeesssannnnneee 105
L= 715 SO OO 106
SELF-DESCRIBING DATAuttiiiitiitiiiiieiiitieiiinte s initessis s e s saae s sbasessaaesssaassesabasessabssesnsnnssssananessns 107
S Dy PSSR TTRSRSN 108
) S PP P PSPPSRI 109
B R B T ZE TN T v v v ettt ettt R ettt bbbttt A Rttt et et e s Rttt st tnes 109
ASN.1 daytime clienit a0d SELVEL...............cveveveeieiiiiieticticctice et 120
VIR ENER: g) - ey U 120
JSON e e bbbt 124
JSON e e e 124
W, Wi (=0 T Vs Vo ()= o ¢ = OO PRSP PP PP PRPPPRPPN 131
B T T R S vt vevevetete ettt sttt sttt 131
THE GOB PACKAGEoeiitiiiitiiiitieiitt ettt ettt st e st sa e saa e s bt s e sba e s bt e st e e saa e e san e e smae s e saneesnesesnaesanees 137

W Wl (21 L T e ()= o (> SOOU OO SRR 143

SN b oy T VT 144
ENCODING BINARY DATA AS STRINGS ceeeteiuuerertiereaaiurreeteessasnnrereeessaessesnsreresesssansnnneeeesssassnnnnresesenen 149
bR b By B == OO 149

APPLICATION-LEVEL PROTOCOLS.........cocererrrrerinerrretnsereesessssesessssesssesessssesesens 153
PEFHETIII coverteeteeeeetesiesisesesessisses s sass s ssssss s sssssssssssesssssssssssesssssesssssssssssssasssssssssssassassassnssens 153
INTRODUCGTION. ... uuuuuutuuuuntsnsunsenesseeeseeeresesereeesessessnsresenesssssssesssssesssesssesessseesseeeeeeesmmmmmmmrerenerersmemsmmmnne 153
2 TSRS 153
PROTOCOL DESIGN.....uuuuuutuuuuuuuuuuuuenersueessreserererereresessseeeensseresese.ese....—.....—...........................———————————— 153
18R 5 2y 2 TSP 153
VERSION CONTROL ...ceeieieieieieieiesesesssesssessssssessssnssnssesesesssesssssssssssssssssssssssssssnsnsssnsnsnnnsesesssssssssssssasnns 155
07 T . USSP 155

TRHE WED ...ttt ettt ettt 156

02/ 3 2 156
MESSAGE FORMAT ..ottt st sttt st b e s b e s sb e bbb 157
T B T e b bRt e sttt a bbbt ettt r s ae e 157
DATA FORMAT ...ttt sttt et st st st ettt s et e bt e s e e s et e s bee bt e b e sanesanesbeenne e sanesmeesneeneearesenensnens 159
- = TSP 159

BYLE fOIMALovoveeeteeteeee ettt 160

R g o~ TP 160

CRALACLEL FOLMAL ...ttt ettt et 161

R TR 161
SIMPLE EXAMPLEoeettritiritenttenteetesieesttetteatesseeereesresieesieesseesesaeesaeesseeatemeesreenseesnesmnesreenneensesneenne 163
T BEL B T v eveveveeeeeree ittt ettt bbb bbbttt bbbttt et et e s bbbt ettt et e s e st e 163

Alternative preseftation ASPECEScvvveuvirivieiiiiiieiiiieiitit ettt 167

B = ST 167

Protocol - HUfOLMIAL...........c...ccoueiviiiriiiiiiiiiiiiiieeeet ettt 168

TIPER = BIE oottt ettt 168

TEXE PLOLOCOL........oeeeeeeeeetctet ettt e 168

B N 27/ 3 SN 168

SEIVEL COUEvouviiiiiiiiiiiiiieeete ettt ettt ettt ettt ettt e s atesne e s e e s nessaneeans 170

Y T TR 170

CLENL COE. ...ttt sttt sttt sttt s s essanesnee s 174

B o TR 174
STATE e vt eutteueeeueeetees et ettt et e s et e e e e s sheesb e e et e st e e bt e e h e e st e as e e e et e b e e Rt e Rt e en e eb e e nR e e et et e eheeer e e neenneeaneereereea 178
TSRS 178

Application State Tranisitiont DIAGLAM..............c.couvevevuivvictiieiitieiieieies et 181

WO L s =2 1 s A 181

Client state (ansition dIAGIAIMS.cvvveeiiiieuiitiietisieetite et 182

BESTBARBSIETEE ..ottt sttt sttt 182

Server state LANSITON AIAGIAIIScvevevveuieiiieiiitiietietei ettt 183

HREEFEAIRBSFLLT ..ot 183

SELVEL PSEUAOCOMEooeveeeviiicticticictcietetee ettt e 184

Y a2 e O 184
SUMMARY ...eutteutitteteetteetestee st e e st e e saeesbe e es e e et eueees e e st e st s aseabe e s e e st easesesesbeeeareeme e emeeereenneeneeanenreenreens 185
B ettt R et bRt A et R AR et st e Rt ee R ese st se et te e s nnens 185
MANAGING CHARACTER SETS AND ENCODINGS........cccoceverertrrerererererseesens 186
B TIR D oo bbb s a bbbt tens 186
B0\ 5270 0160 (0] [P P PO OROR P PP RPPPRPRPPPRPPPIRS 186
= == TR 186
IDEFTINITIONSuutuuuuuuuuuteuutanensueseneeserareeererereres aaaeesenesesesesssssssesesesessssseseessseeesseessssssnssssssssssssssssssssnnnnne 188
= TR STRRSN 188
L0 T ol 1= TP 188
B et e ettt ettt bRttt 189
CRAaracter 1EPELtOIte/CRALACIEL SELccovvuvuciiiiiciiiiiiciiici s 189
R Y e - R 189
CRALACLEL COUEeeoneieeeeeeeeee ettt s e sttt e et e e st e e et sessasseeesaaseeeesaseeenans 190
R 1 TP 190

(O 7 Tl = o= ole e - 191
R TR 191
TLANSPOLL EACOIG. ...ttt ettt e eaees 192
B TSN 192
ASCIL ..ottt ettt s s bt e e e et s he e s h e Rt et e h e Rt Rt a et sh e e s Rt e r et ere e R e e neeaneereenreeas 194
N1 1 T TP 194
TSSO 8859 ...ttt ettt sttt R et et e e bt e Rttt n e e e re e r e e neeanesreenreea 199
ISO 8859 ZEAFEE .veveveveeetrererisiisis st s sttt ettt es bbbttt bt s e s sttt bbb bbb bR Rt es bbbttt e st e s sene s 199
TUNICODEtuuuuututuuuuuunnesenneessesasesaseseresereses eeesasasasssesssesesssssssssssaesseeseeeeeaesseeeessssssssssssssssnsesesnsssnnesssnsnn 200
UNICODE ZH cveoveveteiteeeete ittt ettt et st et e v st e e et es e te b e te et e s ese s b easetessese et e seseebeaseseabenssssessesesseseasensesessenes 200
UTTF-8, GO AND RUNES........uttetatteeesuteeeaateeesanreessaseeesassnsetesansseessasesessssseessssseessasseessssesessnnnseessaseesans 202
UTF-8, GO TE B I RUNES. .. c.veutitiietiititietestestetestesestesesessessesbessesessessesesessssessessabassesestensesessestessensans 202
UTF-8 ClIett A0A SELVEL........cc.uveoeeieiiiiiiiiieieeteetes ettt 204
UTF-8 il B i IR T o eveveveteieieisissssisisistssssssesesssssessstssssesasasessssssasssasssassasssssssasasass 204
ASCII CHENE A0A SELVEL ...ttt 204
ASCIT G B B R A vt veveveteretete e e s sttt ettt bbbttt ettt ettt s st ssaen 205
UTF-16 AND GOeeniieiieieeitenieesiees et se e st s et st b e r e st esbeesbe e bt ean e sanesbeesneenneeesaesneenneeresenenanens 205
GO FET UTF-16 oot 205
Little-endian and big-€ndian.................c.ocoouvvviioiiiiiiiiiiieiiitiie 206
Little-endian F] BIG-ENdiat.............cccccueuiuririririeieiciceeeet ettt s 206
UTF-16 ClENt A0 SELVEL..........ocoueeoiiiiiiiiiieiiiitieeteet ettt e 207
UTF-16 2 B S O IR 525 o eveveveteseisessisisistssssssasesassssssssasssssesasesssessssssasassssssssssssasasasass 207
L8)3 (00)) X €105 101 1.\ TP PP PPN 215

18N (00)0) ol = L1y T T 215

ISO 8859 AND GO....uviiiiiiiiiiicitiicc et 216

ISO 8859 ZRAETT GO TETS «vvvvrreereeseereeseesesseesesssssssssesssess st ss s st sse st es s sss st sessesssessessssssnens 216
OTHER CHARACTER SETS AND (GOctiteuieteieitsteietestestetesteesteseeseaeesestessesessesessessesessensesessensesessenens 221
=Y =G 1 o OO 221
CONCLUSION ...ttuteutetetenestessesesteneesessentesesseseansesessestesessenessessesessensesessentesesseneesessessensesesseneesessenessenses 221
B ettt bttt ettt et et ebe et et et e b eteebe s e e be b ete et e st ebe st eseebe s eteebenseteabeneas 222
SECURITY ...oteteetseteestseeteestsessesesssssssesassessesessssessssessssanssessssssessessssessssessssessssensssensesens 223
S e a bbb Rt R st enae 223
INTRODUCTION . . .utttuteueetestenessessesessensesesseneesessessessesessensesessensesessenessensenessensesessensessensssensenessensesessenes 223
BB ettt ettt ettt ettt ettt e et e et e e et e ee et et ee et e e er e e e e e e e 223
ISO SECURITY ARCHITECTURE.cciiiuuiiiiuiiieiitiieiiieeesinitsesinneesesnneesssanssesmassesssasessssnasessnsnsssssnnsesenas 224
ISO ZEAEBERE .ot ettt e 224
FUunctions A0 IEVELS................ocueeeeeuieienieeeeee ettt ettt e sttt e et e et e e e s 224
B/ = O 224

B (2o T) s 1 USRS 226
Y/ O 226
DATA INTEGRITY ...uvvtveuteterteneesestesesstssesessessesessensessenessessenessensesessensesessensesessensesesseneensenessensesesseneesenss 229
i rutis i SO TTRURU T U T TT T PP TR 229
SYMMETRIC KEY ENCRYPTION.coitiiutiiiiiuiiieiinieeiitiieesisietesinnesessmseesssssssessnsssssssssssssssssessnsnssssssssessns 232
KEY S TRIIZE cveveveveeetetee ettt ettt ettt ettt ettt e et et e ases et ese s ebete s et eseaseseseetesessesesensesetenssess 232
PUBLIC KEY ENCRYPTION.cccitiutiiiitiiiiiiiieiiinieeiritessiises e ssaassssnseessaaesesasssesnasesssssssessnssssesssnssessns 234
N 7 1 1 TP 235
X509 CERTIFICATES. ...cceettteiueretteeeeeaanreteteeesasnnrereeesteeesaannreneeesesaannrreeeesssaannnnareeesesannnnnnnnneeeesesannnnnees 239
X509 FIET e euveviirieeriiteeete sttt ettt ettt e e sttt ettt b e b be et e sb et e b ere b e b e st et eteebenbeteebe e eteebeneerebens 239
N PP PO PPPRTRI 244
N T PP PPPRR PRI 244
CONCLUSION ...ttuteutetetentstessesesteneesessentesesseseasesessentesessenessessesessensesessentesesseneesessessensesesseneesessesessenses 248
BEH ettt 248
HTTTP ettt e te e te s se s sseseesesassesae e e s e s e e b s et e s st e e sasassansesasassansesarsssansanansan 249
TR HTTP ottt se s ses s s s s s sss s s s sesas s sasassessssesasassesassesasas 249
INTRODUCTION .1t tutettstenteteseneesessesessensesesseneesessessessesessensesessensesessenessensesessensesessensersenessensesessensesessenes 249
BT T v eresree et st et et et st et et st e st et et e st et e ete st et be b ese e b et et e e b et eteab e st ke b eReebe s e ebenseteebese et e sbeseebeteteebenseteareneas 249
OVERVIEW OF HTTP ottt 249
HTTP B ettt ettt ettt ettt se et et ese et e s ete b e st et s eseeb e sesessessesessensesessanes 249
URLS 210 FESOUITES vouuuvvvevsasssesisiiieseessestteesesesssstetteaasssssasstssasesssastessaassessssssesassssssssssssenssansns 249

URL F1T 7 reeeeeeeeeeeeeeeeeee e ee e et e et e et s s ee et e es s e s ses s es s see s sesese s ssensanssernens 249
HTTTP CAALACICIISHICS ouveeseeviiiiiseeeseeiitteeseeesettttee e esst s st e e e e e ssssssteaaaeesssssssteaeessssansstaaasssasssssnsssneees 250

FITTP RS oot seveeeeese e s ees s e s s s es s ss e ses e ss e ses e eeseesssessssaees 251

ST ettt ettt ettt b ettt et et et et ettt et s b et e tnere s ens 251
FHTTP Q.9 ettt ettt et e e st e e et e e st e e ettt e ennneeesanseesnsnesenanneas 252
FHTTP 1.0ttt ettt ettt et e e et e e et e e st e e sttt e e sneeesaaseasnnnesenanneas 252
FHTTP 1 1ottt ettt ettt et e et e e et e e st e e ettt eensneeesasseaennnesenanneas 256
SIMPLE USER-AGENTS ¢.utuvvettstetetesessesasessesestssesesessssesesesessssesessssesensssesansssesessssssesessesesessssessesessssesesessns 257
T EE T AT (SIMPLE USER-AGENTS) 11vtutstststevesesesesesesssssssssssessssssssssessssssssssssssssssesesesesesesssssssssssssens 258
CONFIGURING HTTP REQUESTS 1.uvevtuvetesestrsesesessesesessesesessssesensssessssesessssesensssesessssesessssesesessssesessssesens 264
TEEE HTTP 3B R ettt ettt ettt ettt ettt ese et et e ss s etesaeteasesesennnseseteanas 264
THE CLIENT OBJECT ttetuttteesuteresaseeessseeessreresaasseessasnseeessssesesassseessasssessssseesasseeesasssessssssseesessesesssees 268
B B 5 SO 268
PROXY HANDLING . «.t11vtettsttetesesesesessssesensssesessssesensestssssesessssesensesesessssesensssesesssesesessesessesensssesesesseseses 271
ARFEAL IR oottt 272
Y /2203l 5 2 T 272
= A 272
AULACAHCALIAG PLOXY c.vvivviiiiiiiiiiiiiiiiticit ettt et 276
B o - AU 276
HTTPS CONNECTIONS BY CLIENTS 1uvettutrtettstssesesessesesessssesessssesessssessssesessssesessssesessssesesessssesessssessssss 280
B U T HTTPS T ettt ettt ettt ettt ettt ettt e bt e et et eas et etese s et ese st esentesnasesens 280
SERVERS 111t tetesttesesesesesessssesessssesessasesanessessssesenssesenessesesessesesensesesensssesesessessssesensssesesessesesessnsesensssesens 281
IR 5 < evvveteeeerteeese st te st ettt ettt ettt e R R et AR R et e R e Rt ARt e Rt e R ene st ene e sese e s enens 281
FEIC SCIVEL e eneeeeseeeet ettt ettt e e ettt e sttt e ettt e e et e e st e e et e e e st e e e st e e e e nnesennnes 281
Q% 281
HANAICE FUACHONS ..ottt ettt et et e ettt e et e e s ee e e snneenanees 283
D T e Te (o (e e 283
Bypassing the default MUIPIEXELccuvvviiiiiiiiiiiiiiiiiciiciccic e 285

B L O T) = ST 286
TEMPLATES ...ttt estsestesestsesssessssessssesassesesassssestesassssassesansssensesessesensanensn 288
BB coveeveverecvenesesessses e sessssese s sesessssessssssesassesasassesassesessssesssassessssesesassesassssessssesessssesssssesasses 288
INTRODUGTION. c...vteutrtetesessesesessssesessssesessssesessssensesesensssesessssesessssesesessssesessssesensssessnsesessssesensssesensssases 288
N B ettt ettt et s et n ettt e ee e e e e e erees 288
INSERTING OBJECT VALUESuttiitiiittiiiticittie sttt sses st snes et sttt snte s saaessaas s saaessnas e snaeeneas 289
AN S 1 1 TP 289
PIPELINESc.veteuttetesestetesessssesessesesessssesesessessesesensssesessssesesessesasessssesessssesensssessnsesensesesensssesensssesensssnses 296
= 1= T OO OO 296
DEFINING FUNCTIONSuvtettsttesrstssesesesesasessssesesssesessesessssesesesesessssesensssesesssesessssesesessessssesesssssseses 297
B T T oottt ettt 297
VARIABLESceoutttitteitieitee st st e st e site st s esaaeesbe s e saa e s bt e e be e sab e e s b e e s bt e sen e e saaee e sabeesnn s e saneesaneesnaesneesanes 301
BB ettt ettt 301
CONDITIONAL STATEMENTSeeuvtettststesestssesasessssesessesesessssessssesensesesessssesensssesessssesesessssesesssesessasesss 305

BEI et 314
A COMPLETE WEB SERVER.........oiiiieertetseessetstessssestesesssessesesssessesssssssssessnses 314
— AN TEEEH] WEB IRZFBT overveereresreesesiesssssss s ssssssssssssssssssssssassssssassassssssasssssssssassanses 314

INTRODUCGTION tttuteneetetenesseseesessensesesseneesessessensesessensesessensesessenessensenessensesessensersensssensesessensesessenes 314

BB ettt ettt ettt e et ee et n et et e et en e ee et ee e et en e et e eeene e eneneeees 314

STATIC PAGES. ... eveuteterteuteteteutstentesesteseesesseneessesessensesesseseesessene et esesessensesessensese st eebensenessensesessensesessanes 315

) = TP 316

TEMPLATEScouvttitteitet ittt sttt et st et sia e e sbe e saa e s b e e e b e e sab e e s b e e s bt e st e e saae e sabeesaaeesaneesneeesnaesneesanes 316

5 SOOI 316

THE CHINESE DICTIONARYcutttitiiittenitienieireeestesreesseessreessstesisesssesessaessessneesneessesssesessmnessnes 317

gy - OO OO 317

TRE DICHONALY LPPE ...ttt sttt sttt se e nae s 325
g - = OO 325

FLASH CARDS.ceettieieieieiietteee e e sttt et e s e sttt e e e s e s s r e e et e e e e aanrr e et e e e sesnnraneeeee e s aeannraeeeeeesannnneeeeeenan 332

FLASH CARDS.ceettieieteieiieeteee e e sttt et e e e st eee e e e e s e sasr e e et e e e e aanrr e et e e e sesnsraneeeee e s eeannnaeeeesesannnneeeeeesan 332

THE COMPLETE SERVERuttiittiitiiittenittenitesreesntesreessneesnesssasessaesssesssbaesneesneesmseesasesssnssessnesnnens 333

a2] TR 333

OTHER BITS: JAVASCRIPT AND CSS....coouiuiiiririiiieieieie st 344

ﬁiﬁi?,:]AVASCRIPT 1 11 TSRS 344
HT MLttt e teesaesese s sseste e sasse st e et e e sae e s s et e s st e e esasassensesansssansesassssansananean 348
TR HTML....oeeeeeereeeerevesesesssssessssesessssessssssssssessasssssssssesassssssassessssssessssesssassssssesases 348

INTRODUCGTION tttuteneetessenessessesessensesesseneesessessensesessensesessensesessenessensesessensesessensessenessensenessensesessenes 348

U ettt b et b ettt ettt et et ete b et et et e st ebe s e e beatete et e st ebesseseebeseteebenseteabaneas 348

CONCLUSION ...ttuteutetetentstessesesteneesessentesesseseasesessentesessenessessesessensesessentesesseneesessessensesesseneesessesessenses 350

BEH ettt 350
XIML...teeteeeiererteseeeeretesseeresssesstessessestessessesssessessssssesstessessesssessessesssesstessessesstessessasssesseesasssane 351

INTRODUCGTION utteuteutetesteneesessesessensesesseneesessessensesessensesessensesessenessensesessensesessensessenessensesessensesessenes 351

U ettt ettt bt ettt e bt ete b et ke b e st ebe s e ebentete et ese et e st eseebe s eteebenteteabeneas 351

PARSING XIMLL.....oeiiieieiiiiiietieee et e e e et e e e s e s e e e e e e e et e e e s e ssnren et e e e saan s nnraeeeeeesennnneneeeeaan 353

AT XIMIL ...ttt ettt ettt ettt sa e st eete et e s ete b e s s et e b ese et et ete b ea s te b eab et ese et et ete et enaeteebensereabanes 353

UNMARSHALLING XIML.....cotiiiiiiiiiiiiiiiiee et e e et e e e st e e e e s s s e e e e e s e sesnen e e e e e e e eesennnnneneeens 360

B |34 | OO 360

MARSHALLING XIMLccoiiiiiiiiiitieet ettt e ettt e e s e e e st e e e s e st e e e e e s e ner e e e e e s e snnnnemnnneeeesesennnnees 366

2252 4. | DTN 366

) 1 1 PR 367
(000) 10130151 (o) ISR 367
BT ettt ettt 367
REMOTE PROCEDURE CALL....oouttitiietieeeieeeeeeereeeseeesseesseesstesssesssesssesssesssesssesssssssses 369
TR TR e srssressesse s ssessessesessssses s ses sttt 369
INTRODUCTIONcuveteiveetetesteseetessessesessessssessesesssesessesessessassssessasessessatsssessssessessssenssssessessssessssesessssenes 369
22T 369
FHTTP RPC CUENLiiiissssasssanssssssssssssssssnns 378
HTTPRPC ZEFTBE oo et e s s s e s s ee s see s 378
NETWORK CHANNELSooooietttteiereeneiresseeseesseessessessssssessessssssessessssssesssessessssssossosss 392
PHZE CHANNELS......cooeeeeeeeeeeeeeeeeseeeetetesesessssesesssesssssssssasssssssssssssssssesetesesesesesssssssesssens 392
B 272N) 1 392
B ettt eene e 392
INTRODUCTIONcuveteiveeeeteeteseetessessesessessssessesesssesessesessessessssessessssessatessessssessessssenssssessessssessssensessssenes 392
BBt e ee e ee ettt ettt et ettt e et et e s ee et ee ettt ne et e ee e e eeree e eraees 392
CHANNEL SERVERccvtviutetiiteetetesteseetesseseetessessssestessessessssesssssssesssssssassssesssssssessssessesssssesessenssssssesssses 394
R G BRUE CHANNEL.......cvettiteeeeteteseetesseseesessesessesseseeseesesessssassesessessesessessesesessasassesessessessensssesesesen 394
CHANNEL CLIENT ..vcvvevtveetettetessetessessesessesessessessssessessessesssesssssssesssssssassssesssssssessssessesssssesessesssssssesssses 396
ZEFTURE CHANNEL......cveuvvetieeeteteeeeseteseesesestesesesesessssesesessesesessasesessesesensesetessssesessnsesessesessssesessnseseseanas 396
HANDLING TIMEOUTSuuuuttttieteieioutietteeeeesssteeeeesssssssssssseesesssesssseessesssssssssessesssnssssesesesssssssssssnseesss 399
RBFEFBIT ..o ettt ettt 399
CHANNELS OF CHANNELSceetttttttttttttttteteeeeereretetetetetereeetssmeeeterereretetetetetetttetteeeteteteteessseeeseessererererens 400
AL 75 CHANNEL HJ CHANNEL «....cuveveiteeteiteeteeteeseeteeseessesesssssessessesseasesssesesseesesseessessesensensessessesssessens 400
(000) 10130151 (o) ISR 404

s =TT 404
WWEB SOCKETSvetieeiteeecrceeesteseesssssesssessessssstessessssssessessssssesssessessssssessessssssesssessessens 405
WWEB SOCKETScveteeeiteeecrceeitesressesssesssessessssstessessssssessessssssesssessessssssossessssssesssessessens 405
B 272N) 1. 405
B ettt ettt e 405
4 0) 010 01y (o) FOR TR 405
22T 405
WEB SOCKET SERVERoeoveueitevireeteseestesesetessessatessassssesessessasessessssessessssessasessessasessessssestessensasessensns 408
WEB SOCKET R G5 BRURT v evveveererrereetestertsteseetesseseetessesestessesseseesessesestessesessessesessessasessesessensessessasessesenns 408

THE MESSAGE OBJECTcoutiiuiiitiiiiiiiinic ittt st st she et eat s sbe bt sab s sas s bt saasshessh s b saassbs st et s 409

N1 O V@) - 1 2l N 414
JSON FFLZR ettt sttt ettt et n et 414
THE CODEC TYPE....ccutttitttitteitteiittestte st et e st e s saeesreesaas e saae s bt e e be e sbe e sareesaaeesane e s saneesaaeenesennaesaneas 418
000 0) T o= VTP 418
WEB SOCKETS OVER TS ..ottt st sene st 423
WEB SOCKETS OVER TS ..ottt ettt st sen e sne s 423
CONCLUSION ...ttutetteteeutententetensetesteasestessesseeabesseebeestesteasensensensesseabesseebeeseeseeaee eheeneentensensenbeneensenbenes 426

Architecture

2R

This chapter covers the major architectural features of distributed sytems.

AEW T ARSI R 2R

Introduction

—.

Al

hfl

You can't build a system without some idea of what you want to build. And you can't build it if you
don't know the environment in which it will work. GUI programs are different to batch processing
programs; games programs are different to business programs; and distributed programs are different
to standalone programs. They each have their approaches, their common patterns, the problems that

typically arise and the solutions that are often used.

TREARRE R EA 2, SITCERE D R MRV TIE B AR~ TAE,
WEFEATT. SR GULRRF AR THUCERE Y, 8RR AR T R+, AU
P ARE TSI . BOTEA & AT, 5 WA, 20 MBI R EL R RO A
e

This chapter covers the highl evel architectural aspects of distributed systems. There are many ways of

looking at such systems, and many of these are dealt with.

AWM T ARG B0, RIS T8 T XA RS M LR

Protocol Layets

U=

Distributed systems are hard. There are multiple computers involved, which have to be connected in
some way. Programs have to be written to run on each computer in the system and they all have to

co-operate to get a distributed task done.

AARGRE S, W ME 2 B EYRERETT . B R LR % R T
—aIEYL BT, BT FR R e — A S UL 55

The common way to deal with complexity is to break it down into smaller and simpler parts. These
parts have their own structure, but they also have defined means of communicating with other related
parts. In distributed systems, the parts are called protocol layers and they have clearly defined
functions. They form a stack, with each layer communicating with the layer above and the layer below.

The communication between layers is defined by protocols.

DX T 2R — BOTTE, WU A B RN B/ N B A X LSRR A ENTE C
25k B RE SCT 5 HE R R B TEE T o A ARG, KRR KN A,
CAIDREE A WA E Lo BAWE—RIZREREH, IS H& AN L TR TET. 2
PR TR T 05 0 BRSO AE S o

Network communications requires protocols to cover high-level application communication all the

way down to wire communication and the complexity handled by encapsulation in protocol layers.

W28 I8 (5 BT I WM 35 1 M _EJE Y I — H R R A LB E A I, BN st
REAE PSR PR AT RO AL P

ISO OSI Protocol

ISO OSI tpiL

Although it was never propetly implemented, the OSI (Open Systems Interconnect) protocol has

been a major influence in ways of talking about and influencing distributed systems design. It is

commonly given in the following figure:

Application Application

Presentation Presentation
Session Session
Transport Transport

Network Network
Data Link Data Link

Physical Physical

U N — E—

RUE OST OMRAGEEER) M ARBSE B LI, B0t A RSN THE T
AT R EEE. B RECN TIEAR:

OSI layers

OSI 2

The function of each layer is:

BRI

* Network layer provides switching and routing technologies

* Transport layer provides transparent transfer of data between end systems and is responsible
for end-to-end error recovery and flow control

* Session layer establishes, manages and terminates connections between applications.

* Presentation layer provides independance from differences in data representation (e.g.
enctyption)

* Application layer supports application and end-user processes

W 268 SR SR L ST R A

T ZAE L R RS HEE A BRI ot xd e B $A IR A SR
ZIERAEN RS B AR R

FUEIRIER R R AL (Banhn)

IS P SR P - de 2 P R AR

TCP/IP Protocol

TCP/IP Hpiil

While the OSI model was being argued, debated, partly implemented and fought over, the DARPA
internet research project was busy building the TCP/IP protocols. These have been immensely

succesful and have led to The Internet (with capitals). This is a much simpler stack:

application || application| 0OSI| 5-7

i |

TCP UDP QS| 4

i i

P QS| 3
h/w interface OS] 1-2

Y OST bR IEAE A LB TT R A5 FIIT ST, DARPA FLHKRI BRI H A H
TCP/IP Hpillo BTG THCRAYSE, F5190 T Internet (B FHERE) , ROV H
BRI G -

Some Alternative Protocols

— TR MY

Although it almost seems like it, the TCP/IP protocols are not the only ones in existence and in the
long run may not even be the most successful. There ate many protocols occupying significant niches,

such as

REBUEZIAL#E TCP/IP Hhill , HEHARME AR NKEHKRE, EEEATRERL
W EALILEAAEERHAL,

e Firewire

e USB
¢ Bluetooth
e WiFi

. K

« USB
* WiFi

Thre is active work continuing on many other protocols, even quite bizarre ones such as those for the

"internet in space."

EATEEH I WM SR R A, EEEEA LG RS EHRM X FERT R A Fpil o

The focus in this book will be on the TCP/IP, but you should be aware of these other ones.

ARG E R 28 TCP/IP, AHARMLN 2 T fifE— LB A WL

Networking

W%

A network is a communications system for connecting end systems called hosts. The mechanisms of

connection might be copper wire, ethernet, fibre optic or wireless, but that won't concern us here. A

local area network (LAN) connects computers that are close together, typically belonging to a home,

small organisation or part of a larger organisation.

MZR—MEE RS, B TRV ENR SR RS XFHERALH AT LUZ L LUK
LT, (HiXEEHHATTIC R Rk (LAN) F i1 SR GRS, — N FEE.

INRIH SR TR 2R — 55

A Wide Area Network (WAN) connects computers across a larger physical area, such as between
cities. There are other types as well, such as MANs (Metropolitan Area Network), PANs (Personal

Are Networks) and even BANs (Body Are Network).

JUHEM (WAN) EEE B LD T AL, Blamskbrin). EALHERZRA, I
WA (MAN) A AJER (PAN) EER AR (BAN)

An internet is a connection of two or more distinct networks, typically LANs or WANs. An intranet

is an internet with all networks belonging to a single organisation.

BERMZ Z AR M B2, — B0 LAN 5 WAN. YR R T3 AR A (2%
I NSRER ST

There are significant differences between an internet and an intranet. Typically an intranet will be
under a single administrative control, which will impose a single set of coherent policies. An internet
on the other hand will not be under the control of a single body, and the controls exercised over

different parts may not even be compatable.

FLIR 5 N Z A LR ROARNE . — Bk, —PWEMAAER —MEEZT, R
M—Ag— Rk I, — D EBRMUA AR —EREERIZ T, BRI
HEARER A

A trivial example of such differences is that an intranet will often be restricted to computers by a
small number of vendors running a standardised version of a particular operating system. On the

other hand, an internet will often have a smorgasborg of different computers and operating systems.

XA E A — B, 2 — A PR e e D R BB R, BT E R E R E R Sebn i
AR T AU RS . 75—, — D EBR A & &R AR RS

The techniques of this book will be applicable to internets. They will also be valid for intranets, but

there you will also find specialised, non-portable systems.

AT B T EIR . AT ARt AR, (HIRd e kI — L1, Al
MR R GE

And then there is the "mothet" of all internets: The Internet. This is just a very, vety large internet

that connects us to Google, my computer to your computer and so on.

Fiv B ELRERA A “BERT AR o B SR AR BRI ECM, B ERATS Google
FATH T EHL TS HAEBGER -

Gateways

ZFS

A gateway is a generic term for an entity used to connect two or more networks. A repeater operates
at the physical level copies the information from one subnet to another. A bridge operates at the data
link layer level and copies frames between networks. A router operates at the network level and not

only moves information between networks but also decides on the route.

MR GRR, T ERERE e Z D M4 . LR Rk e 2 BT E, ©
ReE BN — DT RERIZN 7R — A7 W L FrEAEEdmER 2 LT RE, EAEMSZHE
i B AR AR A2 T BB TERAE, ENMUEMSZ S HIER, EIE 115 BRI
o

Packet encapsulation

BREEER

The communication between layets in eithet the OSI ot the TCP/IP stacks is done by sending

packets of data from one layer to the next, and then eventually across the network. Each layer has

administrative information that it has to keep about its own layer. It does this by adding header

information to the packet it receives from the layer above, as the packet passes down. On the

receiving side, these headers are removed as the packet moves up.

fr. OIS = TCP/IP PISARE 5 ZZ RIS, RSt — 2 LEE TR, &
R REN WL o B R MRS H B BRI E S S B E R R Edfs G rE

TR, RTINSKER. RO, X AE SRR LR R

For example, the TFP (Trivial File Transfer Protocol) moves files from one computer to another. It

uses the UDP protocol on top of the IP protocol, which may be sent over Ethernet. This looks like:

data

TFTP

data

header
UDP TFTP
header header data
IP UDP TFTP
header | | header header data
ethernet IP UDP TFTP data
header header | | headet header

The packet transmitted over ethernet, is of course the bottom one.

flan, TFTP (E SRR KN — S ENE SR — 6 £ B P Pl b
9 UDP Wil , %Wl n] il UK R A . ARG I :

I LA A s M B, IR REAR

Connection Models

AR

In order for two computers to communicate, they must set up a path whereby they can send at least

one message in a session. There are two major models for this:

AT AT RN TE(S, SLs S, — e, [IRER A — S ihrh ik 20—

Bo AW EZRIRARL:

e Connection oriented

¢ Connectionless

HIAERAAR
.« ToiEEY

Connection otiented

T [F AR Y

A single connection is established for the session. Two-way communications flow along the
connection. When the session is over, the connection is broken. The analogy is to a phone

conversation. An example is TCP

RIS BN B, WP IR T RIS . MRS AR, IR =T . X2

THECR. Pl HE TCP.

Connectionless

T EBARE

In a connectionless system, messages are sent independant of each other. Ordinary mail is the analogy.
Connectionless messages may atrive out of order. An example is the IP protocol. Connection
oriented transports may be established on top of connectionless ones - TCP over IP. Connectionless

transports my be established on top of connection oriented ones - HTTP over TCP.

TR ARG, THERAE P AST XIT M IE AP o TR 131 AT REAL
WPt o 72 TP Hhillo TR A i] i To il —— LT TP |y TCP Pl
N0 JUTEERE L] IR A AR —— T TP B HTTP Pz,

There can be variations on these. For example, a session might enforce messages arriving, but might

not guarantee that they arrive in the order sent. However, these two are the most common.

XKLL R AR B o BN, 253 R] REZ SRR SO , (E T RETCHE PRI A 1 A I B I PAIR A o
AN X R A WY o

Communications Models

G ud

Message passing

HEMLR

Some non-procedural languages are built on the principle of message passing. Concurrent languages
often use such a mechanism, and the most well known example is probably the Unix pipeline. The
Unix pipeline is a pipeline of bytes, but there is not an inherent limitation: Microsoft's PowerShell can
send objects along its pipelines, and concutrent languages such as Parlog could send arbitrary logic

data structures in messages between concurrent processes.

AR R TE F NI A SR b FRRTE A S HRXRILA], S 48 RO R
Unix fYEIE 1o Unix EiEmE —E7T, HEHBABEERRS: HEH PowerShell A #Y
HIHEBERIENG; M Parlog XAMERIFF LIRS, WHEATF A RIHREZ 0], FHEERYIZHEET
PRSI S AR ER A%

Message passing is a primitive mechanism for distributed systems. Set up a connection and pump
some data down it. At the other end, figure out what the message was and respond to it, possibly

sending messages back. This is illustrated by

Requestor Responder

Send(Msg, Responder)

Receive(Msg, Requestor)

/ Send(Reply, Requestor)

Receive(Reply, Responder)

THEESE R ARG ARG, WAL HEE & — L8 £ —3ml
i PR L S R R IR R, AR R E L R IR R

Low level event driven systems such as the X Window System function in a somewhat similar way:

wait for message from a user (mouse clicks, etc), decode them and act on them.

I X 5 RS2 KRR RIS R G RER R AT TR T30 SFA P RHE (o
AR REEE) , X EN AT ARSI SR o

Higher level event driven systems assume that this decoding has been done by the underlying system
and the event is then dispatched to an appropriate object such as a ButtonPress handler. This can also
be done in distributed message passing systems, whereby a message received across the network is

partly decoded and dispatched to an appropriate handler.

BRI RS RENBUE IRE REC LM, BEIZF I ILAE X R,
ButtonPress ALFRARFF o JXLIE 190 A H EAL 8 RS, 18 IR I £ Bl A iH 2 A T 40
fifRhD, FEBCAATE AL AR Y o

Remote procedure call

RS

In any system, there is a transfer of information and flow control from one part of the system to
another. In procedural languages this may consist of the procedure call, where information is placed

on a call stack and then control flow is transferred to another part of the program.

FEAEAT R GeH, #A G BRI TR Z RGN — e 255 — a0 iR LIRS
B AR SR, R E EAICE 2 Ak L, B GIRAR AL s B AR Y

55

Even with procedure calls, thete are vatiations. The code may be statically linked so that control
transfers from one patt of the program's executable code to another part. Due to the increasing use of
library routines, it has become commonplace to have such code in dynamic link libraties (DLLs),

where control transfers to an independent piece of code.

R AR AR IS, LMET R %R il AT R — B
Bk BEEPEPIREAIMEN Bl 2, R shS s (DLL) GRS
WY, EHREHIEm ML A A B

',

DLLs run in the same machine as the calling code. it is a simple (conceptual) step to transfer control
to a procedure running in a different machine. The mechanics of this are not so simple! However, this

model of control has given rise to the "remote procedure call" (RPC) which is discussed in much

detail in a later chapter. This is illustrated by

Client Process

main()

{

~ rpe(a, b, ¢)

Server Process

+
send(x=a, y=b) - I%PC(X: ¥, E)

~ L

™~ send(z)

receive(X, v)
7L

\

receive(c=z) o

DLL {E 3 RS TR IPLas £ REXT ARG Eiafrryd R Az sk,
XA (FEMES) 2R R RN FB, (HE S ErIABEAR R A, X
AT WA (RPC) , HARTEMIEE SR e, WrEmn

3l

There is an historical oddity called the "lightweight remote procedure call" invented by Mictosoft as
they transitioned from 16-bit to 32-bit applications. A 16-bit application might need to transfer data
to a 32-bit application on the same machine. That made it lightweight as there was no networking!

But it had many of the other issues of RPC systems in data representations and conversion.

TARAEM 16 (LR IR 32 (i, &I —FFRoh AR B =R .
16 (LI W] RERS B A A 9 1 e 17) 32 ALY PR « T BOA W46, S5 RS |
A, EWAT RPC REEEHRFIAMFAR ERYHE N,

Distributed Computing Models

SRR AR

At the highest lvel, we could consider the equivalence or the non-equivalence of components of a
distributed system. The most common occurrence is an asymmettic one: a client sends requests to a

server, and the server responds. This is a client-server system.

fefe B2, FATAT S B AT R SR AR A S o fociy WAL A XTSRRI O 25 v
AR 55 e A IER, SRIE ARSI AL o XL &/ T MR 55 iy 2 ¢ o

If both components ate equivalent, both able to initiate and to respond to messages, then we have a
peer-to-peer system. Note that this is a logical classification: one peer may be a 16,000 core

mainframe, the other might be a mobile phone. But if both can act similatlym then they are peers.

A AR, HEREHN AR, IATRNTMAE T — R 2 s TR T
BB EME: —RKATEEE 16,000 MZDEML, M5 —mAREFE S (HAR =5
BT R, AL ENTHERZ M

A third model is the so-called #/ter. Here one component passes information to another which
modifies it before passing it to a third. This is a fairly common model: for example, the middle
component gets information from a database as SQI records and transforms it into an HTML table

for the third component (which might be a browser).

=R R IR . A AR ERE RS N, e ER RS
B =Y SR ML EE AR : G0, iRl SQL MEHEZEHIRIUE &,
FA IO HTML R LS8 =AU (ERTRER T aes) -

These are illustrated as:

peer —to—peer

filter

client-server

W NETR

Client/Setver System

P/ RS AR R4

Another view of a client server system is

User

A |l&e&e—| &
THO-
A|l7™ B
A
Client Server
request
Client ! Server
process S process
response
System System
hardware hardware

& /IR G5 de RGN o — R R

Client/Server Application

& v/ AR S5 AR LA

And a third view is

Client Server

Clig Application
pro 5

System System

hardware hardware

Iy W

Server Distribution

R 55 e A

A client-server systems need not be simple. The basic model is single client, single server

Client Server

but you can also have multiple clients, single server

Client ; - Client

Slave Slave

In this, the master receives requests and instead of handling them one at a time itself, passes them off

to other servers to handle. This is a common model when concurrent clients are possible.

5P/ o5 A RGEFF AR L. HEARRUZ 5 P, o5 :

AR T LA 2% 0, iR S5 a

F, Ful AFEBOERIFE R K, MR e e BS e Rs teoR A S5 g n]
TR, RO 8 AR

f;q:

puntig
(ayay

There are also single client, multiple servers

—]—

Client Server Server

which occurs frequently when

a server needs to act as a client to other servers, such as a business logic server getting information

from a database server. And of course, there could be multiple clients with multiple servers

R, 2R a IO

YIRS dr R A HE IR e s iy, XAME U S 2R, Bl ks
AR 5 d MK PE A 55 A AR U S o 240K, ERTLVE 2%, 2SS a AT Ol -

Component Distribution

HiF A

A simple but effective way of decomposing many applications is to consider them as made up of

three parts:

il LR — R AR T SO R AR B TR =i

* Presentation component
* Application logic

e Data access

- KEA
« MR
< KRy

The presentation componentis responsible for interactions with the user, both displaying data and
gathering input. it may be a modern GUI interface with buttons, lists, menus, etc, or an older
command-line style interface, asking questions and getting answers. The details are not important at

this level.

FHAAN T E AP TR E, R R BaioR A . E R OB AT L SRR A
SFHVEUC GUI Fm, sliBeE a7, R RS . X2 L, BARE
THFFAE L

The application logic is responsible for intrepreting the users' responses, for applying business rules,

for preparing queries and managing responses from the thir component.

S AN ST AR PP RS, AR R P M 55 AU, A A R B HAE PR A R

The data access component is responsible for stroing and retrieving data. This will often be through a

database, but not necessatily.

AV AN ST R R AR . X BRI T, A A

Gartner Classification

Gartner 4328

Based on this threefold decomposition of applicaitons, Gartner considered how the components

might be distributed in a client-server sysem. They came up with five models:

presentation presentation presentation | | presentation | | presentation
logic _ logic -
logic logic presentation
data
logic data logic
distributed remote distributed remote distributed
data data transaction pres entation pres entation

TSI RIS, Garmer AR R T IR TS5 3 R AT 537 -
T A T R

Example: Distributed Database

Bl A AR

e Gartner classification: 1

o Gartner &—Ff405:

presentation

logic

data

data

Modern mobile phones make good examples of this: due to limited memory they may store a small

part of a database locally so that they can usuall respond quickly. However, if data is required that is

not held locally, then a request may be made to a remote database for that additional data.

DUARHIR Bl F T2 MRAF A 7 B T AR, TR REIE A7l —/ Nl AR 2
R E AT REPRE MY o A 3R AR A A, AR 2 n oA I s s RIs R A 4 -

Google maps forms another good example. Al of the maps reside on Google's servers. When one is
requested by a uset, the "neatby" maps are also downloaded into a small database in the browser.
When the user moves the map a little bit, the extra bits required are already in the local store for quick

response.

Google I ML AT — MRIFHIBIo FraRHERTE Google ST % Lo M IEK
13 OV M AL R TR = /5 e WU AR S RSV EE - € s VS D 2 22 Il B AL L I
SN — IR B P I S AE AP T

Example: Network File Setvice

B WIS RR ST

Gartner classification 2 allows remote clients acess to a shared file system

presentation

logic

data

There are many examples of scuh systems: NFS, Microsoft shares, DCE, etc

Gartner 55 —F 732 SR VPR 5 P 3) © AL =AY S0P R 4

X EA X RG R F: NFS. Microsoft 5] DCE 254%,

Example: Web

. Web

An example of Gartner classification 3 is the Web with Java applets. This is a distributed hypertext

system, with many additional mechanisms

presentation
logic html, Java
logic CGI, httpd server
data

Gartner 25 =F KA — Il 752 Web _ERY/NY Java B o LA A7 — LM INALAI A9 2
A SO RS

Example: Terminal Emulation

. KR E

An example of Gartner classification 4 is terminal emulation. This allows a remote system to act as a

normal terminal on a local system.

presentation

logic
g telnetd

data

Telnet is the most common example of this.

Gartner 55 PR SRl B LT E . IXFVFIEAR RGAE AN R GE AN 2 A 23 «

Telnet Hft & Hc i WHIE 7o

Example: Expect

A~ T (Expect)

Expect is a novel illustration of Gartner classification 5. It acts as a wrapper around a classical system
such as a command-line interface. It builds an X Window interface around this, so that the user

interacts with 2 GUI, and the GUI in turn interacts with the command-line intetface.

presentation | X wrapper

presentation
. original
logic application
data

Wi (Expect) J& Gartner ST)RR —Fh A RAGTE R . EHIT HRIAT arSATHEEIXHE
ML RS, B BT XEHG, LURiEM S GUITCH, M5 GUI
M A AT AR T E.

Example: X Window System

Bl X EHARSE

The X Window System itself is an example of Gartner classification 5. An application makes GUI

calls such as DrawLine, but these are not handled directly but instead passed to an X Window server

for rendering. This decouples the application view of windowing and the display view of windowing,

presentation

presentation
logic

data

X @ HRGEA T HZ Gartner FRFFDEH— Pl 70 — P HHIT—IKR Drawline JXt
B GULIA M, (HEFAERI T, THREmss X W RS RIS X r] LR 5
AL AN 2ot -

presentation

presentation
logic

data

Three Tier Models

=RER

of course, if you have two tiers, then you can have three, four, or more. Some of the three tier

possibilities are shown in this diagram:

data data data data
logic logic

data

logic logic logic logic
data

logic logic

presentation

, IR

presentation

presentation

presentation

, LR =&

 WEEEZE. TERER T 2l RER =27

The modern Web is a good example of the rightmost of these. The backend is made up of a database,

often running stored procedures to hold some of the database logic. The middle tier is an HTTP

server such as Apache running PHP sctipts (ot Ruby on Rails, or JSP pages, etc). This will manage

some of the logic and will have data such as HTML pages stored locally. The frontend is a browser to

display the pages, under the control of some Javascript. In HTML 5, the frontend may also have a

local

database.

B Web 52 oA i BERRUAR I B9 1)1~
LERE R A . HPR)Z 21 Apache

PRI

JUHAISE) By HTTP fR 55 %+

N2

I Vi
o

JESESL N R, A
IXFEMEIT PHP I (58 Ruby on Rails, & JSP
BT LGP AN A A HTML 5
NI JavaScript I DU YE S . AE HTMLS Hr, Hijsi

TS ARk

G ERNECITE

Sty o] LA — A e

Fat vs thin

w5 o

A common labelling of components is "fat" or "thin". Fat components take up lots of memory and
do complex processing. Thin components on the other hand, do little of either. There don't seem to

be any "normal" size components, only fat or thin!

WMol “BET B YT o BT AR KRR RO AL T AR
tetats, bR, MR PIPRAAERT IR ONSANE, HA T Bk
)

Fatness or thinness is a relative concept. Browsers are often laelled as thin because "all they do is
diplay web pages". Firefox on my Linux box takes neatly 1/2 a gigabyte of memoty, which I don't

regard as small at all!

R B R RBEERARXTR . BERRAE BN T A, PFOY TERUUEIR Web
T o fHFKY Linux &P Firefox F THEL 1/2GB (A FF, AT — A B/

Middleware model

FRIE AR A

Middleware is teh "glue" connecting components of a distributed system. The middleware model is

Server processes

Client processes
Client
middleware Exchange
rotocol
Local Network P
services services
O/S and hiw

network protocol

Server

middleware

Local
services

Metwork
services

/S and hiw

R R ARG ANN BOK” B PR E FR

Middleware

iR

Components of middleware include

Hh R AR AL

* The netwotk setvices include things like TCP/IP

* The middleware layer is application-independent s/w using the network services

* Examples of middleware are: DCE, RPC, Corba

* Middlewate may only petform one function (such as RPC) or many (such as DCE)

© & TCP/IP JIXFERY M2 AR 55

o FRARE RN ST, 5 2 AR 5 R
o A F: DCE. RPC. Cotba
o HREMFRTRE P T—FIOEE (Hbin RPC) siZFhhiaE (Mol DCE)

Middleware examples

RiE Bl

Examples of middleware include

HRTR PR BT

e Primitive services such as terminal emulators, file transfer, email
* Basic services such as RPC

* Integrated services such as DCE, Network O/S

* Distributed object services such as CORBA, OLE/ActiveX

* Mobile object setvices such as RMI, Jini

e World Wide Web

o B SOl F T MR O S A AR 55
* & RPC IXHEEEAL IR 55

* B DCE. Mg O/S iIXFERY— AL S5

* % CORBA. OLE/ActiveX XA AT R T5

« B RML Jini XFERIFS SIS RAR TS

< X

Middleware functions

IR T RE

The functions of middleware include

TR PR TR B

© FEARIEYL LA SR

- BHMTEIAEH

© VR E AL ST AR H SRR ST
o BHTIEREEREYTR]

o FUVPARST AR R AN A S A A
o PRIEZ TR REE

759
R

o A FENTEREAL]

Continuum of Processing

BELEALTE

The Gartner model is based on a breakdown of an application into the components of presentation,

application logic and data handling. A finer grained breakdown is

TYPE

ACTIVITY

Interactive
processing

Application |
processing

Database |
processing

kevboard/mouse input
screen handling
graphics/sound/video control

command/menu/dialog interpretation
help processing

data input validation
application logic

€rror Tecovery
transaction construction
transaction validation

database access

data management and storage

DIVISION
(Client)
___ Host
application

____Intelligent
terminal

____GUIfrontend
application

Client/server
— transaction
processing

__ Networked SQL
database

— Filesharing
application

(Server)

Gartner BRI — AW N R BN N BANEERACEL . — A AN B R i

UEWak

Points of Failure

B

Distributed applications run in a complex environment. This makes them much more prone to failure

than standalone applications on a single computet. The points of failure include

AT — RGBT AR RO o SR E B — TR L RO RS N B 2 e A s o
OB LB AT

* The client side of the application could crash
* The client system may have h/w problems

* The client's network card could fail

* Network contention could cause timeouts

* There may be network address conflicts

* Network elements such as routers could fail
* Transmission errors may lose messages

* The client and setver versions may be incompatable
* The setvet's network card could fail

* The setver system may have h/w problems

* The setver s/w may crash

* The setvet's database may become corrupted

o Y HRTRESAE R i 15

o B ARGTR] REA AR A

o R PR AT RE K A

o« MZRER] REEHY

o POZEHAE AT REMPR

o R HA IR 2 B TA A T RE R AR B
o fEEERATRER R KIHE

IR o) S) TRNRIKE N S

o« BRSFARRY KR AT REA A s

o MRG5A RGTR]RER AT I)
© BRSFARRIEA AT REAAT
o MRSF AR A] RES

pai

1

R

psii

Applications have to be designed with these possible failures in mind. Any action performed by one
component must be recoverable if failure occurs in some other part of the system. Techniques such

as transactions and continuous error checking need to be employed to avoid errors.

FESL TR IS 00055 FEIX S W] RE R AR A o A SRSt & AR AR R H B F A, AR A AT
A PITRIBRA BT K. o SX T 2R P 2R 55 A S AR AR X S Y T S8R S

BRo

Acceptance Factors

* Reliability

* Performance

* Responsiveness
* Scalability

* Capacity

* Security

e
. PERE
. IR
. TR
. I
.
Transparency

ERE

The "holy grails" of distributed systems ate to provide the following:

ARG T AR REELLT LA

* access transparency

* location transparency

* migration transparency

» replication transparency

* concurrency transparency
* scalability transparency

* performance transparency

» failure transparency

%

« UIIRNEWIE

. (BB
. EBBEYE
. RMEE
. IFRBME
. PRBYE
. HEREBIIE

o HFLEE

Eight fallacies of distributed computing

R ER/MHRX

Sun Microsystems was a company that performed much of the eatly work in distributed systems, and
even had a mantra "The network is the computer." Based on their experience over many yeats a

number of the scientists at Sun came up with the following list of fallacies commonly assumed:

Sun RGN FHEMT ARG EHARRE BRI TR, ATEEA kA Mg
HEH o EFiIZFENLE, Sun FRFEZR L T AT F IR :

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology doesn't change.
6. 'There is one administratot.
7. Transport cost is zero.

8. The network is homogeneous.

1 R
2 R NE.

3. WEETIR

4 RIHRRAN,

5. MRS,
6. VAR,

7. AR
CESECLA)

e

Many of these directly impact on network programming. For example, the desigh of most remote
procedure call systems is based on the premise that the network is reliable so that a remote procedure
call will behave in the same way as a local call. The fallacies of zero latency and infinite bandwidth also
lead to assumptions about the time duration of an RPC call being the same as a local call, whereas

they are magnitudes of order slower.

X LE R B M 28 iR o B30, KBS e RE I FH R e SRR T M 282) SE Y
AOHE, MITTSECT AR R A 09T S AR o Qe — e 2% XURS TG B 35 19 35 X A, 5
HUT RPC R IR SE T)-S5 A AR] O BT, (ESEhr B e AR R IR 2

The recognition of these fallacies led Java's RMI (remote method invocation) model to require every

RPC call to potentially throw a RemoteException. This forced programmers to at least recognise the

possibility of network error and to remind them that they could not expect the same speeds as local

calls.

PR AN S ECT Java 19 RML GEFE AR) MR ERE—MEAER RPC 18 H
HREHIH —1> RemoteException S o IXIHMHHRST G 2 /AR E T MZEEE R I AT RENE , FEHE
PEAA TN B B X o S A b F A T A A

Ovetview of the Go language

Go IBEE WS

Introduction

Please go to the main index for the content pages for network computing.

TEVT A ST TURER Go 9128 4R 16 Ho At 1

I don't feel like writing a chapter introducing Go right now, as thete ate other matetials already

available. There are several tutorials on the Go web site:

KHBNAARE /4 Go WET, ROV H R CEARE X HIEHFEAE, (£ Go B 5 M
EAIRZIXFERINT:

* Getting started

* A Tutorial for the Go Programming Language

e Effective Go

NS
. Go BRIl

« Go %%t

There is an introductory textbook on Go: "Go Programming” by John P. Baugh available from

Amazon

HETA AN 48 Go)45 "Go Programming" {E# John P. Baugh Amazon

There is a #golang group on Google+

Google+ FH—MT1EA Hgolang

Socket-level Programming

ERTRME

This chapter looks at the basic techniques for network programming,. It deals with host and service
addressing, and then considers TCP and UDP. It shows how to build both servers and clients using
the TCP and UDP Go APIs. It also looks at raw sockets, in case you need to implement your own

protocol above IP.

RERHERT ML EEAL TS, P B ENMIRS S4E, % E3) TCP #1 UDP,
I It e os AT (4] GO Y TCP M1 UDP R APT KA 55 #1357 oo B J 48 1
JFAEET, WRIRTEEET P PSR H CRTH RS

Introduction

There are many kinds of networks in the world. These range from the very old such as serial links,
through to wide area networks made from copper and fibre, to wireless networks of various kinds,
both for computers and for telecommunications devices such as phones. These networks obviously

differ at the physical link layer, but in many cases they also differed at higher layers of the OSI stack.

1 EAFAEIRZ P 4% BTSNt BTk, 200 THEALa TR A B IR & B
TERERBIANDCLT AT 3, B RS AR TT M % MR Z BRI, (HIRZ
BB, 6T = 2R OSIARRL E A T IF AR 2 o

Over the years there has been a convergence to the "intetnet stack” of IP and TCP/UDP. For
example, Bluetooth defines physical layers and protocol layers, but on top of that is an IP stack so
that the same internet programming techniques can be employed on many Bluetooth devices.
Similarly, developing 4G wireless phone technologies such as LTE (Long Term Evolution) will also

use an IP stack.

ZAER K, 15 1P] TCP/UDP WM A Est S0 T M it #ltn, w55 & LT ¥
ERUE, (HiREENE P U, TTLAEFE2 0 F & SR BRI g A . [H]
K, Tk 4G TCEFHEAR, W LTE (Long Term Evolution) 448 A IP ik

While IP provides the networking layer 3 of the OSI stack, TCP and UDP deal with layer 4. These are
not the final word, even in the interenet wotld: SCTP has come from the telecommunications to
challenge both TCP and UDP, while to provide internet setvices in interplanetary space requires new,
under development protocols such as DTN. Nevertheless, IP, TCP and UDP hold sway as principal
networking technologies now and at least for a considerable time into the future. Go has full support

for this style of programming

IP 424755 3 2149 OST RIZ% sl ik, TCP Fl UDP NHRAL 745 4 2o BIAE PRS0 B, 53X
B HA R[] E AN AR 14 - TCP i UDP 4TI 3K [SCTP(STREAM CONTROL TRANSMISSION
PROTOCOL iz ilfEditisl) Bpki, [RIMS7ERBR2s [i A B R0 IR 55 75 2B A E A
HAR) DTN Hpfle ANid, 1P, TCP F1 UDP /07 41 2 A KA 24 1 o] A2 32 227 Y
HEAR . Go WBE IR T RNX TR R 2T S HF o

This chapter shows how to do TCP and UDP programming using Go, and how to use a raw socket

for other protocols.

ARFS AU GO 485 TCP M1 UDP A2 F7, LAKAR{AL Al Al EL A Hp sl 19 B iR 4

The TCP/IP stack

TCP/IP itk

The OSI model was devised using a committee process wherein the standard was set up and then
implemented. Some parts of the OSI standard are obscute, some parts cannot easily be implemented,

some parts have not been implemented.

OSI AR bRAEREE N A S & — R e (EPRAMEN L 1ISO-3F51E) 1#iH. OSIFx
HEFR R — S50 RN, A LA REIR A S S, — Sl iR A 15 2175 5.

The TCP/IP protocol was devised through a long-running DARPA project. This worked by
implementation followed by RFCs (Request For Comment). TCP/IP is the principal Unix networking

protocol. TCP/IP = Transmission Control Protocol/Internet Protocol.

TCP/IP Hpill BT TH9— DARPA (EEE P H R BH %1 % TAEHIR
i RFC (Request For Comment)3Ljific TCP/IP /& Unix I B BM 250 . TCP/IP 45T 1& it

il Hp S/ ELIR R L o

The TCP/IP stack is shorter than the OSI one:

application || application| 0OSI| 5-7

i |

TCP UDP QS| 4

i i

P OSl1 3

I

h/w interface OS] 1-2

TCP is a connection-otiented protocol, UDP (User Datagram Protocol) is a connectionless protocol.

TCP/IP HpislHk/E OST AR R :

application || application| 0S| 5-7

: !

TCP UDP QS| 4

i i

P QS| 3

i

h/w interface OS| 1-2

TCP 2N AP, UDP (User Datagram Protocol, Bt tibsl) 2 —Fhici
RHTHL -

IP datagrams

IP Hoat

The IP layer provides a connectionless and unteliable delivery system. It considers each datagram
independently of the others. Any association between datagrams must be supplied by the higher

layers.

IP JZF it 7 TCiE e /N n] SE A R GE , AR A0 2 [A) A SR AR L B e PR R R A8 o

The IP layer supplies a checksum that includes its own header. The header includes the soutce and

destination addresses.

IP RO SRR, A S AR AT H AL .

The IP layer handles routing through an Internet. It is also responsible for breaking up large

datagrams into smaller ones for transmission and reassembling them at the other end.

IP JZal it i e e PRI, B S KBt e oM B/ NI 60, IR 2 53— JE 2EA T
HH.

UDP

UDP is also connectionless and unteliable. What it adds to IP is a checksum for the contents of the

datagram and porr numbers. These are used to give a client/server model - see later.

UDP SR TCHEHHY, ARTEER . EAUHE IP B i A1 7L SRIRS . fEfET, A1
R L/ i 55 A 1 o

TCP

TCP supplies logic to give a reliable connection-oriented protocol above IP. It provides a virtual
circuit that two processes can use to communicate. It also uses port numbers to identify services on a

host.

=
i

CP 2T IP 2 ERYHIAFERAT L o IR T — 1 B E A P4~ B ERE) LA
EARIEE . Bl S AR ENL RIS .

|

Internet addresses

EERR ikt

In order to use a service you must be able to find it. The Internet uses an address scheme for devices
such as computers so that they can be located. This addressing scheme was originally devised when
there were only a handful of connected computers, and very generously allowed upto 232 addresses,
using a 32 bit unsigned integer. These ate the so-called IPv4 addresses. In recent years, the number of
connected (or at least directly addressable) devices has threatened to exceed this number, and so "any
day now" we will switch to IPv6 addtessing which will allow upto 27128 addresses, using an unsigned
128 bit integer. The changeover is most likely to be forced by emerging countties, as the developed

world has already taken neatly all of the pool of IPv4 addresses.

TAE A —TURSS , R UCRERENE o BRI I3 Ik E A2 BT HSRL A o o XM -4k

JT RN R ARV DB T LR B, (8] 32 LTRSS 8E, Ak 2732
bk XU ATIBRY IPv4 Hohbe WTEESR, HEE (B LUIESESHE) ARSI R ATEE
DX T, BT EMEARARY T KRB TRIHE R 128 (L TCRF5 8888, A 27128 4
HHERY IPv6 ke SXFP AR A W REM BT T T A I IPv4 Mtk 374 [2 A ks i X

IPv4 addresses

IPv4 Hihk

The address is a 32 bit integer which gives the IP address. This addresses down to a network interface
catd on a single device. The addtess is usually written as four bytes in decimal with a dot "' between

them, as in "127.0.0.1" or "66.102.11.104".

IP itk 2 —A 32 (LEER . 5 Bas BRI Z B IR AT — 1 ikt 23 thikd s 6 A 17 5
SHEIR 4 FART BRI, Filn: "127.001" B "66.102.11.104",

The IP address of any device is generally composed of two parts: the address of the network in which
the device resides, and the address of the device within that network. Once upon a time, the split
between network address and internal address was simple and was based upon the bytes used in the

IP address.

Fra e 1 1P Mkl , JEE 2 PR BB R P ko AR, 28 kb o P
Hihb @5 HEAR TR, i T f i 1P Hbhik

* Inaclass A network, the first byte identifies the network, while the last three identify the
device. There are only 128 class A networks, owned by the very early players in the internet
space such as IBM, the General Electric Company and MIT
(http:/ /www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml)

* Class B networks use the first two bytes to identify the network and the last two to identify

devices within the subnet. This allows upto 2°16 (65,536) devices on a subnet

* Class C networks use the first three bytes to identify the network and the last one to identify

devices within that network. This allows upto 2”8 (actually 254, not 256) devices

o AT HhEd 1 AR SRR 3 AT BN AL A SR A 128 1,
RAR L LI P 8 57349 TBME, - 28 H FE 23] (the General Electric Company)#1 MIT
iAo (http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml)

o N ASETP Mkl 1 A ZE I EERT 3 AT B LR K. X E P 2716
(65,536) M AT AE A — 11 M o

o /N CEIP bk 3 TR MIZEHBIEAT 1 ST A ENUMEZE R X B 2 e 278 (H

SR 254, AR 256) T B

This scheme doesn't work well if you want, say, 400 computers on a network. 254 is too small, while
65,5306 is too large. In binary arithmetic terms, you want about 512. This can be achieved by using a
23 bit network address and 9 bits for the device addresses. Similarly, if you want upto 1024 devices,

you use a 22 bit network address and a 10 bit device address.

B2, HARTREE 400 SIFEHER— 1ML, %I EZARTR. 254 A/N, 1 65,536 X
KK MRIABEHITTE, IRKLIRHE 512209, AT XHEgln] LA A —1~ 23 f2[Y
WIZE IR 9 (A B i SE . [IRE, ANIRAETREOSIA 1024 B, M —1> 22 k4%
HBHERD—> 10 7RI A kL o

Given an IP address of a device, and knowing how many bits N are used for the network address
gives a relatively straightforward process for extracting the network address and the device address
within that network. Form a "network mask" which is a 32-bit binary number with all ones in the first
N places and all zeroes in the remaining ones. For example, if 16 bits are used for the network
address, the mask is 11111111111111110000000000000000. It's a little inconvenient using binaty, so
decimal bytes are usually used. The netmask for 16 bit network addresses is 255.255.0.0, for 24 bit
network addresses it is 255.255.255.0, while for 23 bit addresses it would be 255.255.254.0 and for 22

bit addresses it would be 255.255.252.0.

FITE B 1P HEAN 2 D5 T R gttt A8 20n] DAHCAR B RE A SE U XA~ R 2 e 1
SRR A b, BN RO HERST 2RI N AOA 1, HABRTA RN 0 1Y 32 2

HERIE Flan, SR 16 A RRIZE L, #EASSA 11111111111111110000000000000000, {3
FH A — SOR T, Pir LB (R 25 16 r W45 Huhk () 1 A A /2 255.255.0.0,

T 23 (bbb, 48 255.255.254.0, F122 frkbhl, BOBE 255.255.252.0,

Then to find the network of a device, bit-wise AND it's IP address with the network mask, while the
device address within the subnet is found with bit-wise AND of the 1's complement of the mask with

the IP address.

EEERRERIME, FokH P b SR T S B, TS E T R
b, RIAEI P HHE RS S 1 ARG L AL B A B

IPv6 addresses

IPv6 Hiht

The internet has grown vastly beyond original expectations. The initially generous 32-bit addressing
scheme is on the verge of running out. There are unpleasant workarounds such as NAT addressing,
but eventually we will have to switch to a wider address space. IPv6 uses 128-bit addresses. Even
bytes becomes cumbersome to express such addresses, so hexadecimal digits are used, grouped into 4

digits and separated by a colon "'. A typical address might be 2002:c0e8:82¢7:0:0:0:c0e8:82¢7.

DRI I) s & SR AR T ORI T o) AR Y 32 A3 hE A B TT SR E it HI 52
BRI LL BN NAT Mt NXHEAZIRGEFRRIMTT %, (BRI TRAGA DI
IR RS R TPvG (] 128 Aok, RIEEGAREIFEATHBEE, F o B RIRNT, '

FEH 4 A7 16 FEEIZH . — PB4+ 2002:c0e8:82¢7:0:0:0:c0e8:82¢7

These addresses ate not easy to remember! DNS will become even more important. There are tricks
to reducing some addresses, such as eliding zeroes and repeated digits. For example, "localhost" is

0:0:0:0:0:0:0:1, which can be shortened to ::1

BOOEIXLEH NS Sy ! DNS S NE B . AL T AR B —Luiihl, ansamg
— U EE T . HIn: "localhost"#idikf2: 0:0:0:0:0:0:0:1, W] LAZE%E %51,

IP address type

IP Hhh 37

The type IP

IP K7

The package "net" defines many types, functions and methods of use in Go network programming,

The type IP is defined as an array of bytes

"net"tUE LT VL LR, ML TIEMT Go MZ IR, TP AIMOE SO A

type IP [Jbyte

There are several functions to manipulate a variable of type IP, but you are likely to use only some of
them in practice. For example, the function ParseIP(String) will take a dotted IPv4 address or a colon
IPv6 address, while the IP method String will return a string. Note that you may not get back what

you started with: the string form of 0:0:0:0:0:0:0:1 is ::1.

AL BRECR AL > TP IR G, (HRAESC P R AR AT BB 2 g — 28, i,
ParselP(String) PR ZCKEARIBUE 593 IR TPv4 2l B 570 BR) IPvo Huhik, 11 IP J5 ¥ A 45 B

RE— AN F . EEE, BATRETCEERMRIAER): FFE 0:0:0:0:0:0:0:1 fg:1,

A program to illustrate this is

N MR R

/*IP

*/

If this is compiled to the executable IP then it can run for example as

WERGHIE EON AT TP, AR A AT Lhia T

with response

The type IPmask

IP #EH0

In order to handle masking operations, there is the type

N T AR, AT

There is a function to create a mask from a 4-byte IPv4 address

XA REUH A 4 TR IPv4 kR

func IPv4Mask(a, b, c, d byte) IPMask

Alternatively, there is a method of IP which returns the default mask

AN, XA TP (R BB R HE A

func (ip IP) DefaultMask() IPMask

Note that the string form of a mask is a hex number such as ffff0000 for a mask of 255.255.0.0.

FEVERAR— MBS F RIS HERIEL, AT 255.255.0.0 2 60000,

A mask can then be used by a method of an IP address to find the network for that IP address

ARG T LAGE A A~ IP # kR TR, SREDA TP HuhERY k2%

func (ip IP) Mask(mask IPMask) IP

An example of the use of this is the following program:

TR R AMER TR T

" Default mask length is ", bits,
"Leading ones count is ", ones,
"Mask is (hex) ", mask.String(),
" Network is ", network.String())

os.Exit(0)

If this is compiled to Mask and run by

Y FHIB1 T Mask

Mask 127.0.0.1

it will return

K [a]

Addressis 127.0.0.1 Default mask lengthis 8 Netwotrkis 127.0.0.0

The type IPAddr

IPAddr 57

Many of the other functions and methods in the net package return a pointet to an IPAdds. This is

simply a structure containing an IP.

£ net WAEF L BB T A 25IR Pl — 45 1) IPAddr 1R . R R — M4 TP 2R
LERIIR

A primary use of this type is to perform DNS lookups on IP host names.

XA EE @R 1P L30T DNS &4

where net is one of "ip", "ip4" or "ip6". This is shown in the program

Hor net /2"ip","ip4" B "ip6" (U H A RHIRYRE 2 R

if len(os.Args) I= 2 {
fmt.Fprintf(os.Stdert, "Usage: %s hostname\n", os.Args[0])
fmt.Println("Usage: ", os.Args[0], "hostname")
os.Exit(1)

}

name := os.Args[1]

addyr, etr := net.ResolveIPAddz("ip", name)

if err 1= nil {
fmt.Println("Resolution errot", ett.Etror())
os.Exit(1)

}
fmt Println("Resolved address is ", addt.String())

os.Exit(0)

Running ResolveIP www.google.com returns

1517 ResolveIP www.google.com & |H]

Resolved address is 66.102.11.104

Host lookup

ENEM

The function ResolveIPAddr will perform a DNS lookup on a hostname, and return a single IP
address. However, hosts may have multiple IP addresses, usually from multiple network interface

cards. They may also have multiple host names, acting as aliases.

ResolveIPAddr RIS AT HA EHLAPAT DNS £, F [Bl—ME B IP Hudk. SRT, @
WENIEREZANME, WA L2 1P #ilk. ST REE 2 NN, VERN&,

func LookupHost(name string) (cname string, addrs [stting, etr os.Etror)

One of these addresses will be labelled as the "canonical" host name. If you wish to find the canonical

name, use func LookupCNAME (name stting) (cname string, etr os.Error)

XLEHNERE BTN “canonical” FHLA . IIRMFAEREIRIME AR, [fanc

LookupCNAME (name stting) (cname stting, etr os.Error)

This is shown in the following program

MR MEUR R

/* LookupHost

*/

package main

import (
"net"
"os"
"fmt"

)

func main() {

if len(os.Azgs) I= 2 {

fmt.Fprintf(os.Stdetr, "Usage: %s hostname\n", os.Args[0])
os.Exit(1)

}
name := os.Args[1]

addrs, err := net.LookupHost(name)
if err 1= nil {
fmt.Println("Error: ", ett.Error()

os.Exit(2)

for _, s := range addrs {
fmt.Println(s)
}

os.Exit(0)

Note that this function returns strings, not IPAddress values.

HEE, XPEREUREIFAFE, TAE IPAddress.

Services

R 55

Services run on host machines. They are typically long lived and are designed to wait for requests and
respond to them. There are many types of setvices, and there are many ways in which they can offer
theit services to clients. The intetnet world bases many of these setvices on two methods of
communication, TCP and UDP, although thete ate other communication protocols such as SCTP
waiting in the wings to take over. Many other types of service, such as peer-to-peer, remote procedure

calls, communicating agents, and many others are built on top of TCP and UDP.

M5B TR TN AT A, RSB SRR IR AR 3R . A 12 2R
Aies5, AAbNIRERG B AR A A% SR B S5 . ELHCM Ay T TCP A1 UDP X pifhiE
(RTTESR B 21X R 55, B PR AT A5 Wl o SCTP RIHLIBU . 17 2 HA R A A 55,

BN RO L, S R A, JEAE AU, AR HA S AE TCP /1 UDP Z ERIASS 2 Fo

Ports
¥

Setvices live on host machines. The IP address will locate the host. But on each computer may be
many services, and a simple way is needed to distinguish between them. The method used by TCP,
UDP, SCTP and others is to use a port number. This is an unsigned integer beween 1 and 65,535 and

each service will associate itself with one or more of these port numbers.

WS (AR TABUA . TP MU G, BB ST L TR SRS TS, 7%
AT E T TIAR 5. TCP, UDP, SCTP i HA sl 6 5 7 55 MA B
R 1 B 65,535 PR BHEEL, 5 MRS LR B H— k2 1 TR

There are many "standatrd" ports. Telnet usually uses port 23 with the TCP protocol. DNS uses port
53, either with TCP or with UDP. FTP uses ports 21 and 20, one for commands, the other for data
transfer. HTTP usually uses potrt 80, but it often uses ports 8000, 8080 and 8088, all with TCP. The X

Window System often takes ports 6000-6007, both on TCP and UDP.

HiRZ “DrEE” B9 Telnet AR S5 H (8 F ¥ 15 23 A TCP #38. DNS {# ¥ 15 53
Y TCP 5, UDP #pill s FTP i Hus 1 21 F1 20 {54, 78R . HTTP 8% 4 Hug
80, {HZ i FH , 3% 7] 8000, 8080 1 8088, 141 4 TCP . X Window A% (/555] 6000-6007,

TCP 1 UDP #i¥ .

On a Unix system, the commonly used ports ate listed in the file /etc/setvices. Go has a function to

interrogate this file

1E Unix R2GH, /etc/services LA T I . Go 1B H A — 1 ERET LIZREGZ S

The network argument is a string such as "tcp" or "udp", while the service is a string such as "telnet"

ot "domain" (for DNS).

network F&— /N FA4F B A0 " tep" 5 "udp", service 2N FLFH, U1 "telnet" 5l "domain" (DNS)

A program using this is

NIRRT

}
networkType := o0s.Args[1]

service := os.Args[2]

pott, et := net.LookupPort(networkType, service)
if err 1= nil {
fmt.Printin("Error: ", ett.Error()

os.Exit(2)

fmt.Println("Setvice pott ", port)

os.Exit(0)

For example, running LookupPort tcp telnet prints Service port: 23

285 7-, 1547 LookupPort tcp telnet F]E] Service port: 23

The type TCPAddr

TCPAddr 257

The type TCPAddr is a structure containing an IP and a port:

TCPAddr AL & —A> TP FI—1> port [4544

type TCPAddr struct {
Ip 1IP

Port int

The function to create a TCPAddr is ResolveTCPAddr

PR%Y ResolveTCPAddr K4 #E—1 TCPAddr

func ResolveTCPAddt(net, addr string) (*TCPAddyt, os.Etror)

where net is one of "tcp"”, "tcp4" or "tcp6" and the addr is a string composed of a host name or IP

address, followed by the port number after a ":", such as "www.google.com:80" or '127.0.0.1:22". if
the address is an IPv6 address, which already has colons in it, then the host part must be enclosed in

square brackets, such as "[::1]:23". Another special case is often used for servers, where the host

address is zero, so that the TCP address is really just the port name, as in ":80" for an HTTP setver.

net /&"tep", "tep4" B "tep6" HHZ —, addr & DFRFE, MNP Hikk, DU EER
BEE 1S40, Bl "www.google.com:80" 1Y, '127.0.0.1:22", AN ERHbHEZE—A™ IPve Hidik,
HTEZAES, TS, LIUETRS N, flan: "[:1]:23" 5 —FekE L4 i
TGS, NI 0, KItG, TCP MbhESChr Lt @ut 128K, filln: ":80" Hsk#/R HTTP
5545 o

TCP Sockets

TCP E#7

When you know how to reach a service via its network and port IDs, what then? If you are a client
you need an API that will allow you to connect to a service and then to send messages to that service

and read replies back from the service.

HARALE AT 8L W 28 A0] ID B RIT I, SARWE? AnRURE % i, IR 2
A APL, IEEERRINGS, NFRIHEAEENZM S, MRS R

If you are a server, you need to be able to bind to a port and listen at it. When a message comes in

you need to be able to read it and write back to the client.

ETEV

WK RSsa%, IRTERERIE R — M, H T E. YAHEERE, R
BEIE I IS) o

REfS

The net. TCPConn is the Go type which allows full duplex communication between the client and the

servet. Two major methods of interest are

net. TCPConn /& LV AE R P i AR 55w 2 [2 TIE{FE) Go B8, WiFh =2 ik 2

func (c *TCPConn) Write(b [Jbyte) (n int, etr os.Error)

func (c *TCPConn) Read(b [Ibyte) (n int, etr os.Etror)

A TCPConn is used by both a client and a server to read and write messages.

TCPConn % iR 55 FIR I HIHIE . /p>

TCP client

TCP % ¥

Once a client has established a TCP address for a service, it "dials" the service. If succesful, the dial
returns a TCPConn for communication. The client and the setver exchange messages on this.
Typically a client writes a request to the server using the TCPConn, and reads a response from the
TCPConn. This continues until either (ot both) sides close the connection. A TCP connection is

established by the client using the function

—HE P AN TCP JiRS%, sl AR 7 S " @ig" 1. ansRaish, %M mE E-—4

5[TCPConno &1 ImMIAR 55 A I B ACHUH S . M THOLT, %) ¥l] TCPConn
GAWREIR ST %, F\ TCPConn HUIEEIFAR o &N, HENL— (BPE) RIMIMISC
VIZERE . 5P S PR B S TCP 1 4%,

func DialTCP(net stting, laddt, raddt *TCPAddt) (c ¥*TCPConn, etr os.Error)

whete laddr is the local address which is usually set to nil and raddt is the remote address of the
service, and the net string is one of "tcp4", "tcp6" or "tcp" depending on whether you want a TCPv4

connection, a TCPv6 connection or don't cate.

Horf laddr 2 AMIHINE, JEE L E A nil F radde @& — MRS BRI, net & — D FAF R,
RIS IR TCPv4 iEHE, TCPv6 RN E N "tepd”, "tep6" 8 "tep"HHH—>, 24
SRR] IS T EEREE

A simple example can be provided by a client to a web (HTTP) server. We will deal in substantially

more detail with HTTP clients and servers in a later chapter, but for now we will keep it simple.

—MEERAET, R E S EE R M T HTTP) RS54 ERIIET, HATRAL
HURHRRY HTTP 2 M o5 e 4057, BUERA e HRINE R

One of the possible messages that a client can send is the "HEAD" message. This queties a setver for
information about the server and a document on that server. The setver returns information, but does

not return the document itself. The request sent to query an HT'TP setver could be

Al REAEHTHEZ B2 "HEAD” JHE . XARA MRS a0 BRSO ER.]

FamiBEIREE, ANRECSEAL o KAk 4R T RE

"HEAD / HTTP/1.0\r\n\r\n"

which asks for information about the root document and the server. A typical response might be

R R IF a RS HE R — A M R) E

HTTP/1.0 200 OK

ETag; "-9985996"

Last-Modified: Thu, 25 Mar 2010 17:51:10 GMT
Content-Length: 18074

Connection: close

Date: Sat, 28 Aug 2010 00:43:48 GMT

Setver: lighttpd/1.4.23

We first give the program (GetHeadInfo.go) to establish the connection for a TCP address, send the

request string, read and print the response. Once compiled it can be invoked by e.g.

FATE S (GetHeadInfo.go) B2 7R EE N, TCP 42, AR TE R AT, SEBOEFT EINA .
kS aT AR AT,

GetHeadInfo www.google.com:80

The program is

Ry

/* GetHeadInfo
*/

package main

import (

"io/ioutil"

func main() {
if len(os.Args) I= 2 {
fmt.Fprintf(os.Stdetr, "Usage: %s host:port ", os.Args[0])
os.Exit(1)

}

service := os.Args[1]

tcpAdder, err := net.Resolve TCPAddr("tcp4", setvice)

checkError(ert)

conn, etr := net.DialTCP("tcp", nil, tcpAddr)

checkErrozr(etr)

_, et = conn.Write([[byte("HEAD / HTTP/1.0\r\n\t\n"))

checkError(ert)

//tesult, etr := readFully(conn)

result, etr := ioutil. ReadAll(conn)

checkError(ert)

fmt.Println(stting(result))

os.Exit(0)

func checkErrot(ert error) {

if err 1= nil {
fmt.Fprintf(os.Stdert, "Fatal error: %s", ert.Erroz())

os.Exit(1)

The first point to note is the almost excessive amount of ertor checking that is going on. This is
normal for networking programs: the opportunities for failure are substantially greater than for
standalone programs. Hardwatre may fail on the client, the server, or on any of the routers and
switches in the middle; communication may be blocked by a firewall; timeouts may occur due to
network load; the server may crash while the client is talking to it. The following checks are

petformed:

BN EEEN L2 RN RIEE. FOVIEFEIUT, WA RIS BT
FHLHIAR o R, ARS5 arm sl ATt AN e IR s e b, RO RTRESRING 8 AT RES
577 I B2 R W 268 S i) RE 2 HE DRI 5 5 P i AR i o5, MRS T RE S A0, T 0R:
B :

1. There may be syntax errors in the address specified

2. The attempt to connect to the remote service may fail. For example, the service requested
might not be running, or there may be no such host connected to the network

3. Although a connection has been established, writes to the service might fail if the connection
has died suddenly, or the network times out

4. Similarly, the reads might fail

L fRE Ry R REAF AR TR S iR

2. ZEPERRIERR ST P RES R Biltn, BTl RIS rIREBCA BT, B ATTRER
FEHBAT R 2%

3. BAAERCAES, WRERFAZLEARESEGRN, M

4. R, BERVEtA]RER R

Reading from the setver requites a comment. In this case, we read essentially a single response from
the server. This will be terminated by end-of-file on the connection. However, it may consist of
several TCP packets, so we need to keep reading till the end of file. The io/ioutil function ReadAll
will look after these issues and return the complete response. (Thanks to Roger Peppe on the

golang-nuts mailing list.).

(BT F2 002, AT IR 55 i3 Rt . AEXFMIE DL T, AR BT LR — AR B RS 4%
FIMRIRE , XA SO EE R ERE . B2, ERTREEIE 21 TCP #ultd, PriAFRAIFEA
Wi iz, EEISCHHI AR 1E io/ioutil 1 ReadAll FR%L% FEIXLL I, FHIR [B] 52 LMY o (&
f Roger Peppe {F golang-nuts [HFFEF1F .)o

There are some language issues involved. First, most of the functions return a dual value, with
possible error as second value. If no error occurs, then this will be nil. In C, the same behaviour is
gained by special values such as NULL, or -1, or zero being returned - if that is possible. In Java, the
same error checking is managed by throwing and catching exceptions, which can make the code look

Very messy.

AW LAEFHRE, B, KZBRBEREIMAME, B MEZ TR EIR. iR
BOATERAE, IBAERIEDN nilo ££ CHY, WIRFTERYE, [FAIFERIFT o8 E SCRRE BTN
NULL, = -1, B{ 0 3RiZ[El. fE Java /1, [FEIFERUSE DA B0 AR R E L, B2
AR A R AR AL o

In earlier versions of this program, I returned the result in the array buf, which is of type [512]byte.
Attempts to coerce this to a string failed - only byte arrays of type [[byte can be coerced. This is a bit

of a nuisance.

TEXDRE R FHRRA, FRAEIRFIZER IR buf 204, & HIZAZ[512]byte. TR A 1A
R TR B ERICT - TR Ibyte I LU Fefe . iX A IR

A Daytime setver

— I [B] (Daytime) {55 4%

About the simplest service that we can build is the daytime setvice. This is a standard Internet setvice,
defined by RFC 867, with a default port of 13, on both TCP and UDP. Unfortunately, with the
(justified) increase in paranoia over secutity, hardly any sites run a daytime server any more. Never
mind, we can build our own. (For those interested, if you install inetd on your system, you usually get

a daytime server thrown in.)

MR AR ST , FNTH] LA 2 I] (Daytime) iR 55 o 02— RERT BRI R S5, i REC 867
FE S, BROAREGT 13, PR32 TCP M1 UDP. ARSI, X2 2fmii, LT BoA Ll issT
AR (Daytime) [R5 & ALBRR, FATHTEVEZANTHCRY. S TARLEA D4HR, fRA]
DIAEVRR 2R L 0% inetd, /R H AT LA 2] — i [A) (Daytime) fR 554

A setver registets itself on a port, and listens on that port. Then it blocks on an "accept" operation,
waiting for clients to connect. When a client connects, the accept call returns, with a connection
object. The daytime service is very simple and just writes the current time to the client, closes the

connection, and resumes waiting for the next client.

TE— RS M T — N 1 o AR5 B BHIEAE— 1 "accept IR1E, FFERRE 1 ImidE 2 o
MNP, accept T IR Bl — M (connection) ¥ 5 o I [H] (Daytime) AR 55 6 B2,
FURNG M RTHT)5 B 0, CIZERE, LR N — % o

The relevant calls are

AR H]

func ListenTCP(net string, laddr *T'CPAddr) (1 ¥*TCPListener, ert os.Error)

func (1 ¥*TCPListener) Accept() (c Conn, etr os.Error)

The argument net can be set to one of the strings "tcp", "tcp4” or "tcp6". The IP address should be
set to zero if you want to listen on all network interfaces, or to the IP address of a single network

interface if you only want to listen on that interface. If the port is set to zero, then the O/S will

choose a port for you. Otherwise you can choose your own. Note that on a Unix system, you cannot
listen on a port below 1024 unless you are the system supervisor, root, and ports below 128 are
standardised by the IETF. The example program chooses port 1200 for no patticular teason. The

TCP address is given as ":1200" - all interfaces, port 1200.

net ZH00] IS 775 B "top”, "tepd" B "tep6 Y o WIRARARBEWT BT A M4, TP
HoHER DN 0, sl ERUR FUR RIS — R R 454 L, 1P Mk] LASCE N IZ I 45 ko
WA TRE N 0, O/S 2 ORUERE— o A, /RA] LUK H C /Y f 2 ERRE,
£ Unix RZE, BRAMRZRERSE, SNAAGERITITT 1024 f95s 1, /T 128 B9SmI 2 i
IETF Bl 1Z0R BIRR et 1 1200 AR ARl . TCP Huhtgnr":1200" - 4%
21, ¥l 1200,

The program is

Ry

/* DaytimeSetver
*/

package main

import (
"fmt"
"net"
"os"
"ime"

)

func main() {

service := ":1200"

tcpAdder, err := net.Resolve TCPAddr("ip4", setvice)

checkEtror(ert)

listener, etr := net.Listen' TCP("tcp", tcpAddt)

checkErrozr(etr)

for {
conn, etr := listener.Accept()
if err I= nil {

continue

daytime := time.Now().String()
conn. Write([]byte(daytime)) // don't care about return value

conn.Close() // we'te finished with this client

func checkError(ert error) {
if err 1= nil {
fmt.Fprintf(os.Stdert, "Fatal error: %s", ert.Error())

os.Exit(1)

If you run this server, it will just wait there, not doing much. When a client connects to it, it will

respond by sending the daytime string to it and then return to waiting for the next client.

WRIRBITIZMSS 4%, ERAERERRE, BAMEMF. 5D amE ez e, €

SR) Dayim) FRER , SURASESE AT — 3.

Note the changed error handling in the server as compared to a client. The server should tun forever,
so that if any error occurs with a client, the server just ignores that client and catries on. A client could

otherwise try to mess up the connection with the server, and bring it down!

L I 55 e B B RO SR AV AL B . R S5 AR R IZKIEs AT, ArEA, AR B4t iR
58, RSS2 R 5 P AR SE AT o A, 25 i AT LAZE iR A 1 IR G A R
HFHURIT A Gl

We haven't built a client. That is easy, just changing the previous client to omit the initial write.

Alternatively, just open up a telnet connection to that host:

BATEBA RS — % P IXIRMEE, HRUAR LRI Fim g e m s . 55h, H
T H— telnet JEREEIZ AL

telnet localhost 1200

This will produce output such as

i

$telnet localhost 1200

Trying ::1...
Connected to localhost.
'/\]'.

Escape charactet is

Sun Aug 29 17:25:19 EST 2010Connection closed by foreign host.

where "Sun Aug 29 17:25:19 EST 2010" is the output from the setver.

AR 452t . "Sun Aug 29 17:25:19 EST 2010",

Multi-threaded server

LRS54

"echo" is another simple IETF service. This just reads what the client types, and sends it back:

"echo" 275 — TR FRRY IETF 55 . JURSEUE M imaid, H8 H Ak B2k

While it works, there is a significant issue with this server: it is single-threaded. While a client has a
connection open to it, no other cllient can connect. Other clients are blocked, and will probably time
out. Fortunately this is easly fixed by making the client handler a go-routine. We have also moved the

connection close into the handler, as it now belongs there

TAERE, eiRSTaE IR R CRPLREN. SE M EIImEER e, AR
i o] LA Bo HA 2 Pl e PH2E , IRES IR o SEUFE FImIR A S
go-routine " J&o AV TR EALE I AR 2L AR FP 25 AR, /- BT

/* ThreadedEchoServer
Y

package main

import (
"net"
"os"
"t

)

func main() {

service := ":1201"
tcpAdder, err := net.Resolve TCPAddr("ip4", setvice)

checkEtror(ert)

listener, ert := net.Listen' TCP("tcp", tcpAddr)

checkErrozr(etr)

for {

func checkError(ert error) {
if etr 1= nil {
fmt.Fprintf(os.Stdetr, "Fatal etror: %s", etr.Error())

os.Exit(1)

Controlling TCP connections

=] TCP %8s
Timeout
N

The server may wish to timeout a client if it does not respond quickly enough i.e. does not write a
request to the server in time. This should be a long petiod (several minutes), because the user may be

taking their time. Conversely, the client may want to timeout the server (after a much shorter time).

Both do this by

i 55 i 2 T AR LSk 1 2 i, A SRAIAT T AN R, EEARTSEAT M IR 55 0 5 — 113K
RXMAZ R S RIOL A, RO PRI REAE SR 1RSIl M5z, 257 Sl REAR B2 B I AR 55 2
(P EREAY RS R o A5 AR SEBLX PR -

func (c *T'CPConn) SetTimeout(nsec int64) os.Error
before any reads or writes on the socket.
BTG

Staying alive

A client may wish to stay connected to a server even if it has nothing to send. It can use

RIEBCAAETIESE, — %) i i REA AR R B IR S5 A RS . T LA

func (c ¥*TCPConn) SetKeepAlive(keepalive bool) os.Error

There are several other connection control methods, documented in the "net" package.

AT JUA MR R RUTIE, AT LA A "net”

UDP Datagrams

UDP %15

In a connectionless protocol each message contains information about its origin and destination.
There is no "session" established using a long-lived socket. UDP clients and servers make use of
datagrams, which are individual messages containing source and destination information. There is no
state maintained by these messages, unless the client or server does so. The messages are not

guaranteed to arrive, or may artive out of order.

FE— N TCIEER I, RS TR T ERRIEA H AR E R . B0A "session "

SLAEERAF AT ERE T . UDP & mA iS5 ar (RO Bt , B b & SN H B Ay

IR BRI P i ER 55 S I AR, A5 T R AIRES A 2 PR 4 o IR LB B REPRIE— B EIA
R REPRIEAZ I 2155

The most common situation for a client is to send a message and hope that a reply artives. The most
common situation for a server would be to receive a message and then send one or more replies back

to that client. In a peet-to-peer situation, though, the server may just forward messages to other peers.

% P S i WA DA TE IR, A B R I 2R o IR STa i WA I 2] — 54 H
B, ERE SRS NEESE M e MR KIER T, RFra TR U R
e ke B HoAh o

The major difference between TCP and UDP handling for Go is how to deal with packets arriving
from possibly multiple clients, without the cushion of a TCP session to manage things. The major

calls needed are

Go NALHL TCP il UDP Z [a] iY== 22 D32 Anfiy 4b 32 4~ %5 i v BE[R] A Bl (L 20k, 3¢

A—EHE TCP iR FEFRZEHMARZE

func ResolveUDPAddr(net, addr string) (*UDPAddt, os.Error)

func DialUDP(net string, laddr, raddr *UDPAddt) (c *UDPConn, ert os.Error)
func ListenUDP(net string, laddr *UDPAddt) (c ¥*UDPConn, etr os.Error)

func (c *UDPConn) ReadFromUDP(b [|byte) (n int, addt *UDPAJdY, err os.Etror

func (c *UDPConn) WriteToUDP(b [Jbyte, addr *UDPAddy) (n int, err os.Etror)

The client for a UDP time setvice doesn't need to make many changes, just changing ...TCP... calls

to ...UDP... calls:

UDP I [RI AR 55 19 %5 S A e ZER 2 938, (UL, TCP... 7 J 4. UDP... I H:

/* UDPDaytimeClient
*/

package main

import (
"net"
"os"
"t
)

func main() {

if len(os.Args) I= 2 {
fmt.Fprintf(os.Stdetr, "Usage: %s host:port", os.Args[0])
os.Exit(1)

}

service := os.Args[1]

udpAddr, etr := net.ResolveUDPAddr("up4", setvice)

checkError(ert)

conn, ezt := net.DialUDP("udp", nil, udpAddr)

checkErrozr(etr)

_, ert = conn.Write([|byte("anything"))

checkEtror(ert)

var buf [512]byte
n, ett := conn.Read(buf[0:])

checkError(ert)

fmt.Println(string(buf[0:n]))

os.Exit(0)

func checkError(ert error) {

if err 1= nil {

fmt.Fprintf(os.Stdert, "Fatal error ", ert.Error())

os.Exit(1)

while the server has to make a few more:

55 a AR D 2 3h:

func handleClient(conn *net. UDPConn) {

var buf [512]byte

_, addt, err := conn.ReadFromUDP(buf]0:])
if err 1= nil {

return

daytime := time.Now/().String()

conn.WriteToUDP([|byte(daytime), addr)

func checkError(etr etror) {
if err 1= nil {
fmt.Fprintf(os.Stdert, "Fatal etror ", err.Error())

os.Exit(1)

Server listening on multiple sockets

M5 2N EET

A setver may be attempting to listen to multiple clients not just on one port, but on many. In this case

it has to use some sort of polling mechanism between the ports.

— ARG A Al REAS LA L M T 2, BOR B, XM ALY, B
Z TR R e AL o

In C, the select() call lets the kernel do this work. The call takes a number of file descriptors. The
process is suspended. When I/O is ready on one of these, a wakeup is done, and the process can
continue. This is cheaper than busy polling. In Go, accomplish the same by using a different
goroutine for each port. A thread will become runnable when the lower-level select() discovers that

I/0O is ready for this thread.

£ C 1, W RY X select(] LASERGX I TAE. MR 2 SCHHINEIT R 7o 1 0EEE
B - 2 1/O e i Horp—As, — P MERSE K, FF HZad RE T LIS This is cheaper than
busy polling. /£ G H1, SE/kMHFEIRYLHEE, i hEe I LA — AR goroutne. {251
H selectQIf &L, 1/O ELMERFIFIZLAE, —PEAEHIBTT.

The types Conn, PacketConn and Listener

Conn, PacketConn F{] Listener Z5%

So far we have differentiated between the API for TCP and the API for UDP, using for example
DialTCP and DialUDP returning a TCPConn and UDPConn respectively. The type Conn is an
interface and both TCPConn and UDPConn implement this interface. To a large extent you can deal

with this interface rather than the two types.

125 M IERATEZ X 5 TCP #1 UDP API [ANE], {8 4§ DialTCP F/1 DialUDP 43-j/Ji% [a]—
/I~ TCPConn {1 UDPConn., Conn 2 2—1$2[], TCPConn fll UDPConn LI T iZ 1 -

FEARKARE £, Rn] DLEI 2 VA BRI 2 X R

Instead of separate dial functions for TCP and UDP, you can use a single function

PRATEAME A — MR R R R, TS B f TCP R UDP [dial PR%L

func Dial(net, laddr, raddr string) (c Conn, etr os.Error)

The net can be any of "tcp", "tcp4" (IPv4-only), "tcp6" (IPv6-only), "udp”, "udp4" (IPv4-only),
"udp6" (IPv6-only), "ip", "ip4" (IPv4-only) and "ip6" (IPv6-only). It will return an appropriate
implementation of the Conn interface. Note that this function takes a string rather than address as

raddr argument, so that programs using this can avoid working out the address type first.

net T LU "tep”, "tepd” (IPvd-only), "tcp6" (IPv6-only), "udp”, "udp4” (IPv4-only), "udp6”
(IPv6-only), "ip", "ip4" (IPv4-only)F1"ip6" (IPv6-only)fEfi]—F, & ¥R [Al—5LEL T Conn []
HOZRA, FERINREEEZ — DT R TASE radde S50, R, {3 IRE e vl o)

HESAL,

Using this function makes minor changes to programs. For example, the eatlier program to get

HEAD information from a Web page can be re-written as

i H 3% PR AR SO R PP R G A VR o 0, T AR A1 Web TURIAREN HEAD /5 EUA]
VBT 5

/* IPGetHeadInfo
*/

package main

import (
"bytes"
"t
"io"
"net"
"os"

)

func main() {

if len(os.Azgs) I= 2 {

fmt.Fprintf(os.Stdetr, "Usage: %s host:port", os.Args[0])
os.Exit(1)

}

service := os.Args[1]

conn, etr := net.Dial("tcp", setvice)

checkErrozr(etr)

_, etr = conn.Write([[byte("HEAD / HTTP/1.0\r\n\t\n"))

checkError(ert)

result, etr := readFully(conn)

checkErrozr(etr)

fmt.Println(stting(tesult))

os.Exit(0)

func checkError(etr etror) {

if err 1= nil {

fmt.Fprintf(os.Stdert, "Fatal error: %s", ert.Error())

os.Exit(1)

func readFully(conn net.Conn) ([[byte, ettot) {

defer conn.Close()

Writing a server can be similatly simplified using the function

il FH % R) R T AR AL — IR 55 #e O 9n 5

which returns an object implementing the Listener interface. This interface has a method

R[]~ SCB Listener B[UXTG. %A — M1k

which will allow a server to be built. Using this, the multi-threaded Echo server given earlier becomes

R ARV — G ar . fEHE, WG ERTISS) 2482 Echo MR I54iM

func handleClient(conn net.Conn) {

defer conn.Close()

var buf [512]byte
for {

n, etr := conn.Read(buf]0:])

if err 1= nil {
return
}
_, ert2 := conn.Write(buf[0:n])
if err2 1= nil {
return
}

func checkError(ert error) {
if err 1= nil {
fmt.Fprintf(os.Stdert, "Fatal error: %s", ert.Erroz())

os.Exit(1)

If you want to write a UDP server, then there is an interface PacketConn and a method to return an

implementation of this:

IRARARS —> UDP k554, IXHA > PacketConn RYEZI, FI—SLBL 7 iz LR Tk

func ListenPacket(net, laddr string) (c PacketConn, etr os.Error)

This interface has primary methods ReadFrom and WriteTo to handle packet reads and writes.
IXANRE A9 5275 ReadFrom F1 WriteTo FISIAD LA (LA S A o

The Go net package recommends using these interface types rather than the concrete ones. But by
using them, you lose specific methods such as SetKeepAlive or TCPConn and SetReadBuffer of

UDPConn, unless you do a type cast. It is your choice.

Go [net FLEE U R IR AN 2 BARIY SE B AL . (B, @ en], i TR
R T73%, Hell SetKeepAlive &Y, TCPConn] UDPConn [{] SetReadBuffer, FEAE{RM—~257H

Fetftto ATIEIFAET IR

Raw sockets and the type IPConn

JRIEEHE A IPConn AU

This section covers advanced material which most programmers are unlikely to need. it deals with raw
sockets, which allow the programmer to build their own IP protocols, or use protocols other than

TCP or UDP

KA T KL ST R TR e B aw sockers, , VPR REE H E
9 TP M, B TCP 5 UDP Bt

TCP and UDP ate not the only protocols built above the IP layer. The site
http://www.iana.org/assignments/protocol-numbers lists about 140 of them (this list is often
available on Unix systems in the file /etc/protocols). TCP and UDP ate only numbets 6 and 17

respectively on this list.

TCP 1 UDP JEAEEENV AL IP E2 EME—HIHL e %k
http:/ /www.iana.org/assignments/protocol-numbers %13 _FKZH 140 KT EA 0% RAAAE
Unix R 5¢[1]/etc/protocols L4 o)o TCP FI UDP FEIX 44 5L _E43 728 6 F 17

Go allows you to build so-called raw sockets, to enable you to communicate using one of these other

protocols, or even to build your own. But it gives minimal support: it will connect hosts, and write

and read packets between the hosts. In the next chapter we will look at designing and implementing

your own protocols above TCP; this section considers the same type of problem, but at the IP layer.

Go VRN FTIBAY FUIRE R T, (AR LAGE AR LE B Hhiloi s , si RS2 IR H Y
Bt 7R ARIRER S EREETN, BAMBEBNENZ R EdR . £ N R

B, BAPE IR TR E S ET TCP Z ERTHLG 1K EB AN [RIFE R AU
T 1P =

To keep things simple, we shall use almost the simplest possible example: how to send a ping message
to a host. Ping uses the "echo" command from the ICMP protocol. This is a byte-otiented protocol,

in which the client sends a stream of bytes to another host, and the host replies. the format is:

N TR, AR) LP-me & B 1 e &ik—4 ping IHEZ LML Ping (£
"echo" T4 Y ICMP WSl o RN AP W, 2 Ak — P s — A EL, IF

FREEMRIEE . 0T

The first byte is 8, standing for the echo message

* The second byte is zeto

* The third and fourth bytes are a checksum on the entire message
* The fifth and sixth bytes are an arbitrary indentifier

* The seventh and eight bytes are an arbitrary sequence number

* The rest of the packet is user data

© BRI RN SRR AN
« BRMEATIRMEERA
© BENS/NTFIEMERNFAE
© ZBRERHRE D R BE

The following program will prepare an IP connection, send a ping request to a host and get a reply.

You may need to have root access in ordet to run it successfully.

NI PP e — 4 IP 8, Ko ping WORE AL, FHEFIEE . HATRERTE root
PUBRA REABAT o

var msg [512]byte

msg[0] =8 // echo
msg[1] =0 // code 0
msgf2] =0 // checksum, fix later
msg[3] =0 // checksum, fix later
msgf4] =0 // identifier[0]
msg[5] = 13 //identifiet[1]
msgf6] =0 // sequence[0]
msg[7] = 37 // sequence[l]

len:=8

check := checkSum(msg[0:len])
msg[2] = byte(check >> 8)

msg[3] = byte(check & 255)

_, err = conn. Write(msg[0:len])

checkError(ert)

_, err = conn.Read(msg[0:])

checkErrozr(etr)

fmt.Println("Got response")
if msg[5] == 13 {
fmt.Println("identifier matches")
}
if msg[7] == 37 {

fmt.Println("Sequence matches")

os.Exit(0)

func checkSum(msg [Jbyte) uintl6 {

sum := 0

// assume even for now
forn:= 1; n <len(msg)-1;n += 2 {
sum += int(msg[n])*256 + int(msgn+1])
}
sum = (sum >> 16) + (sum & 0xffff)
sum += (sum >> 16)
var answer uint16 = uint16("sum)

return answer

func checkError(etr etror) {
if err 1= nil {
fmt.Fprintf(os.Stdert, "Fatal error: %s", ert.Erroz())

os.Exit(1)

func readFully(conn net.Conn) ([[byte, ettot) {

defer conn.Close()

result := bytes.NewBuffer(nil)

var buf [512]byte

for {
n, etr := conn.Read(buf]0:])
result. Write(buf[0:n])
if err 1= nil {

if err == i0.EOF {

break
}
return nil, err
}
}
return result.Bytes(), nil

Conclusion

This chapter has considered programming at the IP, TCP and UDP levels. This is often necessary if

you wish to implement your own protocol, or build a client or server for an existing protocol.

AFFHH IP, TCP Hl UDP el g, RS E SRIYIL, sHBUA R PR —

PR ST dy, IXEEN A AR E

Data setialisation

BRI

Communication between a client and a service requires the exchange of data. This data may be highly
structured, but has to be serialised for transport. This chapter looks at the basics of setialisation and

then considers several techniques supported by Go APIs.

& P AR 55 Z AL B s Rl A5 o RN AT R R EESS ALY, Bl AZEAR S i M
BATRPAIE . XIS AR TR 20— 28 Go APT R BERYFFFILEIAR

Introduction

fa s

A client and server need to exchange information via messages. TCP and UDP provide the transport
mechanisms to do this. The two processes also have to have a protocol in place so that message

exchange can take place meaningfully.

B RS B BB EORACHR . TCP 55 UDP R BB BTBL], (X piFh
BB 2 BB BT B UKL AR PR 2 Lo

Messages are sent across the network as a sequence of bytes, which has no structure except for a
linear stream of bytes. We shall address the various possibilities for messages and the protocols that
define them in the next chapter. In this chapter we concentrate on a component of messages - the

data that is transferred.

FERZE L, HEBCEET T PPk &, BITRRASHMN, (OULR—BFT. AT
FE T —BINEE SUHE S MBI AR A%, FAVERSER R —
- A R R

A program will typically build complex data structures to hold the current program state. In
conversing with a remote client or service, the program will be attempting to transfer such data

structures across the network - that is, outside of the application's own address space.

R Py i — I E A B S AR IR AT HL A B AT HOIRES o AR S RE A9 8) i el R 55 A 52
B, BF IS M X R SRS AR] - AR e BT e A i hk 23 [R) 2 S 37

Programming languages use structured data such as

SR e S S RS R A

e records/structures
* variant records
* array - fixed size or varying
* string - fixed size or vatying
* tables - e.g. arrays of records
* non-linear structures such as
o circular linked list
o Dbinary tree

o objects with references to other objects

o« IUE/EEY
. AR
o B - FEER/NERTAE RN
o TR - EER/NERTAE RN
e UL BRS S Al A Ve
o JRLAREEH,
o fRIHER
o XM
o HAHMITZE| TS

None of IP, TCP or UDP packets know the meaning of any of these data types. All that they can
contain is a sequence of bytes. Thus an application has to sezzalise any data into a stream of bytes in
order to write it, and deserialise the stream of bytes back into suitable data structures on reading it.

These two operations are known as marshallingand unmarshalling respectively.

IP, TCP mi# UDP MZ4 I ARIERX BRI R 5 3L, EATVUZ 7 e SR A,
GO, N B EA) (SRR EE 7o TR, Rz, BRI
LR, I 5 B T TR A A AR A TE R BR S5, X R AR N 452
HFA s

For example, consider sending the following variable length table of two columns of variable length

strings:

075 8 AR T A PSR A B R ER A PSR R AR B A A%

fred programmer
liping |analyst

sureerat manager

This could be done by in various ways. For example, suppose that it is known that the data will be an

unknown number of rows in a two-column table. Then a marshalled form could be

AT LA 2 MO 2R SR Hen: B RIE R 2 — AR AT BRI SIS, A8 A 4mdlE

AT RE2:
3 // 3 rows, 2 columns assumed
4 fred // 4 char string,col 1

10 programmer // 10 char string,col 2

6 liping // 6 chat string, col 1
7 analyst // 7 char string, col 2
8 sureerat // 8 chat string, col 1
7 manager // 7 char string, col 2

Variable length things can alternatively have their length indicated by terminating them with an

"illegal" value, such as "\0' for strings:

AR ST LSS A R RZRSEEL LA T A R R\ 0 SR (R AR
FENIRE

3

fred\0
programmer\0
liping\0
analyst\0
sureerat\0

manager\0

Alternatively, it may be known that the data is a 3-row fixed table of two columns of strings of length

8 and 10 respectively. Then a serialisation could be

B RIE R 2 — T AT P A A SR EE D 8 5 10 (Ut RSP SRS R i RER

fred\0\0O\0\O
programmer
liping\0\O
analyst\0\0\0
sureerat

manager\0\0\0

Any of these formats is okay - but the message exchange protocol must specity which one is used, or

allow it to be determined at runtime.

XLLEA PR FIaBEATTHI - 1EETH IR LTTTE T —FP 5D, 252
JEFETTHIFHRE »

Mutual agreement

TEPMYL

The previous section gave an overview of the issue of data serialisation. In practise, the details can be
considerably more complex. For example, consider the first possibility, marshalling a table into the

stream

BT /NS EE T AR P SR T BB 2 A P)R 1 AESEPRERIE T, R B RE A 4N
TR Z 28, BN SoF T EX A A, A DX R A .

3

4 fred

10 programmer
6 liping

7 analyst

8 sureerat

7 manager

Many questions arise. For example, how many rows are possible for the table - that is, how big an
integer do we need to describe the row size? If it is 255 or less, then a single byte will do, but if it is
more, then a short, integer or long may be needed. A similar problem occurs for the length of each
string. With the characters themselves, to which character set do they belong? 7 bit ASCII? 16 bit

Unicode? The question of character sets is discussed at length in a later chapter.

VL RE R T Pl XS REAZ 7? - MIRNTEZ K EEORFRIR £
KN, QR G HAT 255 A7 D, IR A — 7ty 1, AR 28, i il RERG 22 shore,
integer B(F long KR 1o X T FAFER A LA AR R IR, X FREARERG, E1]
JE TR 55 Ge2 7 (L ASCIL? 16 ([Unicode? 543 R A [URF 2 (5o ThT Y B 77 EE T4l

o

The above serialisation is opaque ot implicit. If data is marshalled using the above format, then there
is nothing in the serialised data to say how it should be unmarshalled. The unmarshalling side has to
know exactly how the data is serialised in order to unmarshal it correctly. For example, if the number
of rows is marshalled as an eight-bit integer, but unmarshalled as a sixteen-bit integer, then an
incotrect result will occur as the receiver tries to unmarshall 3 and 4 as a sixteen-bit integer, and the

receiving program will almost certainly fail later.

LTSI IR AZ A T3 RN A Ch, IR s R gL 8 , A 2P 5L e
AR B B AR TR E N2 AT R R (F S O T IEFRYARAL, ARALRY— s 2ok
BRI RZL Ry e MUEREERAATELLL 8 A AR Ty sUma , ANLL 16 (g AUy =g
H, IR FRIERA RIS EE R . ez B 2208 3 55 4 244F 10 AREBUfRd, 1E

JR SRR P THI R 1 E 2 R

An eatly well-known serialisation method is XDR (external data representation) used by Sun's RPC,
later known as ONC (Open Network Computing). XDR is defined by RFC 1832 and it is instructive
to see how precise this specification is. Even so, XDR is inherently type-unsafe as serialised data
contains no type information. The correctness of its use in ONC is ensured primarily by compilers

generating code for both marshalling and unmarshalling,

FIHE R A2 B P 8I4E 73502 Sun 22 F]HY RPC 1) XDROMBEOREIRZE) o JERLE
ONCUT M2 I25) . XDR Hi RFC 1832 JE 3, [t — NX VBRI IEANE SURAE XY,
A, mT AR EE A ERIUERE, XDRZEREA LR ONC T
FIZR AT s AR RSN AR R B AR s Y IR R o

Go contains no explicit support for marshalling or unmarshalling opaque serialised data. The RPC

package in Go does not use XDR, but instead uses "gob" setialisation, desctibed latet in this chapter.

Go BAT M~ ARLANIE W 9 Fe S B s 1 U S Rp 60 R Y RPC A th B0A 7 XDR,
MR 13X — AT /N TR EEA 23R gob SR EATT S

Self-describing data

EEEPS
Self-describing data carries type information along with the data. For example, the previous data

might get encoded as

FAlIR R A O 25 SRR TR T 2RI IS0, T S22 A9 £ v] RER g

Of course, a real encoding would not normally be as cumbersome and verbose as in the example:
small integers would be used as type markers and the whole data would be packed in as small a byte
array as possible. (XML provides a counter-example, though.). However, the principle is that the
marshaller will generate such type information in the serialised data. The unmarshaller will know the

type-generation rules and will be able to use this to reconstruct the correct data structure.

9K, LR RS SR AR /N R RER TR ALRR D, HF H B Bt
JEHF TSR /N (XML Z DRl o RN g s = A7 7L s B 6
SRMEE . AR R TR, I A R B A A B 45 o

ASN.1

WRBERRE

Abstract Syntax Notation One (ASN.1) was originally designed in 1984 for the telecommunications
industry. ASN.1 is a complex standard, and a subset of it is supported by Go in the package "asn1". It
builds self-describing serialised data from complex data structures. Its primary use in current
networking systems is as the encoding for X.509 certificates which are heavily used in authentication

systems. The support in Go is based on what is needed to read and write X.509 certificates.

TGIEERIRTE /N ASN DRI EE 1984 4, R D NRMGETLIHE R, Go
FFRIERD asnl SEIL T B — 76, R LS A EdRESAG 7 5 il A fiR i EdiE . 75
LRI R, B EZEHTXERGH S E R X509 HEBRY4miT. Go X ASN.1
F S B X509 IR F.

Two functions allow us to marshal and unmarshal data

PATR P4~ e U] DAXS RO Gt R4

func Marshal(val interface{}) ([Ibyte, os.Etror)

func Unmarshal(val interface{}, b [|byte) (rest [|byte, ert os.Etror)

The first marshals a data value into a serialised byte array, and the second unmarshals it. However, the
first argument of type interface deserves further examination. Given a variable of a type, we can
marshal it by just passing its value. To unmarshal it, we need a variable of a named type that will
match the serialised data. The precise details of this are discussed later. But we also need to make sure
that the variable is allocated to memory for that type, so that there is actually existing memory for the

unmarshalling to write values into.

B — R E AR AT AU T84, e — R LR, 205 interface RIS
HOHTHEZ R . ddily, TNTAFHELEE DR EREN, M, W
SR SIS R I RCR T E R R, A PR SR T R IR YA o BR T
AHERBN AL TS, FANE 7 EARIEAS N BN 7 A i, LAMER AR Eds
REA PR S AL

We illustrate with an almost trivial example, of marshalling and unmarshalling an integer. We can pass
an integer value to Marshal to return a byte array, and unmarshal the array into an integer variable as

in this program:

TP —AREE D AR/ Mo AR 7o AR — A RERUL 82, Marshal 13
B —DFIEEA, RSO B R L

/* ASN.1

*/

package main

import (
"encoding/asn1"
" fmt"

"os"

func main() {
mdata, etr := asnl.Marshal(13)

checkEtror(ert)

var n int
_, etrl := asnl.Unmarshal(mdata, &n)

checkEtrror(err1)

fmt.Println(" After marshal/unmarshal: ", n)

func checkErrot(ert error) {
if err 1= nil {
fmt.Fprintf(os.Stdert, "Fatal error: %s", ert.Error())

os.Exit(1)

The unmatrshalled value, is of course, 13.

IR, B ERE, 213

Once we move beyond this, things get harder. In order to manage more complex data types, we have
to look more closely at the data structures supported by ASN.1, and how ASN.1 support is done in

Go.

—HINTHGE TIXA N, TR E A O T B R IRRO B, AR
RARY TR ASN SCRPRGEARZRTY, LLR Go B 524 ASN.T fYo

Any serialisation method will be able to handle certain data types and not handle some others. So in

order to determine the suitability of any serialisation such as ASN.1, you have to look at the possible

data types suppotted versus those you wish to use in yout application. The following ASN.1 types ate

taken from http://www.obj-sys.com/asn1tutorial/node4.html

AT FEFIAL T 5 A REAL FEAE LER SR, 0 HoAt Y B 2R R TCRE N T o IR 1P A4
L ASN.T S8 SIETT S Al AT, VRS ZAERE Jy Hh i FH O B RS B T TSR O 2
PERRUSN LR, IADE ASN SCRFHVEERRAL, BITPRET

http:/ /www.obj-sys.com/asn1tutorial/node4.html

The simple types are

AT

* BOOLEAN: two-state variable values

* INTEGER: Model integer variable values

* BIT STRING: Model binaty data of arbitrary length

* OCTET STRING: Model binary data whose length is a multiple of eight
* NULL: Indicate effective absence of a sequence element

* OBJECT IDENTIFIER: Name information objects

* REAL: Model real variable values

» ENUMERATED: Model values of variables with at least three states

* CHARACTER STRING: Models values that are strings of characters fro

« BOOLEAN: WiZvasGHHE

« INTEGER: FAFBRIASR(E

* BITSTRING: FAMEERERY kL

* OCTSTRING: FALKJER 8 HUMEEH) ol %

« NULL: 55— A ARSI 51

« OBJECT IDENTIFIER: fiy44{5 EX%

« REAL: FRAE—> real L HIH

* ENUMERATED: FAE—Z2/0H =S FHE

e CHARACTER STRING: FEAF—ANF/5 HAH

Character strings can be from certain character sets

TR LR B THIER 7474

¢ NumericString: 0,1,2,3,4,5,6,7,8,9, and space

* PrintableString: Upper and lower case letters, digits, space, apostrophe, left/right parenthesis,
plus sign, comma, hyphen, full stop, solidus, colon, equal sign, question mark

* TeletexString (T61String): The Teletex character set in CCITT's T61, space, and delete

* VideotexString: The Videotex character set in CCITT's T.100 and T.101, space, and delete

* VisibleString (ISO6406String): Printing character sets of international ASCII, and space

* [A5String: International Alphabet 5 (International ASCIT)

* GraphicString 25 All registered G sets, and space GraphicString

« NumericString: 0,1,2,3,4,5,6,7,8,9, 5%5f&(space)

* PrintableString: K /NEFFEE, B, B, AT, £ A/NMES, IS, BT,
TR, A, Rk, B9, &5, 15

e TeletexString(T61String): CCITT [Teletex FRFEEHIY T61, ZSA%FIMIL delete)

« VideotexString:CCITT 1] Videotex FAFEEHY T.100 15 T.101, Z5k&FI KR (delete)

« VisibleString (ISO646String):[H i ASCIL T FIZAF 254

e TA5String:[H [7 5(1H bR ASCII)

* GraphicString FITA MY G SEFIZ#S

And finally, there are the structured types:

IRy AL AT

* SEQUENCE: Models an ordered collection of vatiables of different type

* SEQUENCE OF: Models an ordered collection of variables of the same type
* SET: Model an unordered collection of variables of different types

* SET OF: Model an unordered collection of variables of the same type

* CHOICE: Specify a collection of distinct types from which to choose one type

¢ SELECTION: Select a component type from a specified CHOICE type

* ANY: Enable an application to specify the type Note: ANY is a deprecated ASN.1

Structured Type. It has been replaced with X.680 Open Type.

* SEQUENCE:RAEA[RIRI A B A P R &

* SEQUENCE OF: KAEMRI AR B A PSR E

« SET: FAEARRAH IR TT R4

« SET OF:FAEM R B A G

* CHOICE:\— AR AU AL il R e B A Hhise HH — A 23

* SELECTION: M\—PMREER CHOICE Rl — N

© ANYJEHNHEHRE SRRV . FERANY Z— 7 ASNLT gAY B

x.680 fJ Open Type frAL

Not all of these are supported by Go. Not all possible values are supported by Go. The rules as given

in the Go "asn1" package documentation are

AFEUL LRI, ATRERYMEHRIE Go SZHF, 1E Go "asn 1B 3CRG & SCRYRMUNIAN T

* An ASN.1 INTEGER can be written to an int ot int64. If the encoded value does not fit in
the Go type, Unmarshal returns a parse etror.

* An ASN.1 BIT STRING can be written to a BitString,

* An ASN.1 OCTET STRING can be written to a [|byte.

* An ASN.1 OBJECT IDENTIFIER can be written to an Objectldentifier.

* An ASN.1 ENUMERATED can be written to an Enumerated.

* An ASN.1 UTCTIME ot GENERALIZEDTIME can be wtitten to a *time.Time.

* An ASN.1 PrintableString or IA5String can be written to a string.

* Any of the above ASN.1 values can be written to an interface{}. The value stored in the
interface has the corresponding Go type. For integers, that type is int64.

* An ASN.1 SEQUENCE OF x or SET OF x can be written to a slice if an x can be written
to the slice's element type.

* An ASN.1 SEQUENCE or SET can be written to a struct if each of the elements in the

sequence can be written to the corresponding element in the struct.

« ASN.IINTEGER H LB A int B into4 1. WIERBIRLHIES Go FAUAIL
ficl, Unmarshal 4452 [8]— M4 £ 152

« ASN.1 BIT STRING 1] LA# 5 A BitString H1.

+ ASN.1 OCT STRING FJ LA 5 A[Jbyte .

ASN.1 OBJECT IDENTIFIER 1] LA# 5 A Objectldentifier H.

ASN.1 ENUMERATED FJLL¥5 A Enumerated H.

« ASN.1 UTCTIME 5% GENERALIZEDTIME FJ L35 A\ *time. Time 1.

ASN.1 PrintableString B IA5String A LAHE 5 string H.

o DUERYEAT ASNA SERIEE#TAT DMEAXS R Go KAIFES A interface {} 1o HAN
BB interface {} TR, EXT WV HIRILE int64.

o IR < ATDARCS IR RAIG N, R4 ASN R x MR T A s AR
BT LS HOX A SRR slice HEAT o

o MRENHFHIEE RS TP A TCRE] IS A B B 2 TR
Hr, B2 ASN.T SEQUENCE B3 SET #itn] LA A ZX 254

Go places real restrictions on ASN.1. For example, ASN.1 allows integers of any size, while the Go
implementation will only allow upto signed 64-bit integers. On the other hand, Go distinguishes
between signed and unsigned types, while ASN.1 doesn't. So for example, transmitting a value of

uint64 may fail if it is too large for int64,

Go FESZIL_L,A ASNU RAN T —26295 . flin ASNL1 AT A/ NS I GO H Anif
KA 64 MATRFSHEEREFORNBIE. S — T, Go X A5 R 5 TEAF 5 2, T A ASN.1

WA 350 A 8 — KT int64 o KHRESRRAY uine64 FIMHE, T ATREZ R

In a similar vein, ASN.1 allows several different character sets. Go only supports PrintableString and
IA5String (ASCII). ASN.1 does not support Unicode characters (which require the BMPString ASN.1
extension). The basic Unicode character set of Go is not supported, and if an application requites
transport of Unicode characters, then an encoding such as UTF-7 will be needed. Such encodings are

discussed in a later chapter on character sets.

3, ASN. RF AR 1 FAFEE T Go HH PrintableString {1 TA5String(ASCII). ASN.1
A37H Unicode S (%% BMPString ASN.1 7 J&), 7 Go thfEEA Unicode /A E T HIA
S, A TR Unicode 4, IRTAEATTEE(L UTE-7 (415, 45554014
PR AEJG B FRFRAAR A TR 1E

We have seen that a value such as an integer can be easily marshalled and unmarshalled. Other basic
types such as booleans and reals can be similarly dealt with. Strings which are composed entirely of
ASCII characters can be marshalled and unmarshalled. However, if the string is, for example, "hello
\uOObc" which contains the non-ASCII character 'V4' then an error will occur: "ASN.1 structure etrror:
PrintableString contains invalid character". This code works, as long as the string is only composed of

printable characters:

wMears|, BRURERESWMR Bdl. LR boolean 5 real SRR AL EEF 24
£l i ASCIL PR A FF AR Zh o (HHALEE "hello \u0Obc" XA VX4~
ASCILFAFFAF M B R: “ASNL Z5#5451% PrintableString (L& ARILEFAF” o

AN BAASAAE AL B F AT 4T EISE4F (printable characters) A4l F43F B I, TAE R 47

s := "hello"

mdata, _ := asn1.Marshal(s)

var newstr string

asnl.Unmarshal(mdata, &newstr)

ASN.1 also includes some "useful types" not in the above list, such as UTC time. Go suppotts this
UTC time type. This means that you can pass time values in a way that is not possible for other data
values. ASN.1 does not support pointers, but Go has special code to manage pointers to time values.
The function GetLocalTime returns *time.Time. The special code marshals this, and it can be

unmarshalled into a pointer vatiable to a time.Time object. Thus this code works

ASN.TIRAL A — S8 RAE EIFIRHEL A HIE (useful types)” , HCII UTC HA]ZEHL,
GO I UTC ISR it 2 B IR AT LA —FhsAT B SERR AL AT TR (. ASNLT ANSEHE
RN Go A A I AR EN . FEUNEREL Getlocal Time 2 [Al*time. Time. asn1 fUgi4HiX
A time 254, A HIXAMUAELHE]— A time. Time XT 585 . (RS

t := time.LocalTime()

mdata, err := asnl.Marshal(t)

var newtime = new(time.Time)

_, etrl := asn1.Unmarshal(&newtime, mdata)

Both LocalTime and new handle pointers to a *time.Time, and Go looks after this special case.

LocalTime -5 new PRACHRIR[A] Y2 *time. Time R AHEE, GO H A RIS IX LIRS T FEAT A0

o

In general, you will probably want to marshal and unmarshal structures. Apart from the special case
of time, Go will happily deal with structures, but not with pointers to structures. Operations such as
new create pointers, so you have to dereference them before marshalling/unmatshalling them. Go
normally dereferences pointers for you when needed, but not in this case. These both work for a type

T:

BT time IXFRREERIGOLAL, MRPTRES M MRAHZEHRIY. BT _EIRIHE SR Time 254951, H
25 Go I RARMFALEE o LA new HUBRVES 2 QUETRER, INILAESR R0, 1R
TSI HE. W%, Go =kiw BRI EHTAESIH, (B2 TR T HARIX A
Blo XFRALT, LUFPIRT T

// using variables

vart1 T

tl =..

mdatal, _ := asn1.Marshal(t)

var newT1 T

asnl.Unmarshal(&newT1, mdatal)

/// using pointers
var t2 = new(T)
*t2 = ...

mdata2, _:= asnl.Marshal(*t2)

var newI2 = new(T)

asnl.Unmarshal(newT2, mdata2)

Any suitable mix of pointers and variables will work as well.

N

e A AR S A RELE AR TG 4

The fields of a structure must all be exportable, that is, field names must begin with an uppercase
letter. Go uses the reflect package to marshal/unmarshal structures, so it must be able to examine all

fields. This type cannot be marshalled:

SR F B AR AR, BIFBBA UK S FH k. Go WERSLRRZ i reflect
B n fRLHZER, R reflect BLAATREVT RIFTA BT B o LEan FTANXA 2B AR N RER: g
ENE

type T struct {
Field1 int

field2 int // not exportable

ASN.1 only deals with the data types. It does not consider the names of structure fields. So the
following type T1 can be marshalled/unmarshalled into type T2 as the cotresponding fields are the

same types:

ASNA FULBEURRA, IR OEHT R 4. R B R B AR AR 4 F
TG T1 AT ARG ARALE) T2 S,

type T1 struct {
F1 int
F2 string
}
type T2 struct {
FF1 int
FF2 string
}

Not only the types of each field must match, but the number must match as well. These two types

don't work:

AU 7B BLA/RICRC, 1 H o B H 25, NI SRR A RE L Y :

type T1 struct {

F1 int

type T2 struct {

F1 int

F2 string // too many fields

ASN.1 daytime client and setver

ASN.1 H¥AEWRESFFmSRE e

Now (finally) let us turn to using ASN.1 to transport data across the network.

B (Ja) AEFAMER ASNL SREEMI AL A

We can write a TCP server that delivers the current time as an ASN.1 Time type, using the techniques

of the last chapter. A server is

TR LA _E— B HASK S — K4 BT R /F) ASN.Time SRR]S AL TCP
o5 o ARS5AR 2

/* ASN1 DaytimeSetver
*/

package main

import (
"encoding/asn1"

" fmt"

net

"os"

time

which can be compiled to an executable such as ASN1DaytimeSetrver and run with no arguments. It

will wait for connections and then send the time as an ASN.1 string to the client.

G Al AR PN — AN #4 0 ASNIDaytimeServer WP HRATRESY , 1817 E ARG ELEM LI5S
H, UR3hE) SRR AR mAER, SAPERRESH YA A5/ ASN1 7
5 ERAB IR 255 3.

A client is

EORY (AN T7s

service := os.Args[1]

conn, etr := net.Dial("tcp", setvice)

checkEtror(ert)

result, etr := readFully(conn)

checkErrozr(etr)

var newtime time.Time
_, errl := asnl.Unmarshal(result, &newtime)

checkErrot(err1)

fmt.Println("After marshal/unmarshal: ", newtime.String())

os.Exit(0)

func checkError(etr etror) {

if err 1= nil {

fmt.Fprintf(os.Stdert, "Fatal error: %s", ert.Erroz())

os.Exit(1)

func readFully(conn net.Conn) ([[byte, ettot) {

defer conn.Close()

result := bytes.NewBuffer(nil)

var buf [512]byte

for {
n, etr := conn.Read(buf]0:])
result. Write(buf[0:n])
if err 1= nil {
if err == i0.EOF {

break

return nil, err

}

return result.Bytes(), nil

This connects to the service given in a form such as localhost:1200, reads the TCP packet and

decodes the ASN.1 content back into a string, which it prints.

TR THFHZAN : localhost 1200, ‘XK BSEIUY 2 TCP BLIRJEKE ASN.1 N AR I 7 1F ER I 4

i

We should note that neither of these two - the client or the server - are compatable with the
text-based clients and servers of the last chapter. This client and setver are exchanging ASN.1

encoded data values, not textual strings.

FMIN LT, O R Il 2 MR 55 de AR A AT — B AT SRR % 7 S i 55 4 o
BEHI I % 7 it S5 IR 5 A A 4 (9 2 ASNLT A BB, TR SCAH o

JSON

JSON

JSON stands for JavaScript Object Notation. It was designed to be a lighweight means of passing data
between JavaScript systems. It uses a text-based format and is sufficiently general that it has become

used as a general purpose serialisation method for many programming languages.

JSON 2 FR 2 JavaScript Object Notation, ¥ 52— FH T JavaScript REGE2 [FIfE B 5G4 5 2%
Koo B ET ORI, PN RSIEH, T AN T 2 ImPEiE 5 ok R H #Y
FPHITTIE T o

JSON serialises objects, atrays and basic values. The basic values include string, number, boolean
values and the null value. Arrays are a comma-separated list of values that can represent arrays,
vectors, lists or sequences of various programming languages. They are delimited by square brackets

"[...]". Objects ate represented by a list of "field: value" paits enclosed in cutly braces "{ ... }".

JSON PTG, BAMEAE EAEATE: T/ H, 85, M/REN NULL {H. 3
SEIE T EIN—AUER SR, ATLARRFOR SR EEE S T EEL A, SI3EEE 751 .
EATHITISRFE, RN i — LSS 5 H i " field: values" XA RIS R A LR o

For example, the table of employees given eatlier could be written as an atray of employee objects:

B BT SEEIL Y JaE SR AT AR A A B A — 1 J GO R B R

[
{Name: fred, Occupation: programmer},
{Name: liping, Occupation: analyst},
{Name: sureerat, Occupation: manager}
]

There is no special support for complex data types such as dates, no distinction between number
types, no recursive types, etc. JSON is a very simple language, but nevertheless can be quite useful. Its

text-based format makes it easy for people to use, even though it has the overheads of string handling.

JSON A7 o AN H IR A B 2 R R SRR AR SR, A X R 2 AL,
WA EIFERLE . JSON 22— M EFEHREHEA A HIES, REMET ORI E
FrHE LI 2, (HREMRIE S NI .

From the Go JSON package specification, marshalling uses the following type-dependent default

encodings:

M Go JSON BHIRIFESCHT I AT, JSON AL ARG LIS F LATF SRIUAHSC A BRI G 7 32 -

* Boolean values encode as JSON booleans.

* Floating point and integer values encode as JSON numbers.

» String values encode as JSON strings, with each invalid UTF-8 sequence replaced by the
encoding of the Unicode replacement character U+FFFD.

* Array and slice values encode as JSON arrays, except that [|byte encodes as a
base64-encoded string.

» Struct values encode as JSON objects. Each struct field becomes a member of the object. By
default the object's key name is the struct field name converted to lower case. If the struct
tield has a tag, that tag will be used as the name instead.

* Map values encode as JSON objects. The map's key type must be string; the object keys are
used directly as map keys.

* Pointer values encode as the value pointed to. (Note: this allows trees, but not graphs!). A nil
pointer encodes as the null JSON object.

* Interface values encode as the value contained in the interface. A nil interface value encodes
as the null JSON object.

* Channel, complex, and function values cannot be encoded in JSON. Attempting to encode
such a value causes Marshal to return an InvalidTypeError.

* JSON cannot represent cyclic data structures and Marshal does not handle them. Passing

cyclic structures to Marshal will result in an infinite recursion.

© A/RIEBARAG N JSON AR /R1H
o PERECTEERERIG Y JSON FIEUTHE.

TR IRALN JSON (AP 8, B AR UTE-8 [y S 2o UTES s

U+FFFD #4

4 Slice 8 4RAY M JSON %4, (H 2 [Ibyte S ImAG A base64 FAF i o

ZERIARERAD N JSON MR o Ef— AR T BIRER AL A IR GRS I A0, BRI

TEIL F XN key B4 TR W EAHIAT BEA I/ NG o ISR TBEA tag, I tag

R RIS R key BT

map {ERARIG A JSON XFR, I map [key HIZRALINJIUZ string; map Y key ELHEHY

4 4E JSON X5 (1) keyo

FEEHER IR A R B TR I (R A HAVE H B (cree), TR R VR HHILE
(graph) !) o ZEHREFBARAG 2 JSON X5

B AR JHE 1 SEBRAL S M . 252 IR A 25 JSON X5 .

REIE, SH, RECNREREMAD N JSON #E e R, Marshal #5253 8] —

A~ InvalidTypeError £5% o

JSON REEFRTRENZEIRE A . Go) Marshal BECIAKLLIRE AT, H— L5

&% 25 Marshal 142> SEHBEIEIR

A program to store JSON serialised data into a file is

K JSON Bl A7 A SCHFRG 7R BNk

/* Save]SON */

package main

"encoding/json"
L fmt"

"OS"

type Person struct {
Name Name

Email [|JEmail

type Name struct {
Family string

Personal string

type Email struct {

Kind string
Address string
}
func main() {

person := Person {
Name: Name{Family: "Newmarch", Personal: "Jan"},
Email: [[Email {Email {Kind: "home", Address: "jan@newmarch.name"},

Email {Kind: "work", Address: "j.newmarch@boxhill.edu.au"}} }

save] SON("'person.json", person)

func save]SON(fileName string, key interface{}) {
outFile, etr := 0s.Create(fileName)
checkErrozr(etr)
encodet := json.NewEncodet(outFile)

etr = encodet.Encode(key)

and to load it back into memory is

A LU R 2 BTN A A7

type Name struct {
Family string

Personal string

type Email struct {

Kind string
Address string

}

func (p Person) String() string {

s := p.Name.Personal + " " + p.Name Family
for _, v := range p.Email {

s +="\n" + v.Kind + ": " + v.Address

return s
}
func main() {
var person Person

loadJSON("person.json", &petrson)

fmt Println("Person", person.String())

func loadJSON(fileName string, key intetface{}) {
inFile, err := 0s.Open(fileName)
checkError(ert)

decodet := json.NewDecoder(inFile)

etr = decoder.Decode(key)
checkEtror(ert)

inFile.Close()

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal error ", ettr.Etroz())

os.Exit(1)

The serialised form is (formatted nicely)

BFFIIRZE R (G5T T EAa)

{"Name":{"Family":"Newmarch",
"Personal":"Jan"},
"Email":[{"Kind":"home"," Address":"jan @newmarch.name"},

{"Kind":"work"," Address":"j.newmarch@boxhill.edu.au"}

A client and setver

&P S R g5 A

A client to send a person's data and read it back ten times is

— /I person BRI K 10 TR 3

func (p Person) String() string {
s := p.Name.Personal + " " + p.Name.Family
for _, v := range p.Email {

s +="\n" + v.Kind + ": " + v.Address

}
return s
}
func main() {

person := Person {
Name: Name {Family: "Newmarch", Personal: "Jan"},
Email: [[Email{Email {Kind: "home", Address: "jan@newmarch.name"},

Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

if len(os.Args) I= 2 {
fmt.Println("Usage: ", 0s.Args[0], "host:port")
os.Exit(1)

}

service := os.Args[1]

conn, etr := net.Dial("tcp", setvice)

checkError(ert)

encodet := json.NewEncodet(conn)

decodet := json.NewDecoder(conn)

forn:=0;n < 10; n++ {
encodet.Encode(person)

var newPerson Person

and the corrsponding server is

X N F A 55

forn = 0;n < 10; n++ {
var person Person
decoder.Decode(&person)
fmt.Println(petson.String())
encoder.Encode(person)

}
conn.Close() // we're finished

func checkError(ert error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())

os.Exit(1)

The gob package

gob

Gob is a serialisation technique specific to Go. It is designed to encode Go data types specifically and
does not at present have support for or by any other languages. It supports all Go data types except
for channels, functions and interfaces. It supports integers of all types and sizes, strings and booleans,
structs, arrays and slices. At present it has some problems with circular structures such as rings, but

that will improve over time.

gob /& Go FHRFAMFFIMLEAR . B HEEMMD Go RIEREAL, HETE A CRHMiES, K&
Z IRk BSFERE interface, function, channel SMFTA I Go BUERAL. & S FHE M RALR]
TEMR/NRERRL, A S B /R, S50, SR . HETEAEALEE ing SR A
SERJTHIEAAE 2L, (HRCA H, S5 206EE

Gob encodes type information into its serialised forms. This is far more extensive than the type
information in say an X.509 serialisation, but far more efficient than the type information contained in
an XML document. Type information is only included once for each piece of data, but includes, for

example, the names of struct fields.

Go #HMUE B R E Fr AL G R D, A3)T T X LU I Y X509 FP3IAL 77 i 2
Yo T[] PSR SR TR S B AR AR PR XML SCRSAHEL, A X T o Edle, 26
RFERABE R MR, GEHRTBATOXFENIE .

This inclusion of type information makes Gob marshalling and unmarshalling fairly robust to changes

or differences between the marshaller and unmarshaller. For example, a struct

A5 KA EAH1S Gob 4% fRHEAFE L, 24 marshaler 55 unmarshaler 4S5 B8{E A LT,
HAMY SR . g, N X ahi:

struct T {
aint

b int

can be marshalled and then unmarshalled into a different struct

R DA BE A R 2N R O 2 g .

struct T {
b int

aint

whete the order of fields has changed. It can also cope with missing fields (the values are ignored) or
extra fields (the fields are left unchanged). It can cope with pointer types, so that the above struct

could be unmarshalled into

PEALAS T T B Py e il LA BRER D5 By (R 280E) =2 B (b BUSREAR
i) HITEOL. Et] DMCFRRREEEAL, Rt B A&y n] DAL 2 T T F 4542 .

struct T {
*a int

**b int

To some extent it can cope with type coercions so that an int field can be broadened into an int64,

but not with incompatable types such as int and uint.

e ERE L, En] BRHIFATRAAR, A int FBAY RFCN int64. TR TAFHRE
KA, e ine 5 uine BETTREAN T

To use Gob to marshall a data value, you first need to create an Encodet. This takes a Writer as
parameter and marshalling will be done to this write stream. The encoder has a method Encode
which marshalls the value to the stream. This method can be called multiple times on multiple pieces

of data. Type information for each data type is only wtitten once, though.

AT AER gob Gt —MEEME, B ERISAIE Encoder. B Writer (NS, JmZHIRIE
SHBRAERE AT encoder 4> Encode Ji¥k, BPTRHEMARTHIERIE. 7
LML A GRS ERN TR —FEERE, RAFEMAIHEEA—K.

You use a Decoder to unmarshall the setialised data stream. This takes a Reader and each read returns

an unmarshalled data value.

YR¥e 5 Decoder EHATRAF I EHIBIRRAIERIE. ERA— Reader B8, FIE
B I8 B — MR BB E

A program to store gob serialised data into a file is

¥ gob AL IEHIBHRAF A SRR BIREFF AN T -

Address string

func main() {
person := Person {
Name: Name {Family: "Newmarch", Personal: "Jan"},
Email: [[Email {Email {Kind: "home", Address: "jan@newmarch.name"},

Email {Kind: "work", Address: "j.newmarch@boxhill.edu.au"}} }

saveGob("person.gob", person)

func saveGob(fileName string, key interface{}) {
outFile, etr := 0s.Create(fileName)
checkErrozr(etr)
encoder := gob.NewEncoder(outFile)
etr = encodetr.Encode(key)
checkError(ert)

outFile.Close()

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal error ", ett.Etroz())

os.Exit(1)

and to load it back into memory is

Bz EFMBEAFRRIENT

s := p.Name.Personal + " " + p.Name Family
for _, v := range p.Email {

s +="\n" + v.Kind + ": " + v.Address

return s
}
func main() {
var person Person

loadGob("petson.gob", &petson)

fmt Println("Person", person.String())

func loadGob(fileName string, key interface{}) {
inFile, err := 0s.Open(fileName)
checkEtror(ert)
decoder := gob.NewDecoder(inFile)
err = decoder.Decode(key)
checkErrozr(etr)

inFile.Close()

func checkErrot(ert error) {
if etr 1= nil {
fmt.Println("Fatal error ", err.Error())

os.Exit(1)

A client and server

AN S R S5 AR BT

A client to send a person's data and read it back ten times is

— /" person ZHRKA 10 IREY %7 3

Kind string

Address string
}
func (p Person) String() string {
s := p.Name.Personal + " " + p.Name.Family
for _, v := range p.Email {
s +="\n" + v.Kind + ": " + v.Address
}
return s
}
func main() {

person := Person {
Name: Name {Family: "Newmarch", Personal: "Jan"},
Email: [[Email{Email {Kind: "home", Address: "jan@newmarch.name"},

Email{Kind: "work", Address: "j.newmarch@boxhill.edu.au"}}}

if len(os.Args) I= 2 {
fmt.Println("Usage: ", 0s.Args[0], "host:port")
os.Exit(1)

}

service := os.Args[1]

conn, etr := net.Dial("tcp", setvice)

checkError(ert)

encoder := gob.NewEncoder(conn)

decoder := gob.NewDecoder(conn)

and the corrsponding server is

Xt AR 554 -

encoder := gob.NewEncoder(conmn)

decoder := gob.NewDecoder(conn)

forn:=0;n < 10; n++ {
var person Person
decoder.Decode(&person)
fmt.Println(petson.String())
encoder.Encode(person)

}
conn.Close() // we're finished

func checkError(ert error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())

os.Exit(1)

Encoding binary data as strings

e — BRI BR AR N A B

Once upon a time, transmtting 8-bit data was problematic. It was often transmitted over noisy serial
lines and could easily become corrupted. 7-bit data on the other hand could be transmitted more
reliably because the 8th bit could be used as check digit. For example, in an "even patity" scheme, the
check digit would be set to one or zero to make an even number of 1's in a byte. This allows

detection of errors of a single bit in each byte.

LART, &% 8-bit RS RS HIEF . BEH HIEWRE K BTEREA, Bk
o BRS8N HUARALAT AR R TR, FTEA 7-bit MAERMZERFEE L. flmE

“BEEERT BT, AT AT BB LA AT LABERE 1 50, XK
AT 7T RO BRA bie A HBERISRIR.

ASCII is a 7-bit character set. A number of schemes have been developed that are more sophisticated
than simple patity checking, but which involve translating 8-bit binary data into 7-bit ASCII format.

Essentially, the 8-bit data is stretched out in some way over the 7-bit bytes.

ASCIL @&—# 7-bit Z/F5E. REE FERE BRESEAL LR, BRAR AR
8-bit —HHIBHEREL AR, 7-bit ASCII &R . AL 8-bit $HE R 7-bit FHERIZEH,

Binary data transmitted in HTTP responses and requests is often translated into an ASCII form. This
makes it easy to inspect the HT'TP messages with a simple text reader without wortying about what

strange 8-bit bytes might do to your display!

£ HTTP BiEREMEH, SRR ASCI K. XfEfFEE— MR
SCA R sEas KA YL HTTP HERAA 5, TATEEIEL 8-bit F 7&K B aLABHY FlH8 !

One common format is Base64. Go has support for many binaty-to-text formats, including base64.

— B Base64, Go L HFHE base64 FE N AL T binary-to-text #EZ,.

There are two principal functions to use for Base64 encoding and decoding;

B4R fERD Base64 IO EEL RS

func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser

func NewDecoder(enc *Encoding, r io.Reader) io.Reader

A simple program just to encode and decode a set of eight binary digits is

—ANFA LA R ARARAD 8 A — BB T AR 1

/**
* Base64

*/

package main

import (

"bytes"

"encoding/base64"

" fmt"

func main() {

eightBitData := [|byte{1, 2, 3, 4, 5, 6, 7, 8}

bb := &bytes.Buffer{}

encoder := base64.NewEncodet(base64.StdEncoding, bb)

encoder. Write(eightBitData)
encoder.Close()

fmt.Println(bb)

dbuf := make([]byte, 12)

decoder := base64.NewDecodet(base64.StdEncoding, bb)

decoder.Read(dbuf)
for _, ch := range dbuf {

fmt Print(ch)

Application-Level Protocols

A=) =riai

A client and a server exchange messages consisting of message types and message data. This requires
design of a suitable message exchange protocol. This chaptet looks at some of the issues involved in

this, and gives a complete example of a simple client-server application.

B AR S e S B AL B RANH B AU, X EATE SR S E . AR E
W P IR S5 e S EAHR A A, FRE5 H— A 5o B ST B 2) i il 55 i 58 ELR 1 o

Introduction

A client and server need to exchange information via messages. TCP and UDP provide the transport
mechanisms to do this. The two processes also need to have a protocol in place so that message
exchange can take place meaningfully. A protocol defines what type of conversation can take place
between two components of a distributed application, by specifying messages, data types, encoding

formats and so on.

BSOS fe e EEE L SR TS H . TCP M1 UDP 25 S AP R &AL o £EIX
PRI 2 il BEAT B SOR 2 E R PN A A 45 SL o PSR A 0 A A 3R FH O 7
Bz s BAH S RTHEAS R REHR S gt (5

Protocol Design

SR

There are many possibilities and issues to be decided on when designing a protocol. Some of the

issues include:

SRR, A2 RIS DU 205 R, e

Is it to be broadcast or point to point?

Broadcast must be UDP, local multicast or the mote experimental MBONE. Point to point
could be either TCP or UDP.

Is it to be stateful vs stateless?

Is it reasonable for one side to maintain state about the other side? It is often simpler to do
so, but what happens if something crashes?

Is the transport protocol reliable or unreliable?

Reliable is often slower, but then you don't have to worry so much about lost messages.
Are replies needed?

If a reply is needed, how do you handle a lost reply? Timeouts may be used.

What data format do you want?

Two common possibilities are MIME or byte encoding.

Is your communication bursty or steady stream?

Ethernet and the Internet are best at bursty traffic. Steady stream is needed for video streams
and particularly for voice. If required, how do you manage Quality of Setvice (QoS)?

Are there multiple streams with synchronisation required?

Does the data need to be synchronised with anything? e.g. video and voice.

Are you building a standalone application or a library to be used by others?

The standards of documentation required might vary.

oI USE SE i

IR] UDP, ARl 2 B AR IR H T/ (MBONE) o FgRLAT
IR TCP 875 UDP,

THERNZ AR R TR ?

TR R EALELER T N BHPIREIHE? B P REFSEEL, (H2mR
RAE S A5 SLN12%06 2 808 ?

PR AT FEAR 55 I8 AN] FE AR 552

kUL, PRETEEIRS IR, B RA T E R R R EIE L.

T e B M ?

NSRS R B R A, A0y AL ERA W [F 2 AR D2 s Rl LA E I] .

%5 B R 5 S W
B BRI MIME F7 75
© IHERUR M SRA RS R RUETERT?
Ethernet il Internet Sl F €& MEIH ST o ASUE PRI SRS H 2 FIAE US43
Tt bo MRESRAYE, VRINATPREIRAIASS B (Qos) 2
« AZHFAZRTRIG?
T 2 R R B TR 2 BN e A o
o ESZAYSE RN R IR T B T A
] RERR EALIRAHINE 74 S RIS o

Vetsion control

A

A protocol used in a client/server system will evolve over time, changing as the system expands. This
raises compatability problems: a version 2 client will make requests that a version 1 server doesn't

understand, whereas a version 2 server will send replies that a version 1 client won't understand.

BEE I AL ARG THR, 23/ M55 4 Z R P 2 T e IX AT REZ 51 ALY
AU A 2 B P A H OISR PTRERRAS 1 HOIRSS deJCTEMitT, ez th—+, WA 2 fAR
5 B B B 1 B3 S a TC A AR AT o

Each side should ideally be able to understand messages for its own version and all earlier ones. It

should be able to write replies to old style queries in old style response format.

HABEOLT, AR, #REOZBEREMC B C AT EMYE, dREM 2 IR
FHEMYE e AR 3t T [H RS B35 >R 32 [T H RS) M. o

dient v | v1 protocol }M

. vT profocof
client v1 server v2

client v2

_ v1 profocof
client v2 (= server v1

HIHRHEH

The ability to talk eatlier version formats may be lost if the protocol changes too much. In this case,
you need to be able to ensure that no copies of the earlier version still exist - and that is generally

imposible.

ERARYU A KAE, ATRERURMEOR -5 I RAS IR T o X OLT, VRt
BHIEEEANFERIIA T - HRX N L-FRARTRER]

Part of the protocol setup should involve version information.

OSSO TA A SY TN TE NS

The Web

Web #pill

The Web is a good example of a system that is messed up by different vetsions. The protocol has
been through three versions, and most servers/browsers now use the latest version. The version is

given in each request

Web PSR A~ T AN F PR oAR A AR T BURELA B 1 Web thl ELA =1
BT, EH IS5 A A e e A2 B BT R ROAS , AT B S AR TR

request version
GET / pre 1.0
GET / HTTP/1.0 HTTP 1.0

GET / HTTP/1.1 HTTP 1.1

But the content of the messages has been through a large number of versions:

(R T A X E A ROR B A E 18 i

* HTML versions 1-4 (all different), with version 5 on the hotizon;

* non-standard tags recognised by different browsers;

* non-HTML documents often require content handlers that may or may not be present - does
your browser have a handler for Flash?

* inconsistent treatment of document content (e.g. some stylesheet content will crash some
browsers)

* Different support for JavaScript (and different versions of JavaScript)

* Different runtime engines for Java

* Many pages do not conform to any HTML versions (e.g. with syntax errors)

o HTML A 14 (EASRAHAR—FE) , 364 EIGEIRAG HTMLS;

o RREMY S B SRR

o HTIML OB SO AR A BRI A AT — BRGNS FF Flash
R

o SCRYRAIOR B (B, 1SR L, A css 250

o WY JavaScript (R SHRERIE (4R JavaScript 1R AAE R RIIATA)

o R Java iB175] 4

ARG BOREST /77 HTML JARIE (Hein HTML A% U R D)

Message Format

HEBEK

In the last chapter we discussed some possibilities for representing data to be sent across the wire.

Now we look one level up, to the messages which may contain such data.

EERATE TR R LR T RERRBUE . BN T PR S EE A R

* The client and server will exchange messages with different meanings. e.g.
o Login request,
o get record request,
o login reply,
o record data reply.
* The client will prepare a request which must be understood by the server.

* The setver will prepare a reply which must be understood by the client.

o BJURAIRS S SR AN S RIS, L
o MR
o ARIBUFELILFAIY
o BREIFRIEE
o REUFLLLFIE RN L
o BURILITUR IR RER ST AR I ISR o
o JRSSARALIRIAIE REAR A S S AT R M R o

>\%\{

Commonly, the first part of the message will be a message type.

TP SN EISY VP DA (R e EISESILR

Client to server

. LOGIN name passwd

. GET cpe4001 grade

e Server to client

. LOGIN succeeded

. GRADE cpe4001 D

© FPAORGE RIS T

. LOGIN name passwd

. GET cpe4001 grade

o IRGFAHRIEIZE F P

. LOGIN succeeded

. GRADE cpe4001 D

The message types can be strings ot integers. e.g. HTTP uses integets such as 404 to mean "not
found" (although these integers are written as strings). The messages from client to server and vice

versa are disjoint: "LOGIN" from client to setver is different to "LOGIN" from setver to client.

Y R 12 B A el e, HTTP i FHEOE 404 S35 “ARBVRI” (R
XA Z U)o B umE RS 2R BRI S 4 2 % im i A —
FERY: FLIn M P sasl AR S5 “LOGINY JH BRI T IR 5528 214 5 A “LOGIN” 14

=S|

JTho

Data Format

s

There are two main format choices for messages: byte encoded or character encoded.

XFIHERU, AP EZR BRI AES IR TR id.

Byte format

FH G

In the byte format

RS

* the first part of the message is typically a byte to distinguish between message types.

* The message handler would examine this first byte to distinguish message type and then
petform a switch to select the appropriate handler for that type.

* Further bytes in the message would contain message content according to a pre-defined

format (as discussed in the previous chapter).

o THERY SR A — SRR R B R
o MR BOZAEH B Sk AR A S T ORISR S T R A X SRR
« HERTH R ROZRRESFE LA (BB IHERY) SRESTHERMAEN
The advantages are compactness and hence speed. The disadvantages are caused by the opaqueness
of the data: it may be harder to spot errors, harder to debug, require special purpose decoding
functions. There are many examples of byte-encoded formats, including major protocols such as
DNS and NFS , upto recent ones such as Skype. Of course, if your protocol is not publicly specified,

then a byte format can also make it harder for others to reverse-engineer it!

T HIGHIIC AR R 2/ N, . PR BRI AE I . 7 g AR E AL
iR, WAL EARZORE LRSS R A2 T i N e, K
S BGR M T gAY, 10 DNS I NFS Wi, @A H LR Skype #pllo 2448,
YRR A AT US55 T Gt el LALEFC A A S) TR T BARMER !

Pseudocode for a byte-format server is

T IR AR I fw B DA A

handleClient(conn) {
while (true) {
byte b = conn.readByte()
switch (b) {
case MSG_1: ...

case MSG_2: ...

Go has basic support for managing byte streams. The interface Conn has methods

Go &4t T HANEM TR TG, #1H Conn &AL

(c Conn) Read(b [[byte) (n int, err os.Error)

(c Conn) Write(b [Jbyte) (n int, etr os.Error)

and these methods ate implemented by TCPConn and UDPConn.

XA TR EAR SIS A TCPConn and UDPConn.

Character Format

TFREGmIG

In this mode, everything is sent as characters if possible. For example, an integer 234 would be sent as,
say, the three characters '2','3" and '4' instead of the one byte 234. Data that is inherently binary may
be base64 encoded to change it into a 7-bit format and then sent as ASCII characters, as discussed in

the previous chapter.

FEIX AT, rATH SRR AT RELA TR R IE A ik flin, BRI 234 SR FL
SR 20, T3 A AL IR 234 TG T HERIERRE 2 T baseo4
SMADAZ A 7-bit IURE L, SRS M ASCIL A%, sRIFRA] E—F e —Ff.

In character format,

XA i,

* A message is a sequence of one or more lines

* The start of the first line of the message is typically a word that represents the message type.
* String handling functions may be used to decode the message type and data.

* The rest of the first line and successive lines contain the data.

* Line-oriented functions and line-oriented conventions are used to manage this.

© FKHERETHERZITAR

© HERYSE AT BRI I R R
o TR B R BOCR AR AT S A SN A

© B AZJEREBMEAT 6B AR,

o FERATACRE R BT A BEALVE AR AL PRI S

Pseudocode is

ARSI~

handleClient() {
line = conn.readLine()

if (line.startsWith(...) {

} else if (line.startsWith(...) {

Character formats are easier to setup and easier to debug. For example, you can use telnet to connect
to a server on any port, and send client requests to that server. It isn't so easy the other way, but you
can use tools like tcpdump to snoop on TCP traffic and see immediately what clients are sending to

SErvers.

R DTS, WARE SR FIn, VRATLL telnet TEHZE|— BT e w1 L, SRRk
B RYIER BRI o HAMAY bl T S TCTE R 2 BT iR o AHR X T 7R, 1Rn] LA
i tepdump IXFER TR TCP 5L H., Hf HIZZLRER 1%) S Aok 25 i 55 de i A 11

S|

JBN O

There is not the same level of support in Go for managing character streams. There are significant

issues with character sets and character encodings, and we will explore these issues in a later chapter.

1E Go BT RBEEL T /A LB WA HE A SR A s A by B
B, FAPESIE T —EL] T 1eIxX LA il

If we just pretend everything is ASCII, like it was once upon a time, then character formats are quite
straightforward to deal with. The principal complication at this level is the varying status of "newline"
actross different operating systems. Unix uses the single character "\n'. Windows and others (more
correctly) use the pair "\r\n". On the internet, the pair "\r\n" is most common - Unix systems just

need to take care that they don't assume "\n'.

WERFILART—FF, ALHERARTA FAFEE ASCILAG, BB A FRATTREE B2 3 a7 F b A HE X B A4
(HRSEpR b, FRACHEE MR R A R IRIE RS EASFAL 1 BT/ o Unix
AR \n' SKRETRHAT, Windows HIHAMMI RS GXMITIAEIER) M “\n\n” K
TR AESEBRINMZ AL, (R X “\r\n” REEHITTER - B Unix REHFEER
AERERATIE A \n” Al AR XA 7 5

Simple Example

fiig BB

This example deals with a directory browsing protocol - basically a stripped down version of FTP, but
without even the file transfer part. We only consider listing a directory name, listing the contents of a
directory and changing the current directory - all on the server side, of course. This is a complete
worked example of creating all components of a client-server application. It is a simple program

which includes messages in both directions, as well as design of messaging protocol.

XA R R A SRR . - EAR ERLE AR FTP Prall, JUE% FIP
SO RSO S A28 RIX B & FUDIREAT : JRIR SRR A4 FR, BIHE SCHER A
BRSO, BRI S — SRR RAE R S A i o 12— 521
L5 P AR 55 d 1o IX R R TR 22 77 M ATHE A L, AR SR H
PR

Look at a simple non-client-server program that allows you to list files in a directory and change and
print the directory on the server. We omit copying files, as that adds to the length of the program
without really introducing important concepts. For simplicity, all filenames will be assumed to be in

7-bit ASCIL. If we just looked at a standalone application first, then the pseudo-code would be

FEITIRBI 207, BAVeR I RBHRERRY, XMRFARE WK X R, §
SRR THREELAT : s SO TP SO, AT D SO SR AE AR 55 BRI AR AERXERFRAT] 2000
IEAEFE DUFREY SO, IR S EE AT 2 B IS A B, SIS AT T2/ 28 B B e
2HB. fEEB: FrA RSO AR 7 GLRY ASCIT i 525 JEX Mz AR, BRI

% :

read line from user

while not eof do

if line == dir
list directory
else

if line == cd <dir>

change directory

else

if line == pwd
ptint directory

else

if line == quit
quit

else
complain

tead line from uset

A non-distributed application would just link the UI and file access code

— AR AT B AG UL SO AR ke ok

File
]| system
access

In a client-server situation, the client would be at the user end, talking to a server somewhere else.
Aspects of this program belong solely at the presentation end, such as getting the commands from the

user. Some are messages from the client to the server, some are solely at the server end.

FEEEAF ARG SR OO, 2 a2, SRR S de s H. XY
ML RS AR EIR , A ARIBUT F B ar 5 o XM RO EAT RO R A 5 E
o5, AHRURAEMRSS A -

Client Server

File
network server .
system
ul VO ¥
access

For a simple directory browser, assume that all directories and files are at the server end, and we are
only transferring file information from the server to the client. The client side (including presentation

aspects) will become

Xt B SO VA SR, ABGR AT AT Y SOOI SRR AR IR 55 A, BAT Tt L 2
55 de G SR B4R % e B ImA DA (B RIUE) ROz T

tead line from user

while not eof do

if line == dir
Iist directory
else

if line == cd <dir>
change directory

else

if line == pwd

print directory

else

if line == quit
quit

else
complain

read line from uset

where the italicised lines involve communication with the server.

MR TR 2T B SR an T S H R AT

Alternative presentation aspects

A GUI program would allow directory contents to be displayed as lists, for files to be selected and
actions such as change directory to be be performed on them. The client would be controlled by

actions associated with various events that take place in graphical objects. The pseudo-code might

look like

GUL Ry i MR JT i JR 7R SCHE SR N2, 33 SCHE, 2P e SO SR AR A o 5%
J A P TR XS R A 25 T S SR Bl AT SE L Eh BB DA TN T :

change dir button:
if there is a selected file
change directory

if successful

update directory label
List directory

update directory list

The functions called from the different Ul's should be the same - changing the presentation should

not change the networking code

ARG UL SEBRR I RERR R —HERY - PSSR AT B A M2 e A AR

Protocol - informal

L - #Ek
client request setrver response
dir send list of files
change dir
cd <dir> send error if failed
send ok if succeed
pwd send current directory
quit quit
Text protocol
AR

This is a simple protocol. The most complicated data structure that we need to send is an array of
strings for a directory listing. In this case we don't need the heavy duty setialisation techniques of the

last chapter. In this case we can use a simple text format.

R MR AP, £ A AR 0 2 AT B8 7 F B AR A SR R N 2. B
LA, BATIAE i)m — B PRI BB AP I EOR T, QUL —] B A SRR X
AT o

But even if we make the protocol simple, we still have to specify it in detail. We choose the following

message format:

HR2SEhR b, RIERA TSR (AUl R, AEZRTY bt/ 255 g . N6 T T Y3

* All messages are in 7-bit US-ASCII

* The messages are case-sensitive

* Hach message consists of a sequence of lines

* The first word on the first line of each message describes the message type. All other words
are message data

* All words are separated by exactly one space character

* Each line is terminated by CR-LF

© FrARYIHEANE 7 (LAY US-ASCIL f

© BT RYIHEERE R/ NG BU

o BEEHEHEE B RAITAR

© BRI IHE SRR, HAL IR AR BRI IH S
o BRI % A — R b

« BfTLL CR-LE /NS HRAT

Some of the choices made above are weaker in real-life protocols. For example

4173 P 1)< <27 F NS ROMED I G P 5 i 21 B e o

* Message types could be case-insensitive. This just requires mapping message type strings
down to lower-case before decoding

* An arbitrary amount of white space could be left between words. This just adds a little more
complication, compressing white space

* Continuation characters such as '\' can be used to break long lines over several lines. This

starts to make processing more complex

* Justa'\n' could be used as line terminatot, as well as "\t\n'. This makes recognising end of

line a bit harder

o HEFER LR IAEHUER . 3T RRIEERB TR, RO EA

TR AVINGE
© HUASHEERNZ RS HTRNZH RS HIRX SNSRI R R, X
AP R 4 =5 A7

o RN\ RXEESATRFZAE , B RE — I KR IA) F IR U LT X ETT AR,
PR E 2R T

o R \0" REEMTFAHEIZREST O EATAE, A \e\n” —HE XAELERER
FEATRE P FO 5 AR BE N B 2%

All of these variations exist in real protocols. Cumulatively, they make the string processing just mote

complex than in our case.

BT AT LA L AR AN e AE B SL A F RO IS B e i, X282 S B hRA 745 A0 R
Ry EEBATHIRXA] 12 %o

client request Server response

send list of files, one per line
send "DIR"
terminated by a blank line

change dir
send "CD <dir>" |send "ERROR" if failed

send "OK"

send "PWD" send cutrent working ditectory

Setver code

R 552 ARG

Client code

B IRAHD

func ditRequest(conn net.Conn) {

conn. Write([Jbyte(DIR + " ")

var buf [512]byte

result := bytes.NewBuffer(nil)

for {
// read till we hit a blank line

n, _ := conn.Read(buf]0:])
result. Write(buf[0:n])
length := result.Len()
contents := result.Bytes()
if string(contents[length-4:]) == "\r\n\r\n" {
fmt.Println(string(contents[0 : length-4]))

return

func cdRequest(conn net.Conn, dir string) {
conn.Write([Jbyte(CD + " " + dir))
var response [512]byte
n, _ := conn.Read(response[0:])
s := string(response[0:n])
ifs1="OK" {

fmt.Println("Failed to change dit")

func pwdRequest(conn net.Conn) {

conn. Write([Jbyte(PWD))

var response [512]byte

n, _ := conn.Read(response[0:])
s := string(response[0:n])

fmt.Println("Current dir \"" +s + "\mv)

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal error ", ett.Etroz())

os.Exit(1)

Applications often make use of state information to simplify what is going on. For example

P PR P22 DR IRASTH SR AT N T 2 =1, e

* Keeping file pointers to current file location
* Keeping current mouse position

* Keeping current customer value.

o DA ETSCHF R RO SO A TR
o DRAFEHTRY BRI EIR A
© DRAFERTHEEIRES

In a distributed system, such state information may be kept in the client, in the setver, or in both.

FE ARG, PR E AT RER R AR 0, iS5 as, tnl REPIL#RIRAF

The important point is to whether one process is keeping state information about szself or about the
other process. One process may keep as much state information about itself as it wants, without
causing any problems. If it needs to keep information about the state of the other process, then
problems arise: the process' actual knowledge of the state of the other may become incorrect. This

can be caused by loss of messages (in UDP), by failure to update, or by s/w errors.

RERN—RUE, HREEHERT HGHRE & AMAFE FIRESHE . — TR
2 HORSEE, AT EMFA . IR EMPREAPRESH R, X4 A
UEZR T H T RAT R AP FORESTH SIS PR AR A B T BB A — By« ;XA REZ S
EHERAL (FEUDPHY) « BHHIRN. B8 s/w iR,

An example is reading a file. In single process applications the file handling code runs as patt of the
application. It maintains a table of open files and the location in each of them. Each time a read or
write is done this file location is updated. In the DCE file system, the file server keeps track of a
client's open files, and where the client's file pointer is. If a message could get lost (but DCE uses
TCP) these could get out of synch. If the client crashes, the server must eventually timeout on the

client's file tables and remove them.

M AR SO o AE AN R, SO AL ERACAD 2 SRR PR — B e B 4ERF K,
RS IrATIP RSO SC R L E . O F S AR, SCPHRFH L E 2 50T
ERIRIERE (DCE) SRS, U RGRUEERE Fmd TIT 1 RS, 2 s 30
PHRETAEMR. IR —MHEFEL T (H2 DCEZMfif TCP 1) , XLRAH B A REMFr
R T o R MBLE AT T, RS S O X A 2 i A i AR o

DCE File System

client read n bytes file File table
reading | _ T name | file pitr
file n bytes server name | file pir
update
file pir

In NFS, the server does not maintain this state. The client does. Each file access from the client that
reaches the server must open the file at the appropriate point, as given by the client, to petform the

action.

FENFS U RGEH, IG5 adF BOARAFIX T IRATHE, THRA & A r . 2 imEEik
FERR 55 S HEAT O BRI A F AL R REAEMER B SCPE L ELF T SO, RSSO B B &
Sbe bRy, AITA BEREAT SR ST #RAE

NFS File System

update
file pir
read n bytes from
file at ptr file
n bytes server

File table

name | file pir
name | file ptr

If the server maintains information about the client, then it must be able to recover if the client
crashes. If information is not saved, then on each transaction the client must transfer sufficient

information for the server to function.

W R p AR g5 e R A 2 i RIS, IR 55 e b0 25 i A Tt R B EA T I8 2 o IR 55
AR R, AR A% P A R 55 2 AR ER B AE AT SR LEAR 55 a2t A TR
(e

If the connection is unreliable, then additional handling must be in place to ensure that the two do
not get out of synch. The classic example is of bank account transactions where the messages get lost.

A transaction server may need to be part of the client-server system.

ISR ATEER, IR A A G AL TR e R B R ST A R X R 2E . —MHEE
RV IRI 7 URARITI 5300 R GEe Ko RGURH T i 5 55 58 L —i a0

Application State Transition Diagram
R FPRAS Fe e

A state transition diagram keeps track of the current state of an application and the changes that move

it to new states.

—OIRAS AR BB I T 24 B R IR RIRE A Z BT AR AR T B e 5o
Example: file transfer with login:

S B R SO

LOGIN
faled

LOGIN
succeeded

LOGOUT
DIR

This can also be expressed as a table

XA AT LA — kIR

Current state | Transition Next state

login failed login
login
login succeeded |file transfer

dir file transfer

get file transfer
file transfer

logout login

quit -

Client state transition diagrams

B RS A

The client state diagram must follow the application diagram. It has more detail though: it writes and

then reads

B PR AR R B e — . ARIR B S 2T B e A s 1 T
1

Current state Write Read Next state
FAILED login
login LOGIN name password
SUCCEEDED file transfer
SUCCEEDED file transfer
CD dir
FAILED file transfer
#lines + contents [file transfer
GET filename
file transfer ERROR file transfer
#files + filenames [file transfer
DIR
ERROR file transfer
quit none quit
logout none login

Server state transition diagrams

R 55 AR SR e

The server state diagram must also follow the application diagram. It also has mote detail: it reads and

then writes

Hie 55 A RS A P R R P B — AR R L B S E 2 AT EREA 5

1RAE

Current state Read Write Next state
FAILED login
login LOGIN name password
SUCCEEDED file transfer
SUCCEEDED file transfer
CD dir
file transfer FAILED file transfer
GET filename #lines + contents [file transfer

ERROR file transfer

#files + filenames file transfer

DIR
ERROR file transfer
quit none quit
logout none login
Setver pseudocode
i 5585 Db AAG
state = login
while true
read line
switch (state)
case login:
get NAME from line

get PASSWORD from line

if NAME and PASSWORD verified
wtite SUCCEEDED
state = file_transfer

else
wtite FAILED
state = login

case file_transfer:

if line.startsWith CD
get DIR from line
if chdir DIR okay

wtite SUCCEEDED

state = file_transfer

else
wtite FAILED

state = file_transfer

We don't give the actual code for this server or client since it is pretty straightforward.

AR RIS EL G0 1, FrABRAIEAR S BRI T .

Summary

oA

nn

Building any application requires design decisions before you start writing code. For distributed
applications you have a wider range of decisions to make compared to standalone systems. This

chapter has considered some of those aspects and demonstrated what the resultant code might look

like.

A B RE P AETT U 5 B R AT SRR ST TP R — A sU RGO & — S R SE
R B I RS AR o e S % . X—EEAHEE] T —LEXrrRy R, Jf HgoR
T REACH R RERE T

Managing character sets and encodings

FREM GG

There are many languages in use throughout the world, and they use many different character sets.
There are also many ways of encoding character sets into binary formats of bytes. This chapter

considers some of the issues in this.

S FAERIESFRZ , T2 AR TR RINARE X TR AR T — Bkl
FAGiG o ATATIE LA R T I)l

Introduction

5%

Once upon a time there was EBCDIC and ASCIL... Actually, it was never that simple and has just
become more complex over time. There is light on the horizon, but some estimates are that it may be

50 years before we all live in the daylight on this!

LA] EBCDIC I ASCIL i, (BIF A MR A, (HEE MORBOA TR, fatam R
oM 2% T o (BRI A R AL GRIARD M EINIE T 180t , (HEEEIR 5L

5+ 50 4Fs

Eatly computers were developed in the english-speaking countries of the US, the UK and Australia.
As a result of this, assumptions were made about the language and character sets in use. Basically, the
Latin alphabet was used, plus numerals, punctuation characters and a few others. These were then

encoded into bytes using ASCII or EBCDIC.

FHATHENUR M SERE . S AR X S 0T 5 A R R, 45 R AL LAX
SEIE G AN TG S AR T, K b, R T8, I EECF AR s R 4 o
i 1fd F ASCII 5, EBCDIC 7 40f5 o

The character-handling mechanisms were based on this: text files and I/O consisted of a sequence of

bytes, with each byte representing a single character. String comparison could be done by matching

corresponding bytes; conversions from upper to lower case could be done by mapping individual

bytes, and so on.

FREACHALH R T IR : SCASCHERIE T A PO R AR A, 07 TRk — 1
FORR) F4F o ARF H FEBR AT LA XS PO 2 A 715 SR B, 54 B AR/ NG e ffn] LAsE i B

TR, F5.

There are about 6,000 living languages in the world (3,000 of them in Papua New Guineal). A few
languages use the "english" characters but most do not. The Romanic languages such as French have
adornments on vatious characters, so that you can write "j'ai arrété", with two differently accented
vowels. Similarly, the Germanic languages have extra characters such as '3'. Even UK English has

characters not in the standard ASCII set: the pound symbol '[' and recently the euro '€’

5 _EIAFZIAT 6000 FhiE = (JRIRAT 3000 FhAe AR IFT LN AIE) o —/INER o FH 230545,
HEE Z AR AEIESCXAE L T8 R 5 IS A FRHE MRS, FrEMERA] LU PTRA [
WEBITE RIS “Jaiaree” o R, EENAGXENTH, HEREAIGREE
AAE ASCIL SRR 74T SEBFRIOTLC LA '€)

But the world is not restricted to vatiations on the Latin alphabet. Thailand has its own alphabet, with

wotds looking like this: "aw1lne". There are many other alphabets, and Japan even has two, Hiragana

and Katagana.

HRMF ERIES AT BIRAER T, REAE A ST, BiXrE: "’ o
WA ZHTEIERGR B0, MRRAPTR, BRSO A B

There are also the hierographic languages such as Chinese where you can write " J&—F, /RiLA

iﬁn~

A G, WmBUE, RATLUXES “HE—F, /REATE" .

It would be nice from a technical viewpoint if the wotld just used ASCIL. However, the trend is in the
opposite direction, with more and more users demanding that software use the language that they are

familiar with. If you build an application that can be run in different countries then users will demand

that it uses their own language. In a distributed system, different components of the system may be

used by users expecting different languages and characters.

M TREIRDEE, 5 EIUR ASCIT —Fdmfbaltififh 1o HEPRILZM A @S, Boki
Z M NFTEIH AP B CRGERITES o WRIRIVEE o] AEAR AR E 280517, ARAR
F P R B R AT B CRTE S o A SN RS, AR RIF R ZeRi i AT fE

7 A F R ST FAE -

Internationalisation (i18n) is how you write your applications so that they can handle the variety of
languages and cultures. Localisation (110n) is the process of customising your internationalised

application to a particular cultural group.

[7 5 L1 80) AR IR R /8 2 A BRI TS 5 AU o AA 01 0n) R ARG AT E BRAL Y
7 FH 3 P s AR A o

i18n and 110n are big topics in themselves. For example, they cover issues such as colours: while white
means "purity” in Western cultures, it means "death" to the Chinese and "joy" to Egyptians. In this

chapter we just look at issues of character handling.

[FrACAA AL & B AR MRRHIRA. 280017, RTEEORIEE: BOAET T Fonal
T, EPEFORET, RGN EN . AR R RN TR

Definitions

TEX

It is important to be careful about exactly what part of a text handling system you are talking about.

Here is a set of definitions that have proven useful.

M FOHE ARG HIRAERGA R N AT, o B2 THUEA A — BT 2 AR E X
Jrike

Character

TIE

A character is a "unit of information that roughly cortesponds to a grapheme (written symbol) of a
natural language, such as a letter, numeral, or punctuation mark" (Wikipedia). A character is "the
smallest component of written language that has a semantic value" (Unicode). This includes letters
such as 'a' and 'A" (or letters in any other language), digits such as '2', punctuation characters such as ',

and various symbols such as the English pound curtency symbol '[.

FrRe " BAEE PR SR G RN, b B, bRl " (EEERD , FF
e AMER NS HAL (Unicode) SXALEAE T a fl A, sUHABIE S 74F, BT 2

FIARAL, ARSI 74T o

A character is some sort of abstraction of any actual symbol: the character 'a' is to any written 'a' as a
Platonic circle is to any actual circle. The concept of character also includes control characters, which
do not correspond to natural language symbols but to other bits of information used to process texts

of the language.

TSR LR BOIRA S, RS2 R T I TS0 o, A URHHE F R i
KR U TR ERRRITAE, CARSRR P R T AP & R U .

A character does not have any particular appearance, although we use the appearance to help
recognise the character. However, even the appearance may have to be undetstood in a context: in
mathematics, if you see the symbol n (pi) it is the character for the ratio of citcumference to radius of
a circle, while if you are reading Greek text, it is the sixteenth letter of the alphabet: "npoc" is the

greek word for "with" and has nothing to do with 3.14159...

FRRGHABARERAR, ARFATELEVRIRAE . Rt FA iR R
AREEM: Beah, WRARE R « DX P, BFRORNEREE, (HR2URIKSAEL, B

AR 16 DM FRE; "reoo BAMEIRITE “with” |, JX 314159 BAF R R

Character repertoire/character set

TFRERMTRE

A character repertoire is a set of distinct characters, such as the Latin alphabet. No particular ordering
is assumed. In English, although we say that 'a' is eatlier in the alphabet than "z', we wouldn't say that
'a' is less than "z'. The "phone book" ordeting which puts "McPhee" before "MacRea" shows that

"alphabetic ordering" isn't critical to the characters.

TR AR EME— R FIRHES, AT 78, AREREMy. £+,]
BN 2 ZAE 2 AT, BT a b 2z 20 AIRICRARHET 73 UE, McPhee £
MacRea I HTTH UL T 5 BEEFF A2 4 BT TR DU o

A repertoire specifies the names of the characters and often a sample of how the characters might
look. e.g the letter 'a' might look like 'a', ' or 'a’. But it doesn't force them to look like that - they are
just samples. The repertoire may make distinctions such as upper and lower case, so that'a’ and 'A" are
different. But it may regard them as the same, just with different sample appearances. (Just like some
programming languages treat uppet and lower as different - e.g. Go - but some don't e.g. Basic.). On
the other hand, a repertoire might contain different characters with the same sample appearance: the

repertoire for a Greek mathematician would have two different characters with appearance n. This is

also called a noncoded character set.

FRERRME TAM TS, I, a fJRES i a2 5 a, (HIXAZHEHINT, A2
Ao FRHRAMREX D ANG, FrLha fl A BAFER . EAMIEETRER—HH, #E
R (CARBIEEESHHEANG, ARRNEHEUK, I GoiEs, AREE
—HERY, HOn Basico) o F3 U5, FREARGEH RECIE KA HHMERSORFER : AR
ECARF SR AP AR, H paio AT A S TCTA MRS I A5 ER o

2

Character code

FRGmIG

A character code is a mapping from characters to integers. The mapping for a character set is also
called a coded character set or code set. The value of each character in this mapping is often called a

code point. ASCII is a code set. The codepoint for 'a' is 97 and for 'A' is 65 (decimal).

FRF A T BRI o — D FAFER ARSI AR N — D b FAF SR A B X
Pl S o A AT A (LA B PR — 4D (code point)e ASCIL 2 — M FAFER, 'a'fId

M2 97, '"AYE 65 (Hithl) o

The chatacter code is still an abstraction. It isn't yet what we will see in text files, or in TCP packets.
However, it is getting close. as it supplies the mapping from human oriented concepts into numerical

ones.

TR — MRS . EANRIRANTA LR BRSO EE TCP j9E. A, #
RABESIRAR, ERE—MIE SR SRR &R B RO 5 5

Character encoding

FRGmIG

To communicate or store a character you need to encode it in some way. To transmit a string, you

need to encode all characters in the string, There are many possible encodings for any code set.

FRHISCHE (fF5) AR LR 77 il o ERIE—DFRFER, IRTEG AT R Y
FrA SRt T4mis . T AFEER AR Z ZRIG T 5

For example, 7-bit ASCII code points can be encoded as themselves into 8-bit bytes (an octet). So
ASCII'A' (with codepoint 65) is encoded as the 8-bit octet 01000001. Howevert, a different encoding
would be to use the top bit for parity checking e.g. with odd parity ASCII'A" would be the octet
11000001. Some protocols such as Sun's XDR use 32-bit wotd-length encoding. ASCIL'A' would be

encoded as 00000000 00000000 0000000 01000001.

B, 7 KL ASCIL it i LAEEHR)K, 8 (277 (8 HEfl) o FrLL, ASCILHY'A" (A 65)
R AR 8 BEIFY 010000010 ANid, 75— PN E A 4t 7 O s sl A s, ansr i
B, AR ASCIL 4l “A” CREZIXAS 8 BEHIL 11000001, IBA—LEHL, A Sun
[XDR, {E] 32 (L7 Al ASCIT Zfid. FirLA, "AUREHE4mAD A 00000000

00000000000000001000001 o

The character encoding is where we function at the programming level. Our programs deal with
encoded characters. It obviously makes a difference whether we are dealing with 8-bit characters with

or without parity checking, or with 32-bit characters.

TR AERE P R R R o MR Fr AL BRAR AL) A I, R A i ar i de A 22
8 (LT RFak 32 h T AF, WANATRKRIZA .

The encoding extends to strings of characters. A word-length even patity encoding of "ABC" might
be 10000000 (parity bit in high byte) 0100000011 (C) 01000010 (B) 01000001 (A in low byte). The
comments about the importance of an encoding apply equally strongly to strings, where the rules may

be different.

SRR RS . — A RN “ABCT 41N 10000000 (£1{r2F
R 0100000011 (C) 01000010 (B) 01000001 (A FEAFAL) o R THFETAFHi_ LA
AR, BRI AR,

Transport encoding

IRl)

A character encoding will suffice for handling characters within a single application. However, once
you start sending text berween applications, then there is the further issue of how the bytes, shorts or
words are put on the wire. An encoding can be based on space-and hence bandwidth-saving
techniques such as zip'ping the text. Or it could be reduced to a 7-bit format to allow a parity

checking bit, such as base64.

AR FRR 7 B 55 i L BN R REAC B P A ER LR G T o SRIM, — ELURTS ZEAEA [by IR
W ZBEE., A E AT AT R R B BE R 1 A TR FRIE AR
TR PREAMRZ Z TR (Frrgisl) , TR EAE AN zip BIEX SCREAT RS, MM
TAEWIE. B, R LUEAE] 7 A7, AEARR AL, [base6d ARl

If we do know the character and transport encoding, then it is a matter of programming to manage

characters and strings. 1f we don't know the character or transport encoding then it is a matter of

guesswork as to what to do with any particular string. There is no convention for files to signal the

character encoding,

USRI TRIE R TR m A LA dm i, A2 AR 1 A0y 8 R AL PR R R 777 £ 5
RBNTARGE TR HtB AL i dntD , 020058 2R E 74 B B A 7 a2 K Al
RUABEA 2 5E K08 3L A Sy

There is however a convention for signalling encoding in text transmitted across the internet. It is
simple: the header of a text message contains information about the encoding. For example, an HTTP

header can contain lines such as

Tt AEEIO_ LA SR BRI AT 202 o AR SO S8 B 2 R S B
HTTP H Sk AT LM £ 4 LT,

Content-Type: text/html; charset=ISO-8859-4

Content-Encoding: gzip

which says that the character set is ISO 8859-4 (corresponding to certain countries in Europe) with
the default encoding, but then gziped. The second part - content encoding - is what we are referring

to as "transfer encoding" (IETF RFC 2130).

EHURUE, A FRFERIE 18O 8859-4 (R MR FELEFE 20) VA BRINGRS, A5 geip
FE4i. WARTINE it 202 “femants” (IETF RFC2130) .

But how do you read this information? Isn't it encoded? Don't we have a chicken and egg situation?
Well, no. The convention is that such information is given in ASCII (to be precise, US ASCII) so that

a program can read the headers and then adjust its encoding for the rest of the document.

(R, B AR MEER? TRAAIT? KRR RS BT 42 1, R
B). HCHRIED), SXRERES B ASCIT RS (HEBIMIBG, 250 ASCIT) , FFLARLFF AT LA
headers, $RJF B EL 4 E A S HIATD

ASCII

ASCII ZwA5%

ASCII has the repertoire of the English characters plus digits, punctuation and some control

characters. The code points for ASCII are given by the familiar table

ASCIL PP S RYRSCFAF BT, ARRAF SR 7. TR SRR
7 ASCIT “F Rt {E

Oct Dec Hex Char Oct Dec Hex Char
000 O 00 NUL '\0' 100 64 40 @

001 1 01 SOH 101 65 41 A
002 2 02 STX 102 66 42 B

003 3 03 ETX 103 67 43 C

004 4 04 EOT 104 68 44 D
005 5 05 ENQ 105 69 45 E

006 6 06 ACK 106 70 46 F

The most common encoding for ASCII uses the code points as 7-bit bytes, so that the encoding of

'A' for example is 65.

i WY ASCIL 4l] 7 (277, FrbA A RS2 65,

This set is actually US ASCII Due to European desires for accented characters, some punctuation
characters are omitted to form a minimal set, ISO 646, while there are "national variants" with

suitable European characters. The page http://www.cs.tut.fi/ ~jkorpela/chars.html by Jukka Korpela

has more information for those interested. We shall not need these variants though.

XN FRFEE R PR FELE ASCIL, YT RN TR BT & 45, TR — LR i 4F, B
M/ NI FRFEE, 18O 646, [EINAGIEINBINARE F/FR “ERLFFERE" « A%
WA LUE A Jukka Korpel HYIX MM T http://www.cs.tut.fi/ ~jkorpela/ chars.html, 48RFEAT]

FHATEX LA

ISO 8859

ISO 8859 F1/F4EE

Octets are now the standard size for bytes. This allows 128 extra code points for extensions to ASCIL.
A number of different code sets to capture the repertoires of various subsets of European languages
are the ISO 8859 series. ISO 8859-1 is also known as Latin-1 and covers many languages in western
Europe, while others in this seties covet the test of Europe and even Hebrew, Arabic and Thai. For
example, ISO 8859-5 includes the Cyrillic characters of countries such as Russia, while ISO 8859-8

includes the Hebrew alphabet.

8 PR T BUPRERC L o XA ASCIT T LAAT 128 IS SAG. 15O 8859 A F4F
EN LA SN EIRIE S T8, o 18O 8859-1 HBFRH Latin-1, 3% T2 7EPIRE
FIES , A X — R A A L R W HA FE 5%, LR A ARIE, BT AE4R G
B, 18O 8859-5 CUFHAH T H R IBFAFHY D 74, T 1SO 8859-8 MG 7 12K 3L -8

The standard encoding for these character sets is to use their code point as an 8-bit value. For

example, the character 'A" in ISO 8859-1 has the code point 193 and is encoded as 193. All of the ISO

8859 series have the bottom 128 values identical to ASCII, so that the ASCII characters are the same

in all of these sets.

TXLEFRFEEAE T 8 BEHIAE bR R s = o 120, 7R 1SO 8859-1 FAF A FAF i A 193,
FIR et 1930 B9 18O 8859 ZR AT 128 MRHFAT ASCIT AHFIAYME, firlA, ASCIT
FEAEFT A XL A R AY o

The HTML specifications used to recommend the ISO 8859-1 character set. HTML 3.2 was the last
one to do so, and after that HTML 4.0 recommended Unicode. In 2010 Google made an estimate
that of the pages it sees, about 20% were still in ISO 8859 format while 20% were still in ASCII
("Unicode nearing 50% of the web"

http://googleblog.blogspot.com/2010/01 /unicode-nearing-50-of-web.html).

HTML 155 W5 S 2 HEFE 1SO 8859-1 F4FE5E, At HTML3.2 2 J5 B RITE AR, 4.0 JF
BHELE Unicode Zifidho 2010 4F Google i & IV A DU T —AME L, 20% 9 R 51
I1SO 8859 4ifith, 20%f{ii [l ASCIT (unicode FEUT 50%,

http://googleblog.blogspot.com/2010/01/unicode-nearing-50-of-web.html)

Unicode

Unicode 4@fg

Neither ASCII nor ISO 8859 cover the languages based on hieroglyphs. Chinese is estimated to have
about 20,000 separate characters, with about 5,000 in common use. These need more than a byte, and
typically two bytes has been used. There have been many of these two-byte character sets: Big5,
EUC-TW, GB2312 and GBK/GBX for Chinese, JIS X 0208 for Japanese, and so on. These

encodings ate generally not mutually compatable.

ASCII H1 18O 8859 #ANRER S R IV 370 HHIURZYA 20000 DALY F4F, HH 5000 >
FHFRF o IR FRFTEAR— DN, AR ENFETESHH L A2 FAT 40 :
HICRY Bigs, EUC-TW, GB2312 il GBK/GBX, HCHJ JIS X 0208, ZEZE, X LEq it i 2

R

Unicode is an embracing standard character set intended to cover all major character sets in use. It
includes European, Asian, Indian and many more. It is now up to version 5.2 and has over 107,000
characters. The numbet of code points now exceeds 65,5306, that is. mote than 2°16. This has

implications for character encodings.

Unincode J& 32 21PN A ERGmtU R ifE , RS0 LR AR AT . E 88 1 I
WS RIS 745 o BUAE Unicode EAE] T 5.2 HYMUAS, 15 107,0000 5450 Fifid s

FEHIT 65536, AR 2760 XOEE T TR i,

The first 256 code points correspond to ISO 8859-1, with US ASCII as the first 128. There is thus a
backward compatability with these major character sets, as the code points for ISO 8859-1 and ASCIIL
are exactly the same in Unicode. The same is not true for other character sets: for example, while
most of the Big5 characters are also in Unicode, the code points are not the same. The page
http://moztw.org/docs/big5/table/unicodel.1-obsolete.txt contains one example of a (large) table

mapping from Big5 to Unicode.

(Unicode ZRiB) R 256 P RALAT . I1SO 8859-1, [A] I AT 128 > 22 ASCIT 4t frLLEdR
F) G S A ELHRA Y, 18O 8859-1. ASCII 1 Unicode f&— o X HAFAFEENIA—E
B Biltn, EIA Bigd Ffid At Unicode H, (HABMTAY4mbEH: AR o

http:/ /moztw.org/docs/big5/ table/unicodel.1-obsolete.txt 1% T HLZUFR] 1 —7K Big5 %

Unicode [MLi 3

To represent Unicode characters in a computer system, an encoding must be used. The encoding
UCS is a two-byte encoding using the code point values of the Unicode characters. However, since
there are now too many characters in Unicode to fit them all into 2 bytes, this encoding is obsolete

and no longer used. Instead there are:

AT AEN SN RGP Unicode T4, WA —AMT5 77 5. UCS BB 7-1K
YRR S8T, Unicode BUAEATK 200 AR BEA B BT T 5T, LIT 7%
AR FORBR AR 7 R

» UTF-32is a 4-byte encoding, but is not commonly used, and HTML 5 watns explicitly
against using it

* UTF-16 encodes the most common characters into 2 bytes with a further 2 bytes for the
"overflow", with ASCII and ISO 8859-1 having the usual values

* UTF-8 uses between 1 and 4 bytes per character, with ASCII having the usual values (but
not ISO 8859-1)

e UTF-7 is used sometimes, but is not common

o UTE-32 {fiff 4 MEHIY, (RN, HIMLS B3 8% 5 57 6
o UTF-16 /25 WY, Bl H w77 AR ASCIL A1 ISO 8859-1 A F 4%
o UTF-8 &NF4FE A 1 2] 4 575, FTLA ASCIL{EAAS, {H ISO 8859-1 [RAHZAE L

o UTF-7 GHfZHE], EAF

UTF-8, Go and runes

UTF-8, Go 5= M runes

UTF-8 is the most commonly used encoding. Google estimates that 50% of the pages that it sees are
encoded in UTF-8. The ASCII set has the same encoding values in UTF-8, so a UTF-8 reader can

read text consisting of just ASCII characters as well as text from the full Unicode set.

UTF - 8 2 i RS A HHEIIIREI I DU 50% (] UTE-8 Zfid. ASCIL FAFEER
AHHFIRAE UTE-8 fatd(EHE , FrLL UTE-8 fYBEEUT % AT LA Unicode “FRFEEISEIL—1

ASCIT “FAF2H i W BT o

Go uses UTF-8 encoded characters in its strings. Each character is of type rune. This is a alias for
int32 as a Unicode character can be 1, 2 or 4 bytes in UTF-8 encoding. In terms of characters, a string

is an atray of runes.

Go IEFH M UTF-8 4l 74T o 1547 RMALE runes rune /2 int32 {H—44%, AN

Unicode Zfih] LLJZ 1,2 B 4 7 FERN T F 3 HSEHR 2 runes YA

&

o
2

A string is also an atray of bytes, but you have to be cateful: only for the ASCII subset is a byte equal
to a character. All other characters occupy two, three or four bytes. This means that the length of a
string in charactets (runes) is generally not the same as the length of its byte array. They are only equal

when the string consists of ASCII characters only.

Unicode H1—M7fF FRHSLE — MR, (HRREER: A AsC X PR —1
TET 54 Fralaer/fG 24, = eldsy. XEWRE, T 5FRBNK

=
JE (runes) M RAFEIIRER T MTHALEEE ASCIL FAFRZA .

The following program fragment illustrates this. If we take a UTF-8 string and test its length, you get
the length of the underlying byte array. But if you cast the string to an atray of runes [Jrune then you

get an array of the Unicode code points which is generally the number of characters:

N ERR Y A BT AR LR . AR BN w8 AR BRI, IRASREIE TR
TR o AHANRURAE FAF B AT rues % [Jrune, VRESFE] 1 Unicode b4 :

str:="HE—T, RHFE"
println("String length", len([Jrune(stt)))

println("Byte length", len(stt))

prints

oy

String length 9

Byte length 27

UTF-8 client and server

UTF-8 SmfbE) % S 55

Possibly surprisingly, you need do nothing special to handle UTF-8 text in either the client or the
server. The undetlying data type for a UTF-8 string in Go is a byte array, and as we saw just above,
Go looks after encoding the string into 1, 2, 3 or 4 bytes as needed. The length of the string is the

length of the byte atray, so you wtite any UTF-8 string by writing the byte atrray.

FRES NIARYE, ToIe@ %) i sl 55 % R/ 5 2T ue-8 B SOR ST R iR A AL 2L o
UTE-8 “FRFR I EUREALE — D8, I EFR. Go ifia Bl Egwid)5 1745 thig
1, 2, 384 7T Frbh ut8 U547 Uk LAREES o

Similatly to read a string, you just read into a byte array and then cast the array to a string using
string([]byte). If Go cannot properly decode bytes into Unicode characters, then it gives the Unicode
Replacement Character \uFFFD. The length of the resulting byte array is the length of the legal

portion of the string,

RUOT B a, HEGRA AP 8E, AR seing(byte) B AR A7 4F
Hio U1K Go T S AREILHIAE#RD, 57 T7HA08 Unicode 7/F, ARAELH] Unicode 2
FAF\UFFFDo AR 5 R R R AR AT RIS

So the clients and servers given in eatlier chapters work perfectly well with UTF-8 encoded text.

P AR T 27 H o 2 A 257 S AR 95 3 66 1 wfe-8 Al e BRI R T

ASCII client and setver

ASCII 4mi5HI% P oAl RS 2%

The ASCII characters have the same encoding in ASCII and in UTF-8. So ordinary UTF-8 character

handling works fine for ASCII characters. No special handling need to be done.

ASCIL“FAFH) ASCIL Z i1 UTE-8 Gt (EAH TR, fir LA IE AT UTF-8 “FAFREIE H AL ASCIL
==

)
FRE, AR R R AL T
UTF-16 and Go
Go &S 1 utf-16

UTF-16 deals with atrays of short 16-bit unsigned integers. The package utfl6 is designed to manage
such arrays. To convert a normal Go string, that is a UTF-8 string, into UTF-16, you first extract the

code points by coercing it into a [Jtune and then use utf16.Encode to produce an array of type uint16.

utf-16 ZRf Al LA 16 A7 5 CAFS B A . utfl6 AR FRAL BLX R T HR 1
K> Go I F Y uth-8 IEF A 7 H 0 uef-16 A, VR S8 5 A il [runerune
WAL, SREMH utfl6.Encode “ER— uint16 BRI %4

Similarly, to decode an array of unsigned short UTF-16 values into a Go stting, you use utfl6.Decode
to convert it into code points as type [Jtune and then to a string. The following code fragment

illustrates this

[FIAE, AERD— TR SRR uef-16 AR Go FFHY, R 2 utfl6.Decode 14

etk lrane , SAEARESUR— 5 H o AR HIAGARAD /R -

ste:="HE—T, RBFE"

runes := utfl6.Encode([Jrune(str))

ints := utf16.Decode(runes)

str = string(ints)

These type conversions need to be applied by clients or servers as appropriate, to read and write

16-bit short integers, as shown below.

RTINS 5 0 AR A 16 B, W FEIFTR. oo
g2)

Little-endian and big-endian

Little-endian f{] big-endian

Unfortunately, thete is a little devil lurking behind UTF-16. It is basically an encoding of characters
into 16-bit short integers. The big question is: for each short, how is it written as two bytes? The top
one first, or the top one second? Either way is fine, as long as the receiver uses the same convention

as the sender.

SR, UTF-16 ut a1/ N BE . BEA LR 16 P AR SR A |
—AET, BUWAHER? SRS R & AAER? TR W, HEUE R AL
an 2 EF AL AT LA

Unicode has addressed this with a special character known as the BOM (byte order marker). This is a
zero-width non-printing character, so you never see it in text. But its value Oxfffe is chosen so that

you can tell the byte-ordet:

Unicode Jlid— MR RIC 7300720, XN FW RN BOM (FEFRIL) o X
T RIS TEIERF, FrLMRAGEASTE AT ERE . (B2 EiEid 0xFFFE [{E, 1]
DA RAR A 1 I

* Inabig-endian system it is FF FE

* Inalittde-endian system it is FE FF

s 1F bigendian R&H, & FFFE

o 1f litde-endian K%, & FEFF

Text will sometimes place the BOM as the first character in the text. The reader can then examine

these two bytes to determine what endian-ness has been used.

A BOM 0T SURRIEE — 54 SCRBaR A2l Lie e, DARE (A2 AR R 5E.

UTF-16 client and server

UTF-16 4mfE0% P miR 554

Using the BOM convention, we can write a server that prepends a BOM and writes a string in

UTF-16 as

s BOM [YZ5E, IG5 as il LAFUGIKE BOM KRR utf-16,411N

/* UTF16 Server

*/

package main

import (

" fmt"

net

while a client that reads a byte stream, extracts and examines the BOM and then decodes the rest of

the stream is

B PSRRI, SEBUFR A BOM IR Z R HAR T 1Y o

func checkError(ert error) {

if err 1= nil {

fmt.Println("Fatal etror ", ett.Error())

os.Exit(1)

Unicode gotcha's

Unicode HJEEHEZLRE

This book is not about i18n issues. In particular we don't want to delve into the arcane areas of
Unicode. But you should know that Unicode is not a simple encoding and there are many
complexities. For example, some eatlier character sets used non-spacing characters, particularly for
accents. This was brought into Unicode, so you can produce accented characters in two ways: as a
single Unicode character, or as a pair of non-spacing accent plus non-accented character. For example,
U+04D6 CYRILLIC CAPITAL LETTER IE WITH BREVE is a single character. It is equivalent to
U+0415 CYRILLIC CAPITAL LETTER IE combined with the breve accent U+0306

COMBINING BREVE. This makes string comparison difficult on occassions. The Go specification

does not at present address such issues.

XAFARARE LR R, FOTAEEPTRIFREA Unicode. (HZIRIIZAIE,
Unicode A& —ME ARG, WARZIEANHTT. flin, SRR TRFEN 727

FhE, HREE TR IR E 3 FAF LA L Unicode R LAFHPIFIIpE : FE2A— Unicode
FRE, SAEN— SRR E S RS . #lln, U+04D6 CYRILLIC CAPITAL
LETTER IE WITH BREVE & —M54%. %2/ T U+0415 CYRILLIC CAPITAL LETTER
IE 1 U+0306 fi1 I BREVE.. JX i35 f b A AR EAE T . GO Bt B g A xix

AL IRDTIT o

ISO 8859 and Go

ISO 8859 ZwAEH] Go &S

The ISO 8859 series are 8-bit character sets for different parts of Europe and some other areas. They
all have the ASCII set common in the low part, but differ in the top part. According to Google, ISO

8859 codes account for about 20% of the web pages it sees.

ISO 8859 RF FTRFEEHE 8 (L TARFEE, A IO RRINANF) o ORI At — 27 it M 1A
Al H9 ASCIL I HARAEHUAT, (HEfi A o Faraiflit, 1SO 8859 it 1S 20% [Lo

The first code, ISO 8859-1 or Latin-1, has the first 256 characters in common with Unicode. The
encoded value of the Latin-1 characters is the same in UTF-16 and in the default ISO 8859-1

encoding. But this doesn't really help much, as UTF-16 is a 16-bit encoding and ISO 8859-1 is an
8-bit encoding. UTF-8 is a 8-bit encoding, but it uses the top bit to signal extra bytes, so only the

ASCII subset ovetlaps for UTF-8 and ISO 8859-1. So UTF-8 doesn't help much either.

BN YRS, 1SO 8859-1 B MY Latin-1, i 256 N44F0 Unicode fH[E]. Latin-1 =
FFHY utf-16 F11SO 8859-1 AAHEI I td . (HiE, XIFAEWNAH, Fh UTF-16 &> 16
DLAY RS FAF RN 1SO 8859-1 J& 8 (G UTF-8 j&—Fh 8 (idwhd, {H 2@ kL RE
ZHFRE, LA ASCIL Y —#B43 2 utf-8 F1 1SO 8859-1 #H[H], fir LA UTE-8 Jf% A 2 K5k
brffig CHZE 8 ZHY) o

But the ISO 8859 series don't have any complex issues. To each character in each set corresponds a
unique Unicode character. For example, in ISO 8859-2, the character "latin capital letter I with

ogonek" has ISO 8859-2 code point Oxc7 (in hexadecimal) and corresponding Unicode code point of

U+012E. Transforming either way between an ISO 8859 set and the corresponding Unicode

characters is essentially just a table lookup.

{H 1SO8859 RANB AL G M Ao Fg—2HH B9 RE D45 X B, — M ME—F Unicode 245 o
BN, £E 1SO 8859-2 HHAYFAF “latin capital letter I with ogonek” fE ISO 8859-2 & 0xc7 (75
B, XY Unicode) U+012E, 1SO 8859 “FAFEER] Unicode SFAFHE 2) #n H 5L H 2

— A FREH.

The table from ISO 8859 code points to Unicode code points could be done as an array of 256
integers. But many of these will have the same value as the index. So we just use a map of the

different ones, and those not in the map take the index value.

XA ISO 8859 #| Unicode [EFF, AT LAH—A> 256 MU 5E. BN, 2 F/5%5]
M. FIG, FRATHTFEE—MREAR R 5| R T Lo

For ISO 8859-2 a portion of the map is

ISO 8859-2 HY i Ay

var unicodeToISOMap = map[int] uint8 {

0x12e: 0xc7,

0x10c: 0xc8,

0x118: Oxca,

// plus mote

and a function to convert UTF-8 strings to an array of ISO 8859-2 bytes is

M utf-8 Bk, 1SO 8859-2 Y ERI%Y

In a similar way you cacn change an array of ISO 8859-2 bytes into a UTF-8 string;

[FEVRTT LI 1SO 8859-2 #4624y utf-8

These functions can be used to read and write UTF-8 strings as ISO 8859-2 bytes. By changing the

mapping table, you can cover the other ISO 8859 codes. Latin-1, or ISO 8859-1, is a special case - the

exception map is empty as the code points for Latin-1 are the same in Unicode. You could also use

the same technique for other character sets based on a table mapping, such as Windows 1252.

IXLERECAT LIRS 18O 8859-2 244 UTE-8 SR i35 o i et 3¢,] AL HoA Y 18O
8859 FAFEE G - Latin-1 FAFEE (ISO 8859-1) 2 PRHFRHINGIL: BB N ZS, RO A
fE Latin-1 fl Unicode FP&RASAHIR . [AFEATTIE, ARt nl DA HAL 777 SR 2, A

Windows1252,

Other character sets and Go

HAFREEM Go EF

There are very, very many character set encodings. According to Google, these generally only have a
small use, which will hopefully decrease even further in time. But if your software wants to capture all

markets, then you may need to handle them.

WA AR AR Z W PR D . PATRIPR , IX LR Bl i AR DT (6], Fr AW RE
D B2, BIRIRHEAIEE S RETA T, IRAVKA]RER B XL TR S T A B

In the simplest cases, a lookup table will suffice. But that doesn't always work. The character coding
ISO 2022 minimised character set sizes by using a finite state machine to swap code pages in and out.

This was borrowed by some of the Japanese encodings, and makes things very complex.

TR EBIONOL T, BRI T o (2, SR B FA . IS0 2022 FRF4IRL 7 50
e R AR GHIGHEIAA, 4%

Go does not at present give any language or package support for these other character sets. So you

either avoid their use, fail to talk to applications that do use them, or write lots of your own code!

Go i 2 HRI{EIE S A RIS ESchs B, TN, RS A P E A4,
BRI R L7, B4 AT SR,

Conclusion

oA

e

There hasn't been much code in this chapter. Instead, there have been some of the concepts of a vety
complex area. It's up to you: if you want to assume everyone speaks US English then the world is
simple. But if you want your applications to be usable by the rest of the world, then you need to pay

attention to these complexities.

X ERAT AR, AL IR MBS, 498, BER TR JREH G 2 5E 0
BRI, AR 15 SR ARAY S B E HAl AT, ARIRR AR XA S 2R A)L
HRAEIT

Security

Te

Introduction

fai s

Although the internet was originally designed as a system to withstand atacks by hostile agents, it
developed in a co-operative environment of relatively trusted entities. Alas, those days are long gone.
Spam mail, denial of service attacks, phishing attempts and so on are indicative that anyone using the

internet does so at theitr own risk.

JRUE EER I A TN Al VRS2 SO SR R R 58, (B A — BRI Al H R SHA
ARG A JRE R AITEIEC AR ST WMy, sE4a ks dodr, 254960
XEEAR VYA W T 2 A A TR KU

Applications have to be built to work cotrectly in hostile situations. "correctly”" no longer means just
getting the functional aspects of the program correct, but also means ensuring privacy and integrity of

data transferred, access only to legitimate users and other issues.

IS PR e B2 24 A A2 2R ELHR R BRI SR mT AE A AR “1EMR A EIRE R DRy Ik
B, [R ZE A PR B i AR TP R CR e s B e, B2 R Gk BT)
FHHE A

This of course makes your programs much more complex. There ate difficult and subtle computing
problems involved in making applications secure. Attempts to do it yourself (such as making up your
own enctryption libraties) are usually doomed to failure. Instead, you need to make use of libraries

designed by secutity professionals

X E RS R N 2% o (AL 2 Y IR P I R, 25 M BAR A ZM A A IEJ R 4
R H O AN B AL RE), BEES ARBIM S L. R, RFEEH R
LRI L 2.

ISO secutity architecture

ISO %24

The ISO OSI (open systems interconnect) seven-layer model of distributed systems is well known

and is repeated in this figure:

ISO O8I M AL HE) LEMM ARG R M, fEIEZ -

What is less well known is that ISO built a whole series of documents upon this architecture. For our

putposes here, the most important is the ISO Security Architecture model, ISO 7498-2.

O NREIE , 18O FE I 2R M A A7 T — R SERE A SO o I B X B e B 2R 2 18O

LR R EERIRSHL (ISO Security Architecture model) 1SO 7498-2,

Functions and levels

WREEIK

The principal functions required of a security system are

TER 2R G

* Authentication - proof of identity

* Data integrity - data is not tampered with

* Confidentiality - data is not exposed to others
* Notatization/signature

* Access control

* Assurance/availability

« MR - Biie St

o HdRSTRE - BURAPEL
o fRE - BURARERERSA A
« QNE/EA

« YTTAE

o BRIE/ATHIE

These are required at the following levels of the OSI stack:

WY OST Hrill i

* Peer entity authentication (3, 4, 7)

* Data origin authentication (3, 4, 7)

* Access control service (3, 4, 7)

* Connection confidentiality (1, 2, 3, 4, 6, 7)

* Connectionless confidentiality (1, 2, 3, 4, 6, 7)
* Selective field confidentiality (6, 7)

* Traffic flow confidentiality (1, 3, 7)

* Connection integrity with recovery (4, 7)

* Connection integrity without recovery (4, 7)
* Connection integrity selective field (7)

* Connectionless integrity selective field (7)

* Non-repudiation at origin (7)

* Non-repudiation of receipt (7)

o XERSUAIME 3,4,7)

© BREAE (3,4,7)

« VIAERIRS G.4,7)

o R (1,2,3,4,6,7)

© CEERRE (1,2,3,4,67)
o EFMETBRIRE 6,7)

- fREiRE (1,3,7)

© IKEERTERE 4,7
© RAMKEERNSERENE @,7)
o ERTBOERSEENE 7)

%
o ERTRINTCERSTSENE ()

g

« ESZE ()

Mechanisms

LI

* DPeer entity authentication
o encryption
o digital signature
o authentication exchange
* Data origin authentication
o encryption
o digital signature
* Access control service
o access control lists
o passwords
o capabilities lists
o labels
* Connection confidentiality
o ectyption
o routing control
* Connectionless confidelity
o encryption
o routing control
* Sclective field confidelity

o encryption

Tratfic flow confidelity

o encryption

o traffic padding

o routing control
Connection integrity with recovery

o encryption

o data integrity
Connection integrity without recovery

o encryption

o data integrity
Connection integrity selective field

o encryption

o data integrity
Connectionless integrity

o encryption

o digital signature

o data integrity
Connectionless integrity selective field

o encryption

o digital signature

o data integrity
Non-repudiation at origin

o digital signature

o data integrity

O notarisation
Non-repudiation of receipt

o digital signature

o data integrity

O notarisation

Xt S SLARIAIE

o WFES
o KL

BAINIE

o WFES
Vil AR 5
o YrnEFIE

(@)
B
=

PIIES

i

v

O
48
%l\

o =
TeIERHI R

o BB
AL B 52
o W

o HumsEEMt
o ERTBOEREENE

o

o HfEsetEit
« ToiERSEENE

o

o KT

o HfEsetEit

o

o HFEEH
o HfEsetEit
o WFHEH
o HumseEMt
o Ik

S EE
o WFHEH
o HumseEMt
o Ik
Data integrity

G Pt

Ensuring data integrity means supplying a means of testing that the data has not been tampered with.
Usually this is done by forming a simple number out of the bytes in the data. This process is called

hashingand the resulting number is called a Aash or hash value.

T

T RER A SE B R BRI I Ba AR A L A 7 3 o A8 e R i 51 B 2 il —
A RHECT o IXNRNEPIRN hashing, GEFREUF RN hash S hash (.

Cl

A naive hashing algorithm is just to sum up all the bytes in the data. However, this still allows almost
any amount of changing the data around and still preserving the hash values. For example, an attacker
could just swap two bytes. This preserves the hash value, but could end up with you owing someone

$65,536 instead of §256.

AN ANIHER hash SRR EAR BT A B 77T S o A1, X AR SR AE R B hash
(EAZRITE O T ISR TR i, BodiB AR Zc i 51 o 1XHF hash {HiX
AL, HERATRERVRASR KO 256 SETTEIZE M T 65535 FTT.

Hashing algorithms used for security putposes have to be "strong", so that it is very difficult for an
attacker to find a different sequence of bytes with the same hash value. This makes it hard to modify
the data to the attacket's purposes. Security researchers ate constantly testing hash algorithms to see if
they can break them - that is, find a simple way of coming up with byte sequences to match a hash

value. They have devised a series of cryprographic hashing algorithms which are believed to be strong.

AT 2 H IR hash FEQAUR “587 , XX A IRMEAE R B ARIRY hash (B4 F]—
IAFER T o XL B A RS BB E LOAE) H o L7 N R A5 RE
IO hash B35 - FHRARIEITE, B2 DT IRIEECH A hash {5, 13 77—
BRINVBANAAREEA 1777 hash B

Go has support for several hashing algorithms, including MD4, MD5, RIPEMD-160, SHA1, SHA224,
SHA256, SHA384 and SHA512. They all follow the same pattern as far as the Go programmer is
concerned: a function New (or similar) in the appropriate package returns a Hash object from the

hash package.

Go % H#JLA hash B3 A1FE MD4, MD5, RIPEMD-160, SHA1, SHA224, SHA256, SHA384 and
SHAS512, EATEBS AT B IR Go F2/7 SRR, MR FEE YA EH E L New
BB A, IRE— hash £3H1F Hash X%

A Hash has an jo.Writer, and you write the data to be hashed to this writer. You can query the

number of bytes in the hash value by Size and the hash value by Sum.

—> Hash 5 A —1> io.Writer £2[1, /RT] LLEL writer 77755 AME hash 1. /R AT LA
HIT Size J7{EARE hash (HEYHE, Sum J53%IR[A] hash {H.

A typical case is MD5 hashing. This uses the md5 package. The hash value is a 16 byte array. This is
typically printed out in ASCII form as four hexadecimal numbers, each made of 4 bytes. A simple

program is

MD5 B2 IR B 1] md5 £, hash (B2 16 A AVEEH. HH LA ASCILJE 5

HP9 A F 4 TR BRI BRI

/* MD5Hash

*/

package main

import (
"crypto/md5"
"frrlt"

)

func main() {

hash := md5.New()
bytes := [|byte("hello\n")
hash. Write(bytes)
hashValue := hash.Sum(nil)
hashSize := hash.Size()
for n := 0; n < hashSize; n += 4 {
var val uint32
val = uint32(hashValue[n])<<24 +

uint32(hashValue[n+1])<<16 +

uint32(hashValue[n+2])<<8 +
uint32(hashValue[n+3])

fmt.Printf("%x ", val)

}
fmt.Println()

which prints "b1946ac9 2492d234 7c6235b4 d2611184"

it "b1946ac9 2492d234 7c6235b4 d2611184"

A variation on this is the HMAC (Keyed-Hash Message Authentication Code) which adds a key to the
hash algorithm. There is little change in using this. To use MD5 hashing along with a key, replace the

call to New by

FEMEEA ER)— 2800 & HMAC(Keyed-Hash Message Authentication Code), ‘%5 hash &5 1Y
T = keyo {LHIIEAANE . BRI key —HE (T MD5 LR, Al LU LUH A

New

func NewMD5(key [|byte) hash.Hash

Symmetric key encryption

key XIFRIN

There are two major mechanisms used for encrypting data. The first uses a single key that is the same
for both enctyption and dectyption. This key needs to be known to both the enctypting and the

dectypting agents. How this key is transmitted between the agents is not discussed.

Bl AR LR 55— Mhos SRR A R I G)1 keyo N RUAR J7 40
i BRI keyo LEALUIAT X P Z [AIFEHIIX A keyo

As with hashing, there are many encryption algorithms. Many are now known to have weaknesses,
and in general algorithms become weaker over time as computers get faster. Go has support for

several symmetric key algorithms such as Blowfish and DES.

HRTARZ M hash BIERINES L. HrpREZEA S, T HREE R RIAHERS , THEL
ke, 38 A hash BILASHCETT. Go DAY HHF LA XFRINE B, W1 Blowfish 1

DES.

The algorithms are block algorithms. That is they work on blocks of data. If you data is not aligned to

the block size, then you will have to pad it with extra blanks at the end.

LRI block Fiikio TN ENTEET B (block) o ANARARAYEE A ILAL block YA
/N, BRI B Je i 2 R I e 2 A 25 T o

Each algorith is represented by a Cipher object. This is created by NewCipher in the appropriate

package, and takes the symmetric key as parameter.

FFNBIEE N > Cipher X% o AT BEAEAR R A3 H 5 AR key 1E 2400 H
NewCipher J7 1R OTHIZNT S

Once you have a ciphet, you can use it to encrypt and dectypt blocks of data. The blocks have to be

8-bit blocks for Blowfish. A program to illustrate this is

O cipher XIR A, WLAEIEE EINERIARE LEL. Blowfish F722 8 [block, PEILLAHE
Fr

/* Blowfish

*/

package main

import (

"bthS"
"code.google.com/p/go.crypto/blowfish"

"fl‘nt"

func main() {
key := [[byte("my key")
cipher, etr := blowfish.NewCipher(key)
if err 1= nil {
fmt.Println(err.Error())
}
stc := [Jbyte("hello\n\n\n")

var enc [512]byte

cipher.Encrypt(enc[0:], stc)

var dectypt [8]byte
cipher.Dectypt(dectypt[0:], enc[0:])
result := bytes.NewBuffer(nil)
result.Write(decrypt[0:8])

fmt.Println(string(result.Bytes()))

Blowfish is not in the Go 1 distribution. Instead it is on the http://code.google.com/p/ site. You

have to install it by running "go get" in a directory where you have soutce that needs to use it.

Blowfish /~AfE GO 1 H1, TJ2FE http://code.google.com/p/ 1. VRA] ATE R 240 & 19 JnE H

SENIBIT “go get” B TEEE,

Public key encryption

N

Public key encryption and decryption requires two keys: one to encrypt and a second one to decrypt.
The encryption key is usually made public in some way so that anyone can encrypt messages to you.
The decryption key must stay private, otherwise everyon would be able to dectypt those messages!

Public key systems aer asymmetric, with different keys for different uses.

NAMENRE T Z A T key: —HRINE, 75— ARSI key H 2 AITHY,
XA AT AZR VR BB B o R key NGRS, ML ANHRRT AR LR 2~
PIRGORARIFRAY, AR key AAFRY HIZE-

There are many public key encryption systems supported by Go. A typical one is the RSA scheme.
Go STFHARZ NN A58, RSA 2 — Ry 1
A program generating RSA private and public keys is

R —MER RSA SRR RE

/* GenRSAKeys

*/
package main

import (
"crypto/rand"
"ctypto/tsa"
"crypto/x509"
"encoding/ gob"
"encoding/pem"

"frrlt"

)

func main() {
reader := rand.Reader
bitSize := 512
key, etr := rsa.GenerateKey(reader, bitSize)
checkError(ert)
fmt.Println("Private key primes", key.Primes[0].String(), key.Primes[1].String())
fmt.Println("Private key exponent", key.D.String())
publicKey := key.PublicKey
fmt.Println("Public key modulus", publicKey.N.String())
fmt.Println("Public key exponent", publicKey.E)
saveGobKey("ptivate key", key)
saveGobKey("public.key", publicKey)
savePEMKey("private.pem", key)

}

func saveGobKey(fileName string, key interface{}) {
outFile, et := os.Create(fileName)
checkErrozr(etr)
encoder := gob.NewEncoder(outFile)
err = encodetr.Encode(key)
checkEtrror(ert)

outFile.Close()

func savePEMKey(fileName stting, key *rsa.PrivateKey) {

outFile, et := os.Create(fileName)

checkEtrotr(ert)

var ptivateKey = &pem.Block{Type: "RSA PRIVATE KEY",

Bytes: x509.MarshalPKCS1PrivateKey(key)}

pem.Encode(outFile, privateKey)

outFile.Close()

func checkError(etr etror) {

if err 1= nil {

fmt.Println("Fatal error ", ett.Error())

os.Exit(1)

The program also saves the certificates using gob serialisation. They can be read back by this program:

FEfr i gob AL ARAFIE TS o A LABR[ETIE:

/* LoadRSAKeys

*/

package main

import (
"crypto/tsa"
"encoding/gob"
"t

"OS"

func main() {
var key rsa.PrivateKey

loadKey("ptivate.key", &key)

fmt.Println("Private key primes", key.Primes[0].String(), key.Primes[1].String())

fmt.Println("Private key exponent", key.D.Stting())

var publicKey rsa.PublicKey

loadKey("public.key", &publicKey)

fmt.Println("Public key modulus", publicKey.N.String())

fmt.Println("Public key exponent", publicKey.E)

func loadKey(fileName string, key interface{}) {
inFile, etr := 0s.Open(fileName)
checkErrozr(etr)
decoder := gob.NewDecodet(inFile)
err = decoder.Decode(key)
checkEtrror(ert)

inFile.Close()

func checkError(ert error) {
if etr 1= nil {
fmt.Println("Fatal error ", err.Error())

os.Exit(1)

X.509 certificates

X.509 iEH

A Public Key Infrastructure (PKI) is a framework for a collection of public keys, along with
additional information such as owner name and location, and links between them giving some sort of

approval mechanism.

NAEMA (PKD) 2P AHIEAIER, EEFEMINER, mraEammcE, L
AT ARG HE T —LEHHEALH] o

The principal PKI in use today is based on X.509 certificates. For example, web browsers use them to

verify the identity of web sites.

H AT 2 A PRIZHUEEET X509 HEA5AY o BAnx a4 H B il U S o

An example program to generate a self-signed X.509 certificate for my web site and store it in a .cer

file is

NHBYRR RN H Rl R CE 8844 X509 AR IRAF S~ cer SCAFHP

/* GenX509Cett

*/

fis
// NotBefore: time.Unix(now, 0).UTC(),

// NotAfter: time.Unix(how+60*60*24*365, 0).UTC(),
NotBefore: now,

NotAfter: then,

SubjectKeyld: [|byte{1, 2, 3, 4},
KeyUsage: x509.KeyUsageCertSign | x509.KeyUsageKeyEncipherment

| x509.KeyUsageDigitalSignature,

BasicConstraintsValid: true,

IsCA: true,

DNSNames: [Istring{"jan.newmarch.name", "localhost"},
}
derBytes, etr := x509.CreateCertificate(random, &template,

&template, &key.PublicKey, &key)

checkErrozr(etr)

certCerFile, err := os.Create("jan.newmarch.name.cer")
checkEtrror(ert)
certCerFile. Write(detBytes)

certCetFile.Close()

certPEMFile, err := os.Create("'jan.newmarch.name.pem")
checkErrozr(etr)
pem.Encode(certPEMFile, &pem.Block {Type: "CERTIFICATE", Bytes: detBytes})

certPEMFile.Close()

keyPEMFile, etr := os.Create("ptivate.pem")

checkErrozr(etr)
pem.Encode(keyPEMFile, &pem.Block{Type: "RSA PRIVATE KEY",
Bytes: x509.MarshalPKCS1PrivateKey(&key)})

keyPEMFile.Close()

func loadKey(fileName string, key interface{}) {
inFile, etr := 0s.Open(fileName)
checkErrozr(etr)
decoder := gob.NewDecodet(inFile)
err = decodetr.Decode(key)
checkEtrrotr(ert)

inFile.Close()

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal error ", ett.Error())

os.Exit(1)

This can then be read back in by

NN R R A] AU NIE TS

/* GenX509Cett

*/

package main

import (

"crypto/x509"
"ﬁ'nt"
"OS"

)

func main() {

certCerFile, err := 0s.Open("jan.newmarch.name.cer")
checkError(ert)

derBytes := make([]byte, 1000) // bigger than the file
count, etr := certCetFile.Read(derBytes)
checkErrozr(etr)

certCetFile.Close()

// ttim the bytes to actual length in call
cert, err := x509.ParseCertificate(derBytes[0:count])

checkError(ert)

fmt. Printf("Name %s\n", cett.Subject. CommonName)
fmt.Printf("Not before %s\n", cett. NotBefore.String())

fmt.Printf("Not after %s\n", cert.NotAfter.String())

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal error ", ett.Error())

os.Exit(1)

TLS

Enctyption/decryption schemes ate of limited use if you have to do all the heavy lifting yourself. The
most popular mechanism on the internet to give support for encrypted message passing is currently

TLS (Transport Layer Security) which was formerly SSL (Secure Sockets Layer).

AR B CSCIL A AR, IR T A _ LR A BRI o YR B b i TR N
TH 2L H 7 %2 TLS(Transport Layer Security -4 E41Z) , HHij & A SSL(Secure Sockets Layer

TREETRE) -

In TLS, a client and a server negotiate identity using X.509 certificates. One this is complete, a secret
key is invented between them, and all encryption/dectyption is done using this key. The negotiation is

relatively slow, but once complete a faster private key mechanism is used.

FETLS v, & PO FIAR 554 2 A X500 SBT3 iiE. BHAIRIETE RS, Pid (0]
SR ES, BrA RN RS XA T . BARE) d AR 55 e P R RO T AR
MG, (H— HSg ot 2 66— bR A AL AL o

A server is

i 55 A A

/* TLSEchoServer
Y

package main

import (

"crypto/tand"
"crypto/ls"
L fl'nt"

"net"

func main() {

cett, ett := tls.LoadX509KeyPair("jan.newmarch.name.pem
checkEtrrotr(ert)

config := tls.Config{Certificates: [Jtls.Certificate {cert} }

now := time.Now()
config. Time = func() ime.Time { return now }

config.Rand = rand.Reader

service := "0.0.0.0:1200"

listener, err := tls.Listen("tcp", service, &config)
checkError(ert)
fmt.Println("Listening")
for {
conn, etr := listener.Accept()
if etr 1= nil {
fmt.Println(err.Error())

continue

nn
b

ptivate.pem")

The server works with the following client:

5 IR 55 i R P oS 7) 75 S e

fmt.Println(string(buf[0:n]))

}

os.Exit(0)

func checkError(ert error) {
if etr I= nil {
fmt.Println("Fatal error ", err.Error())

os.Exit(1)

Conclusion

it

Security is a huge area in itself, and in this chapter we have barely touched on it. However, the major
concepts have been covered. What has not been stressed is how much security needs to be built into

the design phase: security as an afterthought is nearly always a failure.

TR R PTERIG, EAES, AP, HESMSE T EEIBES. M
AR, FEABY B B ety TR LR IA R LY

HTTP

XF HTTP

Introduction

fa s

The World Wide Web is a major distributed system, with millions of users. A site may become a Web
host by running an HTTP server. While Web clients are typically users with a browset, thete are many

other "user agents" such as web spiders, web application clients and so on.

JTHERE— R, WA BAE A AR Se. Rt @ — st HTTP i
Tt h) Web AL T Web % P i 2 WA, YRGS AL Hibny ",
W2, Web 7 FHRE 25 1 0 o

The Web is built on top of the HTTP (Hypet-Text Transport Protocol) which is layered on top of
TCP. HTTP has been through three publically available versions, but the latest - version 1.1 - is now

the most commonly used.

Web {fi] HTTP GESCAMLAHML) 28T TCP Pl Ay, HTTP A7 =P Al AR,
i B FH A2 o A A 1.1

In this chapter we give an overview of HTTP, followed by the Go APIs to manage HTTP

connections.

AT SEXT HTTP BETHEA, SRR A4 aiE Go APT & HE HTTP j& 4%,

Overview of HTTP

HTTP ik

URLs and resources

URL %R

URLs specify the location of a resource. A resoutce is often a static file, such as an HTML document,
an image, or a sound file. But increasingly, it may be a dynamically generated object, perhaps based on

information stored in a database.

URL 5/ /R B . BEIRIE R 2 HTML 30 B s & SCPRIXRER S SO, (HOR
W TR ShAS A RIS G, IR R (R 2 A 8

When a user agent requests a resource, what is returned is not the resource itself, but some
representation of that resource. For example, if the resource is a static file, then what is sent to the

user agent is a copy of the file.

R R, IREIHARFIRA L, TR A0, MIRBTIUREASIC, A
LIRIEIZE PRI SRR — R

Multiple URLs may point to the same resource, and an HTTP server will return appropriate
representations of the resource for each URL. For example, an company might make product
information available both internally and externally using different URLs for the same product. The
internal representation of the product might include information such as internal contact officers for

the product, while the external representation might include the location of stores selling the product.

AN URL fLERIAAHFERY B, HTTP 55 de =206 1 URLRENE SRR, B, %
XFE— A b, FER AT LA RIS URL 2541 ANt R F P 228 H - 5 S, A
FUAT LA BA ™ IR XSS A, T AN 2 76 80 A P A U A7 fd B B 11) st b 2

Par:
=

This view of resources means that the HT'TP protocol can be faitly simple and straightforward, while
an HTTP setver can be atbitrarily complex. HTTP has to deliver requests from user agents to servers

and return a byte stream, while a server might have to do any amount of processing of the request.

XH SRS, HTTP il AEE IR B, (H HTTP 582 n] REdEH 2 4. HTTP
R PR AR B SS4% , FRREI TR, ARSF a3 %R i RE R EMIR 2R 2 AL 3

HTTP characteristics

HTTP K%

HTTP is a stateless, connectionless, reliable protocol. In the simplest form, each request from a user
agent is handled reliably and then the connection is broken. Each request involves a separate TCP
connection, so if many reources are requited (such as images embedded in an HTML page) then

many TCP connections have to be set up and torn down in a short space of time.

HTTP YRR ToIREs, W AERAT FERT . Sd AU, B WA AR A5 R 52
HWALEE, SRIGWITIERE . FFUGEREVEAE— MISZA) TCP 8, Br AN R ESE RN Z Bk
(anfE HTML GURHHRARIEG) , WAREAR A R S [EESZFF BT VR 2 TCP 1 4%

Thera ate many optimisations in HTTP which add complexity to the simple structute, in order to

create a more efficient and reliable protocol.
B CE AT SR WML, AP A b fa] B A5 RR Al _E AN 2 P A DAL BOAR
Versions

JAs

There are 3 versions of HTTP

HTTP A =R

* Version 0.9 - totally obsolete
e Version 1.0 - almost obsolete

e Version 1.1 - current

e Version 0.9 - 5¢ o
* Version 1.0 - EARJEF

e Version 1.1 - MFihiA

Each version must understand requests and responses of eatlier versions.

TR BT T RRAS o

HTTP 0.9

Request format

HRIEA

Request = Simple-Request

Simple-Request = "GET" SP Request-URI CRLF

Response format

LE)VZ 52

A response is of the form

i oz P A AL -

Response = Simple-Response

Simple-Response = [Entity-Body]

HTTP 1.0

This version added much more information to the requests and responses. Rather than "grow" the 0.9

format, it was just left alongside the new version.

WA AR g TRZE R SHBZ 09 TR, AR B2 — 28
H‘)izlio

Request format

R

The format of requests from client to servet is

N 1 R 55 i O I R AR 2

Request = Simple-Request | Full-Request

Simple-Request = "GET" SP Request-URI CRLF

Full-Request = Request-Line
*(General-Header
| Request-Header
| Entity-Header)

CRLF

[Entity-Body]

A Simple-Request is an HTTP/0.9 request and must be replied to by a Simple-Response.

fA] B >R (Simple-Request) K B 72—~ HTTP/0.9 &K, wA7al 4 & H i i (Simple-Response) o

A Request-Line has format

375 3R 47 (Request-Line) {2401 -

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

where

s

Method = "GET" | "HEAD" | POST |

extension-method

e.g

'

GET http://jan.newmarch.name/index.html HTTP/1.0

Response format

Wi A% =X

A response is of the form

Mg 2 A 0

Response = Simple-Response | Full-Response

Simple-Response = [Entity-Body]

Full-Response = Status-Line
*(General-Header
| Response-Header
| Entity-Header)

CRLF

[Entity-Body]

The Status-Line gives information about the fate of the request:

IRZSAT (Status-Line) 2 45 HUTH >R AV i Jm BORES(H &

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

e.g

an

HTTP/1.0 200 OK

The codes are

RS :

Status-Code = "200" ; OK
| "201" ; Created
| "202" ; Accepted
| "204" ; No Content
| "301" ; Moved permanently
| "302" ; Moved temporarily
| "304" ; Not modified
| "400" ; Bad request
| "401" ; Unauthorised
| "403" ; Forbidden
| "404" ; Not found
| "500" ; Internal setver etror
| "501" ; Not implemented
| "502" ; Bad gateway
| "503" | Setvice unavailable

| extension-code

The Entity-Header contains useful information about the Entity-Body to follow

SEAAR Sk (Entity-Headen) 618 1/ LA (Entity-Body) YA F{E 5

Entity-Header = Allow
| Content-Encoding

| Content-Length

| Content-Type
| Expires
| Last-Modified

| extension-header

For example

fian

HTTP/1.1 200 OK

Date: Fri, 29 Aug 2003 00:59:56 GMT
Setver: Apache/2.0.40 (Unix)
Accept-Ranges: bytes
Content-Length: 1595

Connection: close

Content-Type: text/html; charset=ISO-8859-1

HTTP 1.1

HTTP 1.1 fixes many problems with HTTP 1.0, but is more complex because of it. This version is

done by extending or refining the options available to HTTP 1.0. e.g.

HTTP 1.1 {2527 HTTP 1.0 FEIIRZ W, RICHEINE A% PN Ry e 1

HTTP 1.0 FFAY A ETH .

e there are more commands such as TRACE and CONNECT

* you should use absolute URLs, particulatly for connecting by proxies e.g

- GET http://www.w3.otg/index.html HTTP/1.1

* there are more attributes such as If-Modified-Since, also for use by proxies

W T 454, @1 TRACE f1 CONNECT

o EREE AR S AR B T, N H A R

. GET http://www.w3.otg/index.html HTTP/1.1

ST E LRI, HUTERH RS 349 I Modified Since.

The changes include

XAy Al -

* hostname identification (allows virtual hosts)

* content negotiation (multiple languages)

* persistent connections (reduces TCP overheads - this is very messy)
* chunked transfers

* byte ranges (request parts of documents)

* proxy suppott

o ENAIUNCER AU

« AAMEEIES)

o FRAGERE(EL TCP IT4H)

o HURIE

o FATVEEIGE RS A
o RESR

The 0.9 protocol took one page. The 1.0 protocol was described in about 20 pages. 1.1 takes 120

pages.

0.9 IRARY PR —TT, 1.0 A 7KLY 20 TR, 17 1.1 WA T 120 5T,

Simple user-agents

1 B8 AR B8 (Simple uset-agents)

User agents such as browsers make requests and get responses. The response type is

FFAREE (User ageno) (40T b #i) FH SR A B 38 sRAIERIC IR, o ACASHIRY response type AR :

type Response struct {

Status stting // e.g. "200 OK"

StatusCode int // e.g 200

Proto string // e.g. "HTTP/1.0"

ProtoMajor int //egl

ProtoMinor int //eg0

RequestMethod string // e.g. "HEAD", "CONNECT", "GET", etc.

Header map[string]string

Body io.ReadCloser

Contentlength int64

TransferEncoding [Jstring

Close bool

Trailer map[string]string

We shall examine this data structure through examples. The simplest request is from a user agent is

"HEAD" which asks for information about a resource and its HT'TP server. The function

AL S AT LA T AR B S5 o SRR PR A IESROE R B A "HEAD 4, Hrp e diig
SR BEIRAM HTTP [l 554, PR

func Head(utl string) (r *Response, err os.Error)

can be used to make this query.

A SR A IR

The status of the response is in the response field Status, while the field Headet is a map of the

header fields in the HTTP response. A program to make this request and display the results is

W N ARAS KT V. response HHHY Status J& 1, 1 Header JEYEXT . HTTP N [header f5f. T
HIRR T F R R 1l KA B 2

/* Head

*/

package main

import (

func main() {
if len(os.Azgs) I= 2 {
fmt.Println("Usage: ", os.A1gs[0], "host:port™)
os.Exit(1)
}
url := os.Args[1]

response, etr := http.Head(url)

if err 1= nil {
fmt.Println(ert.Etror())
os.Exit(2)

}

fmt.Println(response.Status)

for k, v := range response.Header {

fmt.Println(k+"", v)

os.Exit(0)

When run against a resource as in Head http:/ /www.golang.com/ it prints something like

T IEfTIE R PTJH, Head http://www.golang.com/, #ij 455101

200 OK

Content-Type: text/html; charset=utf-8
Date: Tue, 14 Sep 2010 05:34:29 GMT
Cache-Control: public, max-age=3600

Expires: Tue, 14 Sep 2010 06:34:29 GMT

Setver: Google Frontend

Usually, we are want to retrieve a resource rather than just get information about it. The "GET"

request will do this, and this can be done using

AT B DRI AT AR ARG R "GET" W2 ek X 11, i

A0 BRET AT
func Get(utl string) (r *Response, finalURL string, err os.Error)

The content of the response is in the response field Body which is of type io.ReadCloset. We can

print the content to the screen with the following program

KR FATAT LA LA M RE P AE B

M . P 254 response [Body J& 1. &2 io.ReadCloser

T EATEIRR A2

/* Get
&

package main

import (
"t
"net/http"
"net/http/httputil"

"OS"

"strings

func main() {
if len(os.Args) I= 2 {
fmt.Println("Usage: ", 0s.Args[0], "host:port")
os.Exit(1)
}
url := os.Args[1]

response, err := http.Get(url)

if err 1= nil {
fmt. Println(etr.Error())
os.Exit(2)

}

if response.Status |= "200 OK" {
fmt.Println(response.Status)

os.Exit(2)

b, _ := httputil. DumpResponse(tesponse, false)

fmt Print(string(b)

contentTypes := tesponse.Headet["Content-Type"]
if lacceptableCharset(contentTypes) {
fmt Println("Cannot handle", contentTypes)

os.Exit(4)

var buf [512]byte

reader := response.Body
for {
n, etr := reader.Read(buf]0:])
if err 1= nil {
os.Exit(0)
}
fmt. Print(string(buf[0:n]))

}

os.Exit(0)

func acceptableCharset(contentTypes [Jstring) bool {
// each type is like [text/html; charset=UTF-§]
// we want the UTF-8 only
for _, cType := range contentTypes {
if strings.Index(cType, "UTF-8") I= -1 {

return true

}

return false

Note that thete are important character set issues of the type discussed in the previous chapter. The
server will deliver the content using some character set encoding, and possibly some transfer encoding;
Usually this is a matter of negotiation between user agent and server, but the simple Get command
that we are using does not include the user agent component of the negotiation. So the server can

send whatever character encoding it wishes.

TERXEA N EER TR, =R ihed. Wosar gt A i i pg 7
FEERSRAYD, ELEARY, JEHE M AR S Z P R A AREE SR, (BEAIE AT Get

AR SREH, BN PR A AR A . R, Mssdal LA AT e Mt o5
P o

At the time of first writing, I was in China. When I tried this program on www.google.com, Google's
server tried to be helpful by guessing my location and sending me the text in the Chinese character set

Big5! How to tell the server what character encoding is okay for me is discussed later.

ARG A E . S IXREFYIR] www.google.com i, 2RIz 55 A =21
BB AL, SRR T Bigd ML TAIESOR Y SR Z eI HIR 55
i BT AT R

Configuring HTTP requests

WE HTTP 3R

Go also supplies a lower-level interface for user agents to communicate with HTTP setvers. As you
might expect, not only does it give you more control over the client requests, but requites you to

spend more effort in building the requests. However, there is only a small increase.

o IR FEME— MR B P R LR S HTTP iS5 arBbTid (. IRl REC 4485,
XHE AT ABE R A2 25 i oK, 24 OR G A SRt 2 5 28 e AR ATFE L R
T

The data type used to build requests is the type Request. This is a complex type, and is given in the

Go documentation as

FR BT R A EHE L E Requeste IR TEAHYI, Go 185 U h &8 HH A9 E LT

type Request struct {
Method stting // GET, POST, PUT, etc.
RawURL string // The raw URL given in the request.

URL *URL // Parsed URL.

Proto stting // "HTTP/1.0"
ProtoMajot int //1

ProtoMinor int //0

// A header maps request lines to their values.
// If the header says

//

// accept-encoding: gzip, deflate

// Accept-Language: en-us

// Connection: keep-alive

//

// then

//

// Header = map][string]string{

// "Accept-Encoding": "gzip, deflate",
// "Accept-Language": "en-us",

// "Connection": "keep-alive",

/1%

//

// HTTP defines that header names are case-insensitive.

// The tequest parser implements this by canonicalizing the
// name, making the first character and any characters

// following a hyphen uppercase and the rest lowercase.

Header map[string]string

// The message body.

Body io.ReadCloser

// ContentLength recotds the length of the associated content.
// The value -1 indicates that the length is unknown.
// Values >= 0 indicate that the given number of bytes may be read from Body.

Contentlength int64

// TransferEncoding lists the transfer encodings from outermost to innermost.
// An empty list denotes the "identity" encoding;

TransferEncoding [string

// Whether to close the connection after replying to this request.

Close bool

// The host on which the URL is sought.
// Per REC 2616, this is either the value of the Host: header
// ot the host name given in the URL itself.

Host string

// The teferring URL, if sent in the request.

//

// Referer is misspelled as in the request itself,

// a mistake from the earliest days of HTTP.

// This value can also be fetched from the Header map
// as Headet["Referer"]; the benefit of making it

// available as a structure field is that the compiler

// can diagnose programs that use the alternate

// (cotrect English) spelling req.Referret but cannot

// diagnose programs that use Headet["Referter"].

Referer string

// The User-Agent: header string, if sent in the request.

UserAgent string

// The patsed form. Only available after ParseForm is called.

Form map[string][|string

// Trailer maps trailer keys to values. Like for Header, if the
// tesponse has multiple trailer lines with the same key, they will be
// concatenated, delimited by commas.

Trailer map[string]string

There is a lot of information that can be stored in a request. You do not need to fill in all fields, only

those of interest. The simplest way to create a request with default values is by for example

R ORI E R, ERAREEE AR A, IS RIRIAT .) S i
AROMER R AT

request, ert := http.NewRequest("GET", utl.Stting(), nil)

Once a request has been created, you can modify fields. For example, to specify that you only wish to

receive UTF-8, add an "Accept-Charset" field to a request by

HREEE, TLMERHAAET B (feld). AN, FiEEH#EZ UTE-8, wERMI—1

"Accept-Charset" 7B :

request.Header.Add("Accept-Charset", "UTF-8;q=1, ISO-8859-1;q=0")

(Note that the default set ISO-8859-1 always gets a value of one unless mentioned explicitly in the

list.).
(ER, ABAAESIRTIR N, MFGABE 1SO-8859-1 LZIR[AIHE 1).

A client setting a charset request is simple by the above. But there is some confusion about what
happens with the setver's return value of a chatset. The returned resoutce should have a
Content-Type which will specify the media type of the content such as text/html. If appropriate the
media type should state the charset, such as text/html; charset=UTF-8. If there is no charset
specification, then according to the HTTP specification it should be treated as the default ISO8859-1
charset. But the HTML 4 specification states that since many setvers don't conform to this, then you

can't make any assumptions.

N EFTR, &P I S TR SRR B (T RS 2R R TR, R AR I LR
Sk IR BT 2276 Content-Type, HIRIEHINAIIBANHKAL, W: text/heml, FLE
BRSNS P FAFER, U text/html; charset=UTF-8. WIRA TR FAER, 4 HTTP
R IY S1F R BRIARY 1SO8859-1 FAFERAL HL o AR AR 2 S5 2R AT & I 20 7E , PRI HTML
4 WLRE IS REASUEAT (R 34 o

If there is a charset specified in the server's Content-Type, then assume it is correct. if there is none
specified, since 50% of pages are in UTF-8 and 20% are in ASCII then it is safe to assume UTF-8.

Only 30% of pages may be wrong :-(.

ISR S5 #) Content-Type fHE T FAFHE, MATMINERIEHIN. IMFARITETHE,
T 50%[DU f& UTF-8 [, 20%[BT ASCIT (1), [FIME A4 E UTF-8 (Y23 4

4, ABASRAE 30% Y BT A] BES H AR - o
The Client object

BEPIXR

To send a request to a server and get a reply, the convenience object Client is the easiest way. This
object can manage multiple requests and will look after issues such as whether the server keeps the

TCP connection alive, and so on.

AR 55 e Ao — DB RIFFIUR IR, s iy BT iR AT (XS R Cliento MEXTHR AT LAEEE
ZAER, JHCE L, A0 RS AR AT TCP JE R A IR s RS S

This is illustrated in the following program

NHERRF TR

/* ClientGet

*/

package main

import (
"fmt"
"net/http"
"net/url"
"os"
"strings"

)

func main() {

if len(os.Azgs) I= 2 {
fmt.Println("Usage: ", os.Args[0], "http:/ /host:port/page")
os.Exit(1)

}

utl, etr := url.Parse(os.Args[1])

checkErrozr(etr)

client := &http.Client{}

request, etr := http.NewRequest("GET", utl.String(), nil)
// only accept UTF-8
request.Header.Add("Accept-Chatset", "UTF-8;q=1, ISO-8859-1;q=0")

checkError(ert)

response, et := client.Do(request)
if response.Status |= "200 OK" {
fmt.Println(response.Status)

os.Exit(2)

chSet := getCharset(response)
fmt.Printf("got charset %s\n", chSet)
if chSet 1= "UTF-8" {
fmt.Println("Cannot handle", chSet)

os.Exit(4)

var buf [512]byte

reader := response.Body

fmt Println("got body")

for {
n, ett := reader.Read(buf[0:])
if err 1= nil {

os.Exit(0)

REEALFE

Simple proxy

[ELZe:d

HTTP 1.1 laid out how HTTP should work through a proxy. A "GET" request should be made to a
proxy. Howevet, the URL requested should be the full URL of the destination. In addition the HTTP
header should contain a "Host" field, set to the proxy. As long as the proxy is configured to pass such

requests through, then that is all that needs to be done.

HTTP 1.1 JLE 7 HTTP B U AR T A AR S5 4% A0k — 1 "GET 5K (HiE
5K URL U2 580 H bk 4, 3 BEATRRY HTTP SR 2 0fF " Host " F Bt HE
AR5 A BB SO VR PR BRI A U Lemits 1.

Go considers this to be part of the HTTP transport layer. To manage this it has a class Transport.
This contains a field which can be set to a function that returns a URL for a proxy. If we have a URL
as a string for the proxy, the appropriate transport object is created and then given to a client object

by

Go X E il HTTP &4 21 —#8% o "I Transport 2/ T . 7] LA s 205 AR FE AR
48 H URL R E#I B — DT B (BiA — MU S ds bk 745 5 URL, R A6 E
Transport X H 3225 Client X5 FUACHD L2 :

proxyURL, etr := utl.Parse(proxyStting)
transport := &http. Transport{Proxy: http.ProxyURL(proxyURL)}

client := &http.Client{Transport: transport}

The client can then continue as before.

] MR R — RS

The following program illustrates this:

R

utl, err := url.Parse(rawURL)

checkEtror(ert)

transport := &http.Transport{Proxy: http.ProxyURL(proxyURL)}

client := &http.Client{Transport: transport}

request, etr := http.NewRequest("GET", utl.String(), nil)

dump, _ := httputi. DumpRequest(request, false)

fmt.Println(string(dump))

response, ert := client.Do(request)

checkEtror(ert)

fmt.Println("Read ok")

if response.Status |= "200 OK" {
fmt.Println(response.Status)
os.Exit(2)

}

fmt.Println("Reponse ok™)

var buf [512]byte

reader := response.Body

for {
n, err := reader.Read(buf[0:])
if err 1= nil {

os.Exit(0)

fmt. Print(string(buf[0:n]))

os.Exit(0)

func checkError(ert error) {
if err 1= nil {
if err == i0.EOF {
return

}
fmt.Println("Fatal etror ", ett.Etroz())

os.Exit(1)

If you have a proxy at, say, XYZ.com on port 8080, test this by

A — MR F 4 XYZ.com, 3i[] 8080, a2

go run ProxyGet.go http://XYZ.com:8080/ http://www.google.com

If you don't have a suitable proxy to test this, then download and install the Squid proxy to your own

computer.

AR G i AR S5 A% AN, trl LAE B SRR E T 4028 Squid proxy.

The above program used a known proxy passed as an argument to the program. There are many ways

in which proxies can be made known to applications. Most browsers have a configuration menu in

which you can enter proxy information: such information is not available to a Go application. Some
applications may get proxy information from an autoproxy.pac file somewhere in your network: Go
does not (yet) know how to parse these JavaScript files and so cannot use them. Linux systems using
Gnome have a configuration system called gconf in which proxy information can be stored: Go
cannot access this. Butit can find proxy information if it is set in operating system environment

variables such as HTTP_PROXY or http_proxy using the function

TR 24 TR AR 55 a5 M HLAE N ST N o AR 2 IMIE AT LUK AR R 554) b
HEIEENEN R FHFR T « K20 B0 Yo i T LA o i B S s AR S35 2 (HIXLE(E ERT
Go MHIBLA o ALER FIRER T LA W25 -h e Ab 4k 5] autoproxy.pac SCIFHAS H Y AR
FrefE 2, AH Go(H BT AREMT JavaScript SCHF, I AREMIH . Gnome Linux RZE{f
HIHIBCE RE geonf A LIFMARERSSAEE, H Go WITHAT « /&, INAAEHRIER
G ERBEAS B B AR 45 = B (40 HTTP_PROXY 5§, http_proxy) , Go A L@ LA R i

el EE R

func ProxyFromEnvironment(req *Request) (*utl. URL, error)

If your programs are running in such an environment you can use this function instead of having to

explicitly know the proxy parameters.

BAMREIRE I TAEIX R ERE T, gl LA UL IORE, 1A BT E ERAR 55 8e 250

Authenticating proxy

S e

Some proxies will require authentication, by a user name and password in order to pass requests. A

common scheme is "basic authentication" in which the user name and passwotd ate concatenated

into a string "user:password" and then BASE64 encoded. This is then given to the proxy by the

HTTP request header "Proxy-Authorisation" with the flag that it is the basic authentication

B YRR 55 o BRE I P ARSI T B IR GRG0 5K . — A T “RA S
PYIGIE” K AR R N T “useripassword” , SRIFUE{T Base64 guht, SR
JEUNINE] HTTP 353k L1 “Proxy-Authorization” H, FAZERHLR 55 4%

The following program illlustrates this, adding the Proxy-Authentication header to the previous proxy

program:

TERT— D HE R SEAE 1S/ Proxy-Authorization Sk, 7RI :

/* ProxyAuthGet

*/

package main

import (
"encoding/base64"
"fmt"
"o
"net/http"
"net/http/httpudl"
"net/url"

"os"

const auth = "jannewmarch:mypassword"

func main() {

if len(os.Args) I= 3 {
fmt.Println("Usage: ", os.Args[0], "http://proxy-host:port
http:/ /host:port/page")
os.Exit(1)
}
proxy := os.Args[1]
proxyURL, ert := utl.Parse(proxy)
checkError(ert)
rawURL := os.Args[2]
utl, err := url.Parse(rawURL)

checkErrozr(etr)

// encode the auth

basic := "Basic " + base64.StdEncoding. EncodeToString([|byte(auth))

transport := &http.Transport{Proxy: http.ProxyURL(proxyURL)}

client := &http.Client{Transport: transport}

request, etr := http.NewRequest("GET", utl.String(), nil)

request.Header.Add("Proxy-Authorization", basic)

dump, _ := httputil. DumpRequest(request, false)

fmt.Println(string(dump))

// send the request

response, etr := client.Do(request)

checkError(ert)

fmt.Println("Read ok")

HTTPS connections by clients

%7 A kS HTTPS 8%

For secure, encrypted connections, HTTP uses TLS which is described in the chapter on security.

The protocol of HTTP+TLS is called HTTPS and uses https:// utls instead of http:// utls.

NPRAEEERER 22 Mg, HTTP i HAEZ s T il IRY TLS £k, HTTP+TLS [
PRSRR O HTTPS, B8] heeps://Hihik, A heep://Hidk

Servers are required to return valid X.509 certificates before a client will accept data from them. If the
certificate is valid, then Go handles everything under the hood and the clients given previously run

okay with https URLs.

55 s AT 25 b 32 A BR BTIR A1 AT 200 X509 IE4 . WERIEB AR, Go XAEN
SEPRIF I A RIS, % P o (e H HTTPS fbhk @ f1LART TAES —fE .

Many sites have invalid certificates. They may have expired, they may be self-signed instead of by a
recognised Certificate Authority or they may just have errors (such as having an incorrect server
name). Browsers such as Firefox put a big warning notice with a "Get me out of here!" button, but

you can carry on at your tisk - which many people do.

Y MR TCRUIES o IXESER R REC AT, B2 BT840, B LEART R
HEB AR AL A4 ; Sl A T) RE U2 PSS 1 (FL A 55 d A FRAXT) o JH s (A Firefox) ,
SRR MR ESIER, BRH_LECE “SIRVETT T S, AEARH R AT SRR SR K
- IRZNZIX A

Go presently bails out when it encounters certificate errors. There is cautious support for carrying on
but I haven't got it working yet. So there is no current example for "carrying on in the face of

adversity :-)". Maybe later.

Go HRIEIBRNEBERR, 2 bails oute X 4k&: TAERY S FFFRHE, FIABA S| EH
W Jik. B, HEftEa “elb X" A7) o). LU,

Servers

5545

The other side to building a client is a Web server handling HTTP requests. The simplest - and
eatliest - servers just returned copies of files. However, any URL can now trigger an arbitrary

computation in current servers.

XD i, 531 Web IR55 475 ZALHE HTTP 353K . e fie i) F A Al 55 U2 IR
[BISCHRIEIAS. SR, ERTHI MRS e L, BE(E—1 URL #RATRERL AT

File server

SRR Ss

We start with a basic file server. Go supplies a multi-plexer, that is, an object that will read and
interpret requests. It hands out requests to handlets which run in their own thread. Thus much of the
work of reading HTTP requests, decoding them and branching to suitable functions in their own

thread is done for us.

AP AR SRS ST iR e Go $fit 71 multi-plexer, Rl S2IBURIAERE IR A
R EIERLIBITAE A CLRED) handlers. JXFE, P2 HTTP 35K, fRALIFH
BRI 1E IRE LA TAFHRRT AR B AR AT

For a file setver, Go also gives a FileServer object which knows how to deliver files from the local file
system. It takes a "root" directory which is the top of a file tree in the local system, and a pattern to
match URLs against. The simplest pattern is "/" which is the top of any URL. This will match all

URLs.

XTI S5 i, Go g fit 17— FileServer R4, & MIE U] A AT A SCIF ARG SCF
EHRE—A “root” HF, % HFRIEAM RGP SRR T ; I8A — 4% URL F TR
Bise mfERMREUR /7, RRFTA URL TIHR, AT LADLECH A URL.

An HTTP server delivering files from the local file system is almost embarrassingly trivial given these

objects. It is

HTTP 55 a MASH SO RGE A SCHER IR T, LR AR KON RUB AR T

fmt.Println("Fatal error ", err.Error())

os.Exit(1)

This server even delivers "404 not found" messages for requests for file resources that don't exist!

FE M EREB| NSO RIER, XDIRGFaRE AL T “404 R4KE” MUER!

Handler functions

AL 3 PR % (Handler function)

In this last program, the handler was given in the second argument to ListenAndServe. Any number

of handlers can be registered first by calls to Handle or handleFunc, with signatures

=P, handler #E NS —ABEUELS ListenAndServe. 1] LSBT AMER £ handler

{i£ Handle 5f handleFunc i . M H=:

func Handle(pattern string, handler Handler)

func HandleFunc(pattern string, handler func(*Conn, *Request))

The second argument to HandleAndSetve could be nil, and then calls are dispatched to all registered
handlers. Each handler should have a different URL pattern. For example, the file handler might have
URL pattern "/" while a function handler might have URL pattern "/cgi-bin". A mote specific

pattern takes precedence over a more general pattern.

HandleAndServe (55 — /M2 HUE] LUE nil, P SHMIRE A CEEMAY handler. £7%F
SIRGERA AR URL DERCA . 4R, FIRESCHE handler [URL DUfCREAZE" /", Mi—4
PRI handler) URL PCRCAR R /cgi-bin" s X B EARAYRA N Sedim T M=,

Common CGI programs are test-cgi (written in the shell) or ptintenv (written in Perl) which print the

values of the environment variables. A handler can be written to work in a similar manner.

HILH CGL A test-cgi(shell #£77)8k printenv(Per] F2J7) F K FT EIEAEAS I H. 7T LALL
handler FIZEELAY 77 2 A

/* Print Env

*/

package main

import (
"t
"net/http"
"os"

)

func main() {

// file handler for most files
fileServer := http.FileSetver(http.Dit(" /vat/www"))

http.Handle("/", fileSetver)

// function handler for /cgi-bin/printenv

http.HandleFunc("/cgi-bin/printenv", printEnv)

// deliver tequests to the handlets
ert := http.ListenAndServe(":8000", nil)
checkError(ert)

// That's it!

func printEnv(writer http.ResponseWriter, req *http.Request) {
env := os.Environ()
writer.Write([[byte("<h1>Environment</h1>\n<pre>"))
for _, v := range env {
writer. Write([[byte(v + "\n"))
}
writer.Write([[byte("</pte>"))

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal etror ", ett.Etroz())

os.Exit(1)

Note: for simplicity this program does not deliver well-formed HTML. It is missing html, head and

body tags.

T I, K FFA AT HTML. (X5 htmls head Fl] body Fr25.

Using the cgi-bin directory in this program is a bit cheeky: it doesn't call an external program like CGI
scripts do. It just calls a Go function. Go does have the ability to call external programs using

os.ForkExec, but does not yet have support for dynamically linkable modules like Apache's mod_petl

X REFFAEM I cgi-bin H I A RUZEHL 0B IFBCA A ANEIY CGT IARRF, 1 H 2
AT —"1 Go BN EREL. Go HiSL Al LA os.ForkExec i F AN HIFR Y, (HIA/NRESZHr
4 Apache] mod_perl JXFER ShAS I FE 2R

P

Bypassing the default multiplexer

233 BRIA Y multiplexer

HTTP requests teceived by a Go server are usually handled by a multiplexer the examines the path in
the HTTP request and calls the appropriate file handler, etc. You can define your own handlers.
These can either be registered with the default multiplexer by calling http.HandleFunc which takes a
pattern and a function. The functions such as ListenAndServe then take a nil handler function. This

was done in the last example.

Go IR 55 a8 HTTP 3R /2 1 multiplexer BE{TALEE, KA HTTP 355K A #5172,
SRIF A IE R ST handler 255 . ARt A] DUE LH CRY handlero D DERCEA S HORT—
RN E N ZEL, P http.HandleFunc, AT DI H R A EIARY multiplexer. f4 ListenAndServe
XFE BRI T LU nil {4 handler functions _E—/Mil 75t 2k REM -

If you want to take over the multiplexer role then you can give a non-zero function as the handler

function. This function will then be totally responsible for managing the requests and responses.

AN ERARAES I multiplexer (A, ARAVREEAT LAZE — D AEF R EAEON handler function, X4

PRECKE & A ST E B RN R o

The following example is trivial, but illustrates the use of this: the multiplexer function simply returns

a "204 No content" for all requests:

N AR R, e BT A muldplexer X A7 A71E K #S IR A4 “204 No

»
content :

/* ServerHandler

*/

package main

import (

Arbitrarily complex behaviour can be built, of course.

48R, thn] LA EMSICET AN RERY o

Templates

Bt

Many languages have mechanisms to convert strings from one form to another. Go has a template
mechanism to convert strings based on the content of an object supplied as an argument. While this is
often used in rewriting HTML to insert object values, it can be used in other situations. Note that this
material doesn't have anything explicitly to do with networking, but may be useful to network

programs.

TR IRFEIE = #OA FAF FR T A AL, T GO 18 5 M2 1B R — DX R A 2k
VENZHAG 38 T A ER AR)T AR E RS HTML BHE AT RAE, thiE T
F T T R, AT N AFFBOA B2 R4 0 AR5 5 AEO T M g g e 7 U AL -

Introduction

Most server-side languages have a mechanism for taking predominantly static pages and inserting a
dynamically generated component, such as a list of items. Typical examples are scripts in Java Server
Pages, PHP scripting and many others. Go has adopted a relatively simple scripting language in the

template package.

KL s A st = ROV 1 BR AR RS DU A — PSSR ANE, Wil s R H .
SR 2 A JSP. PHP HIVFZ HAE S HIIAT . GO Y template 5 FPRIFCT M] L
HIBAACIE S -

At the time of writing a new template package has been adopted. There is very little documentation
on the template packages. There is a small amount on the old package, which is currently still available
in the old/template. Thete is no documentation on the new package as yet apart from the reference

page. The template package changed with 60 (released 2011/09/07).

RIOAHTH] template SRR R, BT IR template BLHRGSCRE DRI AT, [HAY
old/template £ LI A /D B AR . B Ao An AYTE B DU BOA X TRy SOk . 6T

template 1 B 0I5 2[4 160 (released 2011/09/07).

We describe the new package here. The package is designed to take text as input and output different
text, based on transforming the original text using the values of an object. Unlike JSP or similat, it is

not restricted to HTML files but it is likely to find greatest use there.

FEIX L, FAHEIE T IR o LR A 1 (8 X GUE SR 15k SO 73U T AR
i A HH BSARIBUR RO SCAS o 5 JSP slZR RN, ERIPERAMUR T HTML 3CfF, H
FERRATRES A BRIV o

The original soutce is called a template and will consist of text that is transmitted unchanged, and
embedded commands which can act on and change text. The commands are delimited by {{ ... }} ,

similar to the JSP commands <%= ... =%> and PHPs <?php ... ?>.

SCHRINE cemplate , BUESURAEHTIT AR, LR G2 AT LRI OSOR . iy

SHEW {({ ..}, BOT ISP s <%= .. =%> 1 PHP 4 <?php..?>.

Inserting object values

BAXRIE

A template is applied to a Go object. Fields from that Go object can be inserted into the template,
and you can 'dig" into the object to find subfields, etc. The curtent object is represented as "', so that
to insert the value of the current object as a string, you use {{.}}. The package uses the fmt package

by default to work out the string used as inserted values.

BT GO X 5H.GO MR FBAHR A RIS , RalE IR 427 274,
L. HE GO, B B R RS A AR RART, AR DORA {{ R0 X
MUK fme CRAEIAER 77 B 6T H o

To insert the value of a field of the current object, you use the field name prefixed by .. For example,

if the object is of type

FHRA SRS G — P BEE, IREA BTSN, WIREHH ARIXTR
HIREL

type Person struct {
Name string
Age int
Emails [Istring

Jobs [1*Jobs

then you insert the values of Name and Age by

AL EAE AR T B Name H1 Age U1F

The name is {{Name}}.

The age is {{.Age}}.

We can loop over the elements of an array or other list using the range command. So to access the

contents of the Emails array we do

FATATLAE T range iy HRAEER— MR BE FERTHITR . FrAZHERE Emails $CHAE
B, BATAT LK AT

{{range .Emails}}

{{end}}

if Job is defined by

W Job & XA

type Job struct {
Embployer string

Role string

and we want to access the fields of a Person's Jobs, we can do it as above with a {{range .Jobs}}. An
alternative is to switch the current object to the Jobs field. This is done using the {{with ...}} ...

{{end}} construction, where now {{.}} is the Jobs field, which is an array:

WERFATHETTB] Person FEHHY Jobs, FATA LLX 4T {{range Jobs}}. iX&—Fml L%
YR RFEA Jobs FEI T i8I {{with ..}} .. {{end}} XFFITE, IE2{{}} #ATLA
2% Jobs FB 7 A0F:

{{with Jobs}}
{{range .}}
An employer is {{.Employer}}
and the role is {{.Role}}
{{end}}
{{end}}

You can use this with any field, not just an array. Using templates

VRAT AR X T BB A R B, AR T84l 7%, AR

Once we have a template, we can apply it to an object to generate a new string, using the object to fill
in the template values. This is a two-step process which involves patsing the template and then

applying it to an object. The result is output to a Writer, as in

AW TR PG E RAFESR PR — 7R, X R MR A
{Eo PR LB RO RAC AR, Y, I L — 1 Widter, 11F

t := template.New("Person template")
t, err := t.Parse(templ)
if err == nil {
buff := bytes.NewBufferString("")

t.Execute(buff, petson)

An example program to apply a template to an object and print to standard output is

N HDE MR R AR Y P AE XS BRI LR HER A -

/ ek
* PrintPerson

*/

package main

import (

" fmt"

"html/template"

func main() {
job1 := Job{Employer: "Monash", Role: "Honorary"}

job2 := Job{Employer: "Box Hill", Role: "Head of HE"}

person := Person {

Name: jan",

Age: 50,

Emails: [|string{"jan@newmarch.name", "jan.newmarch@gmail.com"},

Jobs: [[*Job{&jobl, &job2},

t := template.New("Person template")
t, err := t.Parse(templ)

checkEtror(ert)

err = t.Execute(os.Stdout, person)

checkErrozr(etr)

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal error ", ettr.Etroz())

os.Exit(1)

The output from this is

B

The name is jan.

The age is 50.

An email is jan@newmarch.name

An email is jan.newmarch@gmail.com

An employer is Monash

and the role is Honorary

An employer is Box Hill

and the role is Head of HE

Note that thete is plenty of whitespace as newlines in this printout. This is due to the whitespace we

have in our template. If we wish to reduce this, eliminate newlines in the template as in

EE, EEARZZARME, KR2FNERNBR P AR 2 H. WREHRE, Bk

BIF:

{{range .Emails}} An emailis {{.}} {{end}}

In the example, we used a string in the program as the template. You can also load templates from a

file using the function template.ParseFiles(). For some reason that I don't understand (and which

wasn't required in eatlier versions), the name assigned to the template must be the same as the

basename of the first file in the list of files. Is this a bug?

TEIXARBIFI, FATHFAF B TR . YREIFEL T LA 777% template ParseFiles() >k M
SO HARR . RS R, FRAR AN AR R (75 R AR I8 A T A R), G THAR AR 11 44
F B S SF R E R — SO A AT . 16D, IXSE BUG 12

Pipelines

i

The above transformations insert pieces of text into a template. Those pieces of text are essentially
arbitrary, whatever the string values of the fields are. If we want them to appear as part of an HTML
document (or other specialised form) then we will have to escape particular sequences of characters.
For example, to display arbitrary text in an HTML document we have to change "<" to "&It;". The
Go templates have a number of builtin functions, and one of these is the function html. These
functions act in a similar manner to Unix pipelines, reading from standard input and writing to

standard output.

IR BB R A B SO XS FRPEEAR_ERALE, AR R F R E. IR
FAAEENTHIAE HTML SCH (SRR e) i9—i, IEAFRN TR A
BERFER TR TS 0, BN ERSOASE HTML SCRHh, JRATENS <™ 2Ol “&de” o

GO Bt —2e A, Hpr —/2 htmle IXEERREIIERS Unix OEEEEL, bR
i N U S AN ZI ARG H

To take the value of the cutrent object " and apply HTML escapes to it, you write a "pipeline" in the

template

GSRARA T SRARBUCY A RABE L A HTML 30, ARATDMERTR S “EiE”

{{. | html}}

and similarly for other functions.

HATTIESAL.

Mike Samuel has pointed out a convenience function currently in the exp/template/html package. If
all of the entries in a template need to be passed through the html template function, then the Go
function Escape(t *template. Template) can take a template and add the html function to each node in
the template that doesn't already have one. This will be useful for templates used for HTML

documents and can form a pattern for similar function uses elsewhere.

Mike Samuel 511, HHIfE exp/template/html A AT — I ERIT 5. WAV BIRORH R
2% H e 25 heml BARREL, B2 Go 157 J7i% Escape(t *template. Template) it EAR IR
11JF7F heml PRECR BB A FAEZ R B BT frpe HIT HTML SCR RO AR
AR, FFREAEH A & R AR LR 7 32

Defining functions

M T

The templates use the string representation of an object to insert values, using the fmt package to
convert the object to a string. Sometimes this isn't what is needed. For example, to avoid spammers
getting hold of email addresses it is quite common to see the symbol '@ replaced by the word " at ",
as in "jan at newmarch.name". If we want to use a template to display email addresses in that form,

then we have to build a custom function to do this transformation.

BB AE I GAL I PR ER R EAIAE, (] fe BRI QAN TR B o AR, X
ANTRAATT o BIAN, R T AL M i SR Rk, W T R TS @
Brifey “at” , W0 “jan at newmarch.name” o UIRIATEMH— MR, WoRTEZRAP
IRk, AR ATRA TS A B E LD REMUX R AL

Each template function has a name that is used in the templates themselves, and an associated Go

function. These are linked by the type

TR AR PR B i RO RARAS BAT RO — 28K, ASRSRIRA PR AT AT 7 2075
B

type FuncMap map|[string]interface{}

For example, if we want our template function to be "emailExpand" which is linked to the Go

function EmailExpander then we add this to the functions in a template by

g, i RPN 1 BPA TR ECR " emailExpand” , FISKICHKE] Go pFi%{ EmailExpander,
SR BATVBOX AR N R B AR

t = t.Funcs(template.FuncMap {"emailExpand": EmailExpander})

The signature for EmailExpander is typically

EmailExpander 1 (50X AR IC -

func EmailExpander(args ...interface {}) string

In the use we are interested in, there should only be one argument to the function which will be a
string, Existing functions in the Go template library have some initial code to handle non-conforming
cases, so we just copy that. Then it is just simple string manipulation to change the format of the

email address. A program is

MR R MRS, BE A IS HW R, HHRN TR f£ Go I
BRI S REA VI HO ARG RAE BT & ZORAIIE O, BrABMTA R EE S A5, et
AL fAT LR T RF B R R AR S U FE IR ko R 20

The output is

oA

The template package allows you to define and use variables. As motivation for this, consider how we

might print each person's email address prefixed by theitr name. The type we use is again

template f, FVFRECE UM A e IXFEIAISIAL, ATREFRNT =% il A AT 1A 2 724
TR T IR P A7 A TR SR o FRATILAE XA~ 267

type Person struct {
Name string

Emails [Istring

To access the email strings, we use a range statement such as

N T Y5TR] email FIFTAFFFH, ATLLA] range, #TF

{{range .Emails}}
$83;
{{end}}

But at that point we cannot access the Name field as ' is now traversing the array elements and the
Name is outside of this scope. The solution is to save the value of the Name field in a variable that

can be accessed anywhere in its scope. Vatiables in templates are prefixed by '§'. So we wtite

ERFREIRHAE, BATCEN BRI B Name, R4 5 a4 (b il 4T R,
7Bt Name FEA GG HA. RITHER, 7B Name (78— A, IBAEMREELE
TEH AT AR AR T PSR R INATZR'S o BT A R] LUK FE

{{$name := Name}}
{{range .Emails}}

Name is {{$name}}, email is {{.}}

The program is

AT

with output

fri oy

Conditional statements

FHER

Continuing with our Person example, supposing we just want to print out the list of emails, without

digging into it. We can do that with a template

AREEFLNTHRA Person RYB-1-, BUEILATURARST HIHRAYIRPESIZE, AL H AR 7B
FATRT ARG 4+

Name is {{.Name}}

Emails are {{.Emails}}

This will print

Name is jan

Emails are [jan@newmarch.name jan.newmarch@gmail.com]

because that is how the fmt package will display a list.

RIAIXA fme G122 BIoR— 513

In many circumstances that may be fine, if that is what you want. Let's consider a case where it is
almost right but not quite. There is a JSON package to serialise objects, which we looked at in

Chapter 4. This would produce

FEVFZROUT, XM B, MRIGEREER . iERAFET—MEL, € /L7
FERTHMEA R . A4 JSON FHIMCNRIE, tERMTERE 4 E. RN

{"Name": Iljanll’

"Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com"]

}

The JSON package is the one you would use in practice, but let's see if we can produce J[SON output
using templates. We can do something similar just by the templates we have. This is a/most right as a

JSON serialiser:

JSON 2 MRZAESLEA M, HRIEHANTERRANVEAREB A JSON iy it .
AT LA 28N TA IR . 1X /L7021 JSON BT :

{"Name": "{{.Name}}",
"Emails": {{ Emails}}

}

It will produce

BoXt A

{"Name": "jan",
"Emails": [jan@newmarch.name jan.newmarch@gmail.com]

}

which has two problems: the addresses aren't in quotes, and the list elements should be ', separated.

HAT PR HE AT AES 5, SIRPETRVIZE, k.

How about this: looking at the atray elements, putting them in quotes and adding commas?

RREART: EEEHPRITR, WIS 5 E S a2

K

{"Name": {{Name}},
"Emails": [
{{range Emails}}
",
{{end}}

It will produce

BoXt A

{"Name" "]an",

"Emails": ["jan@newmarch.name", "jan.newmarch@gmail.com"]

}

(plus some white space.).

(I E—225).

Again, almost cortect, but if you look carefully, you will see a trailing ', after the last list element.

According to the JSON syntax (see http://www.json.org/, this trailing ', is not allowed.

Implementations may vary in how they deal with this.

FIRE, XFESEILF2IERR, EHMREAFAE, meaRREA °, 7 fER/AENIIRITR.
R4l JSON [IEIL (25 _http://www.json.org/, JX LRI, RASRIFNT. XFFNES
RATREXAHTIAE

What we want is "print every element followed by a',’ except for the last one." This is actually a bit
hard to do, so a better way is "print every element precededby a ', except for the first one." (I got this
tip from "brianb" at Stack Overflow.). This is easier, because the first element has index zero and

many programming languages, including the Go template language, treat zero as Boolean false.

IAVEESTEN A AR e i I TT R R T Re— e "R RO, — MR
ZHATENFTAICERER T 7% " (BAE "brianb"Y Stack Overflow FF2 7 #HU) . XFEH ST
LB, BREASE— I ICRFRGIN 0, IREHFEES AL GO BMCERRE 0 e /R AR false.

One form of the conditional statement is {{if pipeline}} T1 {{else}} TO {{end}}. We nced the
pipeline to be the index into the array of emails. Fortunately, a variation on the range statement gives

us this. There are two forms which introduce variables

SAETER I — FIE R 2 {{if pipeline} } T1 {{else}} TO {{end}}. Fk{ 1752515 pipeline SEAHL
H IR RN RS . B2, range IOARIBEAATRATHRAE TiX— 1. AWMIER,

Elboi

{{range $elmt := array}}

{{range $index, $elmt := array}}

So we set up a loop through the array, and if the index is false (0) we just print the element, otherwise

print it preceded by a',". The template is

FrUABAT T A, AnRIZZR 512 false (0) , FATFURATHIFIRX AR EIHICRK, AMHTE]

E R HTTR . BRI

{"Name": "{{.Name}}",
"Emails": [

{{range $index, $elmt := .Emails}}

and the full program is

TR

if err 1= nil {
fmt.Println("Fatal etror ", ett.Etroz())

os.Exit(1)

This gives the correct JSON output.

L2 H A2 IEARY JSON #ai

Before leaving this section, we note that the problem of formatting a list with comma separators can
be approached by defining suitable functions in Go that are made available as template functons. To
re-use a well known saying, "There's more than one way to do it!". The following program was sent to

me by Roger Peppe:

FEGEAARTTZ AT, FATSE T HE S0 A SRR R, AP 7 =02 rl AR R 2
TESUE S REL RIS, TERANIE 4% T R /2 Roger Peppe 25K MY

/**

* Sequence.go
* Copyright Roger Peppe
*/

package main

import (

"errors"

" fmt"

"text/template"

var tmpl = * {{$comma := sequence """, "}}
{{range $}} {{$comma Next}} {{.}} {{end}}
{{$comma := sequence "" ", "} }

{{$colour := cycle "black" "white" "red"}}

{{range $}} {{$comma.Next}}{{.}} in {{$colour.Next}} {{end}}

var fmap = template. FuncMap{
"sequence": sequenceFunc,

"cycle": cycleFunc,

func main() {
t, err := template.New("").Funcs(fmap).Parse(tmpl)
if err 1= nil {
fmt Printf("parse etror: %ov\n", etr)
teturn
}
err = t.Execute(os.Stdout, [Jstring{"a", "b", "c", "d", "e", "f"})
if err 1= nil {

fmt.Printf("exec error: %v\n", ett)

type generator struct {
ss [[string
i int

f func(s [Jstring, i int) string

func (seq *generatot) Next() string {
s := seq.f(seq.ss, seq.i)
seq.i++

return s

func sequenceGen(ss [Jstting, i int) string {
ifi >= len(ss) {
return ss[len(ss)-1]

}

return ssfi]

func cycleGen(ss [Jstting, i int) string {

return ss[i%len(ss)]

func sequenceFunc(ss ...string) (*generator, error) {
iflen(ss) == 0 {
return nil, errors.New("'sequence must have at least one element")

}

return &generator{ss, 0, sequenceGen}, nil

func cycleFunc(ss ...string) (*generator, errot) {
if len(ss) == 0 {

return nil, errors.New("cycle must have at least one element")

}

return &generator{ss, 0, cycleGen}, nil

Conclusion

The Go template package is useful for certain kinds of text transformations involving inserting values
of objects. It does not have the power of, say, regular expressions, but is faster and in many cases will

be easier to use than regular expressions

template FLAEXS T FLE S Y SURFLAG RS Nl A RAERE L2 IEE A . BAAERALE
MZEEAIRER A, HERAT LI MEA A R, V200 T IR FGA A)
Mo

A Complete Web Server

—/NSEREH) Web 5525

This chapter is principally a lengthy illustration of the HTTP chapter, building a complete Web server
in Go. It also shows how to use templates in order to use expressions in text files to insert variable

values and to generate repeated sections.

XL ERFRT Heep B— M1,] Go N, — 1N 5e &) Web IR558%. BEHLEIR 1 ANT7E
i il AR AR SRS Pl A AR R B R B

Introduction

Wi A

I am learning Chinese. Rather, after many years of trying I am still astemptingto learn Chinese. Of

course, rather than buckling down and getting on with it, I have tried all sorts of technical aids. I tried

DVDs, videos, flashcards and so on. Eventually I realised that there wasn't 2 good computer program

for Chinese flashcards, and so in the interests of learning, I needed to build one.

PRI, WHRHR, RESRIFES TREZME. U8, WTETE, TEXMEHR
LRI BT Hp T2 DVD #0R8, WU, o~ >)idi K445, H
RRaREIRRX ER A — MR S e B, FrAH T2 SRR, kT2
BT

I had found a program in Python to do some of the task. But sad to say it wasn't well written and
after a few attempts at turning it upside down and inside out I came to the conclusion that it was
better to start from scratch. Of course, 2 Web solution would be far better than a standalone one,
because then all the other people in my Chinese class could share it, as well as any other learners out

there. And of course, the server would be written in Go.

AT —fEH] Python 5 RIREFy AT LAZE K —LEXFERIMEST . (HAREIRAGUL, ESHIARIR
b, MHEREE LR NEE, R E LIRS e IR Web fif
PRI EAREMNER, B0 245 A SR RZARE 222 5T SC & . 498,
XG5 FA Go HEE RS .

The flashcards setver is running at cict.bhtafe.edu.au:8000. The front page consists of a list of

flashcard sets cutrently available, how you want a set displayed (random card order, Chinese, English
ot random), whether to display a set, add to it, etc. I've spent too much time building it - somehow
my Chinese hasn't progressed much while I was doing it... It probably won't be too exciting as a

program if you don't want to learn Chinese, but let's get into the structute.

flashcards I 55 24151 T1E cictbhtafe.eduau: 8000, 7E4FTT1E H AT flashcard 20513, VRAE/E
27 (FERL card BYMEFE, H3C, ESCEEENL) , BEErn—4, dEmE—%&, LT
RE W RPRAEE - ARSI SO BE R, THIZE 4. E T REA SRS
N T — MR, ISRIRAEE SRS, SR PR B R 14 H e

Static pages

R

Some pages will just have static content. These can be managed by a fileSetver. For simplicity I put all
of the static HTML pages and CSS files in the html directory and all of the JavaScript files in the

jsctipt directory. These are then delivered by the Go code

AL FUR S A N AY . X2 T] LA FILESERVER 3. b 7R, FALHAN
A HTML DU CSS SCHE A heml H S, ArAHY JavaScript SCHEECH JSerdpe Hoe 24

JRIXLESE A4S Go i

fileSetver := http.FileServer("jsctipt", " /jsctipt/")

http.Handle("/jscript/", fileServer)

fileSetver = http.FileServer("html", " /html/")

http.Handle(" /html/", fileSetver)

Templates

AR

The list of flashcard sets is open ended, depending on the number of files in a ditectory. These should
not be hardcoded into an HTML page, but the content should be generated as needed. This is an

obvious candidate for templates.

flashcard 4UFIFGEITHEN, I HP R SRR XA IR A 2] —
HTML DU, (AR RG24 e X — W B A .

The list of files in a directoty is genetated as a list of strings. These can then be displayed in a table

using the template

FSR I SO AT LA 2 — D R B SI3R . RE B AT AT A — DR

<table>
{{range .}}
<tr>
<td>
()
</td>
</tr>

</table>

The Chinese Dictionary

FR3CIA S

Chinese is a complex language (aren't they all :-(). The written form is hieroglyphic, that is
"pictograms" instead of using an alphabet. But this written form has evolved over time, and even
recently split into two forms: "traditional” Chinese as used in Taiwan and Hong Kong, and
"simplified" Chinese as used in mainland China. While most of the characters are the same, about
1,000 ate diffetent. Thus a Chinese dictionary will often have two wtitten forms of the same

character.

HEE - MERINES (REIFA A0 o BIENEIICE, 2 "R, AZMHE
M—AE, ERXA B RE N R, DRI R B ZRM R "5k f
SCRE AR) S VSRR R MR eSOl AR P E R AR R 2B SO R IR
R EARZ 1000 FOCFRAFERY, A, HOCH) S EAA PR g A0

Most Westetrners like me can't understand these characters. So thete is a "Latinised" form called
Pinyin which writes the characters in a phonetic alphabet based on the Latin alphabet. It isn't quite
the Latin alphabet, because Chinese is a tonal language, and the Pinyin form has to show the tones
(much like acccents in French and other European languages). So a typical dictionaty has to show

four things: the traditional form, the simplified form, the Pinyin and the English. For example,

FIRZHETT N, BICTRIRAFIZLE AT FirLh, A1 “Latinised FUTEFRON™ HEEHY
FREE AL T AR EERI PEE 55 —bke XA T 58, OAX 2 S —FfiiE =
Fl, PSSR RIS RGEREAIHABKINTE B acccents) o [ALL, —/~diLA)
HI A TR SRR, PRI R. B,

Traditional Simplified Pinyin |English

it U hio |good

But again thete is a litde complication. There is a free Chinese/English dictionary and even bettet,

you can download it as a UTF-8 file, which Go is well suited to handle. In this, the Chinese characters

are written in Unicode but the Pinyin characters are not: although there are Unicode characters for

letters such as 'd', many dictionaries including this one use the Latin 'a’' and place the tone at the end
‘o

of the word. Here it is the third tone, so "hao" is written as "hao3". This makes it easier for those who

only have US keyboards and no Unicode editor to still communicate in Pinyin.

(HRERA A 2R XEA—NEAFAIE B SES0as, fRal LU #E & —4> UTE-8
M, dEETES Go ZHAbH. fEIX, HOSCIFAFEEMS ALE Unicode H{EZBFE A
A Unicode FAFIGFHRE, W1 “a” IR Z A MLAFE AR PR T 2 R 25 AL 371 485 2
EXBEERE=DEM, Ll “hio” #E A “HAO3” o XS TS AL G EE
SR NIBEA Unicode BY4wias 19 A2k 5 B ka8

This data format mismatch is not a big deal: just that somewhere along the line, between the original
text dictionary and the display in the browser, a data massage has to be performed. Go templates
allow this to be done by defining a custom template, so 1 chose that route. Alternatives could have

been to do this as the dictionaty is read in, or in the Javascript to display the final characters.

IXFPEARAS AR ILEC AR — R A FUR XA TR SEAL I T, 2R B SO U i
AENESRZ], BRI Go Bt VL B & L— MR, FrAFREs 7ix4
g AT LR dictonary HEH, B i JavaScript SR BoR B A FAF o

The code for the Pinyin formatter is given below. Please don't bother reading it unless you are really

interested in knowing the rules for Pinyin formatting.

PrERE LR ARIAE NS o IEA BRI B3, BRAFRE A AR E i
AR o

package pinyin
import (

"ioll

" Strjngs L
)

func PinyinFormatter(w io.Wtiter, format string, value ...interface{}) {
line := value[0].(stting)
words := strings.Fields(line)
for n, word := range words {
// convert "u:" to "i" if present
uColon := strings.Index(word, "u:")
if uColon != -1 {
patts := strings.SplitN (word, "u:", 2)
word = patts[0] + "i" + parts[1]
}
ptintln(word)
// get last character, will be the tone if present
chars := [Jrune(word)
tone := chats[len(chars)-1]
if tone =="'5' {

words[n] = string(chars[0 : len(chars)-1])

oAccent = map[int]rune {
'1': "\u014d',
'2': "\u00£3',
'3" "\u01d2', // "\u014f,
'4': "\u00£2'}
uAccent = map[int]rune {
'1": "\uO16b',
'2': "\u00fa',
'3': "\u01d4', // "\u016d',
'4': "\u00£9'}
dAccent = map[int]rune {
"1 ',
28
'3 ",

l4|: lﬁl}

func addAccent(word string, tone int) string {
/*
* Based on "Where do the tone marks go?"
* at http:/ /www.pinyin.info/rules/where.html
*/

n := strings.Index(word, "a")
ifnl=-1{
aAcc := aAccent[tone]
// teplace '2' with its tone vetsion
word = word[0:n] + string(aAcc) + word[(n+1):len(word)-1]

} else {

n := sttings.Index(word, "e")

ifnl=-1{

} else {

eAcc := eAccent[tone]
wotd = word[0:n] + string(eAcc) +

word[(n+1):len(word)-1]

n = strings.Index(word, "ou")
ifnl=-1{
oAcc := oAccent[tone]
wotd = word[0:n] + string(oAcc) + "u" +
word[(n+2):len(word)-1]
} else {
chats := [Jrune(word)
length := len(chats)

// put tone onthe last vowel

for n, _ := range chars {
m:=length-n-1

switch chars[m)] {

case 'i"
chars[m] = iAccent[tone]
break L

case 'o"
chars[m] = oAccent[tone]
break L

case 'u":

chars[m] = uAccent[tone]
break L

case "ii";

chars[m] = tiAccent[tone]

break L
default:
}
}
word = stting(chats[0 : len(chats)-1])
}
}
}
return word

How this is used is illustrated by the function lookupWord. This is called in response to an HTML

Form request to find the English words in a dictionary.

lookupWord PREL I 1 /ERE A E o X2 AE T S A SCRIAY Heml TR A1

WA

func lookupWord(rw http.ResponseWriter, req *http.Request) {
wotd := req.FormValue("word")

words := d.LookupEnglish(word)

pinyinMap := template.FormatterMap {"pinyin": pinyin.PinyinFormatter}
t, etr := template.ParseFile("html/DictionatyEntry.html", pinyinMap)
if err |= nil {
http.Error(rw, err.String(), http.StatusInternalServerError)
return

}

t.Execute(tw, wotds)

The HTML code is

HTML {#4

</pre>
</td>
</tr>
{.end}
{{end}}
{{end}}

</table>
</body>

</html>

The Dictionaty type

TFHER

The text file containing the dictionary has lines of the form

traditional simplified [pinyin] /translation/ translation/.../

For example,

If 4F [hao3] /good/well/propet/good to/easy to/very/so/ (suffix indicating completion or

readiness)/

FHLEP A SOAR SO A TR R

B I (D

B,

I 1 [hao3] /good/well/proper/good to/easy to/very/so/ (suffix indicating completion or

readiness)/

We store each line as an Entry within the Dictionaty package:

FA'1HY Dictionary £ FH {76 1) —1T Entry:

type Entry struct {

Traditional string
Simplified string
Pinyin string

Translations [Jstring

The dictionaty itself is just an array of these entties:

FHAR G HJE— entry A :

type Dictionary struct {

Entries [[*Entry

Building the dictionary is easy enough. Just read each line and break the line into its vatious bits using

simple string methods. Then add the line to the dictionary slice.

T SRR S 1. B] B 745 BT IR AT R BT 0 &l SRJE NNz

dictionary slice 1o

Looking up entries in this dictionary is straightforward: just search through until we find the
appropriate key. There are about 100,000 entries in this dictionary: brute force by a linear search is

fast enough. If it were necessaty, faster storage and search mechanisms could easily be used.

FERXAGR IR HARE R EE A R BRI A B B E R XA TIA
10 HEARZEH : BAMSMER R RS WERATE, "] LAE FERAG AT R
LA o

The original dictionary grows by people on the Web adding in entries as they see fit. Consequently it

isn't that well organised and contains repetitions and multiple entries. So looking up any word - either

by Pinyin or by English - may return multiple matches. To cater for this, each lookup teturns a "mini

dictionary”, just those lines in the full dictionary that match.

JEIA SR SR A NSNS FARA AN M ZE BEIE & o T LAVEA R A SR A T 2R M4
H o IRIAEHATMHIE - Toig Rl P et - nRER 2 ILRC. O 1 RLAHX A Al

TR E D “mini dictionary” , FAGHRLEAEF ML

The Dictionary code is

Dictionary i)

package dictionary

import (
"buﬁo"

//"fmt"

type Entry struct {

Traditional string
Simplified string
Pinyin string

Translations [Jstring

func (de Entty) String() string {
stt := de.Traditional + * * + de.Simplified + * * + de.Pinyin

for _, t := range de.Translations {

func (d *Dictionary) LookupEnglish(eng stting) *Dictionary {
newD := new(Dictionary)
v := make([[*Entry, 0, 100)
for n := 0; n < len(d.Entries); n++ {
de := d.Entries[n]
for _, e := range de.Translations {
if e == eng {

v = append(v, de)

}

newD.Entries = v

return newD

func (d *Dictionary) LookupSimplified(simp string) *Dictionary {
newD := new(Dictionary)

v := make([]*Entry, 0, 100)

for n := 0; n < len(d.Entries); n++ {
de := d.Entries[n]
if de.Simplified == simp {

v = append(v, de)

}

newD.Entries = v

return newD

v = append(v, &de)
numEntries++
}
// fmt.Printf("Num enttries %d\n", numEntries)
d.Entties = v

}

func parseDictEntry(line string) (string, string, string, [Jstring) {
// format is
// trad simp [pinyin] /trans/trans/.../
tradEnd := strings.Index(line, " ")
trad := line[0:tradEnd]

line = strings. TtimSpace(line[tradEnd:])

simpEnd := sttings.Index(line, " ")
simp := line[0:simpEnd]

line = strings. TtimSpace(line[simpEnd:])

pinyinEnd := strings.Index(line, "]")
pinyin := line[1:pinyinEnd]

line = strings. TrimSpace(line[pinyinEnd+1:])

translations := strings.Split(line, "/")

// includes empty at start and end, so

translations = translations|[1 : len(translations)-1]

return trad, simp, pinyin, translations

Flash cards

Flash cards

Each individual flash catd is of the type Flashcard

FF flash card {357 Flashcard

type FlashCard struct {
Simplified string
English string

Dictionary *dictionary.Dictionary

At present we only store the simplified character and the english translation for that character. We
also have a Dictionary which will contain only one entry for the entry we will have chosen

somewhere.

FURTBA AR AP RERIRZ PR B0 . BA TR AR ERY A entry BIXEY

Dictionary H.

A set of flash cards is defined by the type

flash cards ZH A4 57

type FlashCards struct {
Name string
CardOrder string
ShowHalf string

Cards [[*FlashCard

where the CardOrder will be "random" or "sequential" and the ShowHalf will be

"RANDOM_HALF" or "ENGLISH_HALF" or "CHINESE_HALF" to determine which half of a

new card is shown first.

Hrh CardOrder #4/2 “random” B{# “sequential” FI ShowHalf }4/& “RANDOM_HALF” &
“ENGLISH_HALF” =[] “CHINESE_HALF” i —Hii)-FH, g SCRIsESCH

TR E SRR

The code for flash cards has nothing novel in it. We get data from the client browser and use JSON

to create an object from the form data, and store the set of flashcards as a JSON string.

flash cards I ARBLFHFBA TR . AT T &5 P S R AR P = B 2 1 JSON
RO ARG, IR AT flasheards N —4~ JSON F4F A

The Complete Server

et iN)i S

The complete setver is

55 a A LRI~

/* Server

*/

package main

import (

" fmt"

//fileSetver := http.FileServer(" /var/www/go/chinese/jsctipt", " /jsctipt/")
fileServer := http.StripPrefix("/jsctipt/", http.FileSetver(http.Dir("jscript")))

http.Handle("/jsctipt/", fileSetver)

// fileServer = http.FileSetver(" /vat/www/go/chinese/html", " /html/")
fileServer = http.StripPrefix("/html/", http.FileSetver(http.Dit("html")))

http.Handle(" /html/", fileSetver)

http.HandleFunc("/wordlook", lookupWord)
http.HandleFunc("/flashcards.html", listFlashCards)
http.HandleFunc("/flashcardSets", manageFlashCards)
http.HandleFunc("/searchWord", seatchWord)
http.HandleFunc("/addWord", addWozrd)

http.HandleFunc("/newFlashCardSet", newFlashCardSet)

// deliver tequests to the handlets
err := http.ListenAndServe(pott, nil)
checkErrozr(etr)

// That's it!

func indexPage(rw http.ResponseWriter, req *http.Request) {
index, _ := ioutilReadFile("html/index.html")

rw. Write([]byte(index))

func lookupWord(rw http.ResponseWriter, req *http.Request) {
wotd := req.FormValue("word")

words := d.LookupEnglish(word)

//t := template.New("PinyinTemplate")
t := template.New("DictionaryEntry.html")
t = t.Funcs(template.FuncMap {"pinyin": templatefuncs.PinyinFormatter})
t, ert := t.PatseFiles("html/DictionaryEntry.html")
if err 1= nil {
http.Error(tw, err.Error(), http.StatusInternalServerError)
return

}

t.Execute(tw, wotds)

type DictPlus struct {
*dictionary.Dictionary
Word string

CardName string

func searchWord(tw http.ResponseWriter, req *http.Request) {
wotd := req.FormValue("word")
searchType := req.FormValue("searchtype")

cardName := req.FormValue("cardname")

var words *dictionary.Dictionary

var dp [[DictPlus

if searchType == "english" {
words = d.LookupEnglish(word)
d1 := DictPlus{Dictionaty: words, Word: word, CardName: cardName}
dp = make([|DictPlus, 1)

dp[0] = d1

} else {

words = d.LookupPinyin(word)
numTrans := 0
for _, entry := range words.Entries {
numTrans += len(entry. Translations)
}
dp = make([|DictPlus, numT'rans)
idx:=0
for _, entty := range words.Entties {
for _, trans := range entry.Translations {
dict := new(dictionary.Dictionary)
dict.Entries = make([[*dictionary.Entry, 1)
dict.Entties[0] = entty
dp[idx] = DictPlus{
Dictionary: dict,
Wortd: trans,
CardName: cardName}

idx++

//t := template.New("PinyinTemplate")

t := template.New("ChooseDictionaryEntry.html")

t = t.Funcs(template.FuncMap {"pinyin": templatefuncs.PinyinFormatter})

t, ert := t.PatseFiles("html/ChooseDictionatyEntry.html")

if err 1= nil {

fmt.Println(ert.Etror())

http.Error(tw, ert.Error(), http.StatusInternalServerError)

return

}

t.Execute(tw, dp)

func newFlashCardSet(rw http.ResponseWriter, req *http.Request) {

defer http.Redirect(tw, req, "http:/flashcards.html", 200)

newSet := req.FormValue("NewFlashcard")
fmt.Println("New cards", newSet)
// check against nasties:

b, ett := regexp.Match("[/$~]", [Ibyte(newSet))

if err 1= nil {
return

}

ifb {

fmt.Println("No good string'")

return

flashcards.NewFlashCardSet(newSet)

return

func addWord(tw http.ResponseWriter, req *http.Request) {
url := req.URL
fmt.Println("url", utl. String())

fmt.Println("query", url RawQuery)

wotd := req.FormValue("word")
cardName := req.FormValue("cardname")
simplified := req.FormValue("simplified")
pinyin := req.FormValue("pinyin")
traditional := req.FormValue("traditional")

translations := req.FormValue("translations")

fmt.Println("word is ", wotd, " card is ", cardName,
" simplified is ", simplified, " pinyin is ", pinyin,
" trad is ", traditional, " trans is ", translations)
flashcards. AddFlashEntry(cardName, word, pinyin, simplified,
traditional, translations)
// add another card?

addFlashCards(tw, cardName)

}

func listFlashCards(rw http.ResponseWriter, req *http.Request) {

flashCardsNames := flashcards.ListFlashCardsNames()

t, ert := template.ParseFiles("html/ListFlashcards.html")

if err 1= nil {
http.Error(tw, err.Error(), http.StatusInternalServerError)
return

}

t.Execute(tw, flashCardsNames)

/*

* Called from ListFlashcards.html on form submission

*/
func manageFlashCards(tw http.ResponseWriter, req *http.Request) {

set := req.FormValue("flashcardSets")
order := req.FormValue("order")
action := req.FormValue("'submit")
half := req.FormValue("half")

fmt. Println("'set chosen is", set)
fmt.Println("order is", ordet)

fmt.Println("action is", action)

cardname := "flashcardSets/" + set

//components := strings.Split(req.URL.Path[1:],"/", -1)
//catdname := components[1]
//action := components|[2]
fmt.Println("cardname", cardname, "action", action)
if action == "Show cards in set" {
showFlashCards(rw, cardname, ordet, half)
} else if action == "List words in set" {
listWords(tw, cardname)
} else if action == "Add cards to set" {

addFlashCards(rw, set)

func showFlashCards(tw http.ResponseWriter, cardname, ordet, half string) {
fmt.Println("Loading card name", cardname)

cards := new(flashcards.FlashCatds)

//cards.Load(cardname, d)
//flashcards.Save]SON(cardname + ".json", cards)
flashcards.LoadJSON(cardname, &catds)

if order == "Sequential" {

cards.CardOrder = "SEQUENTIAL"
} else {
catds.CardOrder = "RANDOM"

}

fmt.Println("half is", half)

if half == "Random" {

cards.ShowHalf = "RANDOM_HALF"
} else if half == "English" {

cards.ShowHalf = "ENGLISH_HALF"
} else {

cards.ShowHalf = "CHINESE_HALF"
}
fmt.Println("loaded cards", len(cards.Cards))

fmt.Println("Card name", cards.Name)

//t := template.New("PinyinTemplate")
t := template.New("ShowFlashcards.html")

t = t.Funcs(template.FuncMap {"pinyin": templatefuncs.PinyinFormatter})

t, etr := t.ParseFiles("html/ShowFlashcards.html")

if err 1= nil {
fmt. Println(etr.Error())
http.Error(tw, err.Error(), http.StatusInternalServerError)
return

}

etr = t.Execute(tw, cards)

if err 1= nil {
fmt.Println("Execute error " + err.Error())
http.Error(tw, ert.Error(), http.StatusInternalServerError)

return

func listWords(tw http.ResponseWriter, cardname stting) {
fmt Println("Loading card name", cardname)
catds := new(flashcards.FlashCatds)
//cards.Load(cardname, d)
flashcards.Load]JSON(cardname, cards)
fmt.Println("loaded cards", len(cards.Cards))

fmt.Println("Card name", cards.Name)

//t := template.New("PinyinTemplate")
t := template.New("ListWords.html")
if t.Tree == nil | | tRoot == nil {
fmt.Println("New t is an incomplete or empty template")
}
t = t.Funcs(template.FuncMap {"pinyin": templatefuncs.PinyinFormatter})
t, ett := t.ParseFiles("html/ListWords.html")
if t. Tree == nil | | tRoot == nil {

fmt.Println("Parsed t is an incomplete or empty template")

if err 1= nil {
fmt.Println("Parse etror " + ert.Error()

http.Error(tw, ert.Error(), http.StatusInternalServerError)

return
}
etr = t.Execute(tw, cards)
if etr 1= nil {
fmt.Println("Execute error " + ert.Error())
http.Error(tw, err.Error(), http.StatusInternalServerError)
return

}

fmt.Println("No etror ")

func addFlashCards(tw http.ResponseWriter, cardname string) {
t, etr := template.ParseFiles("html/AddWordToSet.html")
if err 1= nil {
fmt.Println("Parse etror " + ert.Etror())
http.Error(tw, err.Error(), http.StatusInternalServerError)
return
}
cards := flashcards.GetFlashCardsByName(cardname, d)
t.Execute(tw, cards)
if err 1= nil {
fmt.Println("Execute error " + err.Error())
http.Error(tw, ert.Error(), http.StatusInternalServerError)

return

func checkErrot(ert error) {

if err 1= nil {
fmt.Println("Fatal etror ", ett.Etroz())

os.Exit(1)

Other Bits: JavaScript and CSS

HoAh: JavaScript 1 CSS

On request, a set of flashcards will be loaded into the browser. A much abbreviated set is shown
below. The display of these catds is controlled by JavaScript and CSS files. These aren't televant to the

Go server so are omitted. Those interested can download the code.

MR >R flashcards 4SS g Nz B E g8 e NIRRT — B4 HTML T, cards HY 2
7~ H JavaScript F1 CSS SCH#E] o IXLEHIASZM Go IG5 A MR B AT AEIX A8 T o A
SGERHT AT AT B4t

<html>
<head>
<title>
Flashcards for Common Words

</title>

<link type="text/css" rel="stylesheet"
href="/html/CardStylesheet.css">
</link>
<sctipt type="text/javasctipt"
language="JavaSctipt1.2" stc="/jsctipt/jquety.js">

<! empty >

to feed (sb ot some animal)

</div>
</div>
</div>

</p>

<p class ="return">
Press <Space> to continue
<bt/>
 Return to Flash Cards list
</p>
</body>

</html>

HTML

XF HTML

The Web Server was originally created to serve HTML documents. Now it is used to serve all sorts of
documents as well as data of different kinds. Nevertheless, HTML is still the main document type
delivered over the Web. Go has basic mechanisms for parsing HTML documents, which are covered

in this chapter

Web 55 AL HOT U6 R IR Mt HTML SCHEARSS 190 BRAE B REN A IR SO
AN AR RAUR 5 o FRTT, HTML {82 B L L Y £ B0 Go
A ERAFRMAT HIML, AT ZEEIL N A

Introduction

The Web was originally created to serve HTML documents. Now it is used to serve all sorts of
documents as well as data of dirrent kinds. Nevertheless, HTML is still the main document type

delivered over the Web

Web i 55 e FUEESL T 462 FIRERIE HTML SCHEAR S A9 o BUAE BN & R SCRIAN A
ANFRTU R BRI R 55 o SR, HTML {5582 ELIRIN W46 rp a6) = SRR

HTML has been through a large number of versions, and HTML 5 is cutrently under development.
There have also been many "vendor" versions of HTML, introducing tags that never made it into

standards.

HTML £/ 7 KR RAASE, HTMLS HBTAAETT & B Bro MAMBIUA D “Hh AR "
AT HTML, {H5] AR MBI HUShRE

HTML is simple enough to be edited by hand. Consequently, many HTML documents are "ill
formed", not following the syntax of the language. HTML parsers generally are not very strict, and

will accept many "illegal" documents.

HTML 2, URTa DUAF THRS. FIL, 2 HTML S URINE, oA sy
PRIEVENI Y T2 . HTML AT il AN RIS, T H B K28 A" I3
o

There wasn't much in eatlier versions of Go about handling HTML documents - basically, just a
tokenizer. The incomplete nature of the package has led to its removal for Go 1. It can still be found
in the exp (experimental) package if you really need it. No doubt some improved form will become

available in a later version of Go, and then it will be added back into this book.

TERIARUAR] Go BeA K2 K TALHE HTML SCHRY A -—-FEA B R — 0 iids . ey
JFIREAE Go 1 RUAT ER B WRIFENTEE, IR0 LME exp(lE) L HEIE. =
TEEER], Go ARFRNMAAEX T A —LLdGdt i)y, 2SI ImE A,

There is limited support for HTML in the XML package, discussed in the next chapter.

E XML €57 HTML (935 RATIRAD, AT Sl it it

Conclusion

it

There isn't anything to this package at present as it is still under development.

HETX M BcANE, BEAE BT TIT A& B

XML is a significant markup language mainly intended as a means of serialising data structures as a

text document. Go has basic support for XML document processing.

XML 2 MEERIRCES, EEEBIRET SISO S . Go HEASIH; XML 30
AbFE

Introduction

XML is now a widespread way of representing complex data structures serialised into text format. It is
used to describe documents such as DocBook and XHTML. It is used in specialised markup
languages such as MathML and CML (Chemistry Markup Language). Itis used to encode data as
SOAP messages for Web Services, and the Web Service can be specified using WSDL (Web Services

Description Language).

IAE XML & P P SORRS U B 28R A 1 il 77 5o SR A3 SR 491
1 DocBook #1 XHTML, Eid H AL FFRICIE S W1 MathML A1 CMLIEZEARICTE)
Web 55 H & 18 R B gm it il SOAP JH 5, Web R 55t] LAFS & (i] WSDL(Web Az 554

HIER).

At the simplest level, XML allows you to define your own tags for use in text documents. Tags can be
nested and can be interspersed with text. Each tag can also contain attributes with values. For

example,

PR (] B 2 0B XML SRR SIS AARIC T SO SO o FRA8] LUKt 2Rl A5 SOA
Ho MR LS RIE SE. #an,

<petson>

<name>

<family> Newmatch </family>
<petsonal> Jan </petrsonal>

</name>

<email type="personal">
jan@newmarch.name

</email>

<email type="work">
j.newmarch@boxhill.edu.au

</email>

</petson>

The structure of any XML document can be described in a number of ways:

TAA] XML SCRSRY 28542l LA 2 0 s i

* A document type definition DTD is good for desctibing structure
* XML schema are good for describing the data types used by an XML document

* RELAX NG is proposed as an alternative to both

« P ICEEERE L DTD A AT REEURSE
« fE XML OCEH, i XML AU R T A R

* RELAXNG fgii TEAIHE

There is argument over the relative value of each way of defining the structure of an XML document.
We won't buy into that, as Go does not suport any of them. Go cannot check for validity of any

document against a schema, but only for well-formedness.

M Z 48 E X XML S — 7 SR . BATAZ ALY Go AN fy
HAUEMT 4o Go AR AL U A RE, (HRAIE R

Four topics are discussed in this chapter: parsing an XML stream, marshalling and unmarshalling Go

data into XML, and XHTML.

FEAZ RSP ERART— 1 XML L A Go Hdli i XML fll XHTML,

Parsing XML

fEMT XML

Go has an XML parser which is created using NewPatset. This takes an io.Reader as parameter and
returns a pointer to Parser. The main method of this type is Token which returns the next token in
the input stream. The token is one of the types StartElement, EndElement, CharData, Comment,

Proclnst or Directive.

Go H—M#iffl NewParser.f| 11 XML %5 o 1XT5 % —1 io.Reader 1ENSEIFIR[AI—4
F51f] Parser AUFE4ST. XM T E R Token , XN TR IEH ATEH N —Mrid.

Rt 2 StartElement, EndElement, CharData, Comment, ProcInst #] Directive H.FF—7Ff,

The types are

XA

StartElement

The type StartElement is a structure with two field types:

StartElement 7 — M1 AN B 4 s

type StartElement struct {
Name Name

Attr [JAttr

EndElement

This is also a structure

IR — 4

CharData

This type represents the text content enclosed by a tag and is a simple type

RN ERTR M HARSEERSORNE, 2R,

Comment

Similarly for this type

XA AR

type Comment [|byte

Proclnst

A Proclnst represents an XML processing instruction of the form <rtarget inst?>

— Proclnst FZ/n—> XML 4 FEEATE A, U<target inst?>

type ProclInst struct {
Target stting

Inst [Jbyte

Directive

A Directive represents an XML directive of the form <!text>. The bytes do not include the

<! and > markers.

— MRS M XML 54 <SOR>IEAER, WAEANEE < > R .

type Directive [Jbyte

A program to print out the tree structure of an XML document is

FTEI XML SRR S5 Ry — M2, AT

/* Parse XML

switch t := token.(type) {
case xml.StartElement:
elmt := xml.StartElement(t)
name := elmt.Name.Local
ptintElmt(name, depth)
depth++
case xml.EndElement:
depth--
elmt := xml. EndElement(t)
name := elmt.Name.Local
ptintElmt(name, depth)
case xml.CharData:
bytes := xml.CharData(t)
printElmt("\""+string([|byte(bytes))+"\"", depth)
case xml.Comment:
printElmt("Comment", depth)
case xml.Proclnst:
printElmt("Proclnst", depth)
case xml.Directive:
printElmt("Directive", depth)
default:

fmt.Println("Unknown")

func printElmt(s stting, depth int) {
for n := 0; n < depth; n++ {

fmt.Print(" ")

Note that the parser includes all CharData, including the whitespace between tags.

TERL Y i LA XN T RT CIAT s I 2

If we run this program against the person data structure given eatlier, it produces

RPN RBATIEAN R XS H T2) person BUuZE), €t 24T HIH

Note that as no DTD or other XML specification has been used, the tokenizer correctly prints out all

the white space (a DTD may specify that the whitespace can be ignored, but without it that

assumption cannot be made.)

TERG R 354 (8 A DTD B HAt XML ITE, tokenizer 1ERAHFTEIH A A 125 (— 4 DTD /]

RES E A LA 254 (HR BOR B B A RE IO)

There is a potential trap in using this parser. It re-uses space for strings, so that once you see a token
you need to copy its value if you want to refer to it later. Go has methods such as func (c CharData)

Copy() CharData to make a copy of data.

FEAE XA AT a e AR A — BRI B HEA I B E 2 0 T/ BT 2SR BT LA, —
HAREE] — MRARZS I E R ERARIC BBRERMF 5 T E R, Go AR BIRTEAN func

(c CharData) Copy() CharData & il %4/

Unmarshalling XML

2 4tk XML

Go provides a function Unmarshal and a method func (*Patset) Unmarshal to unmarshal XML into

Go data structures. The unmarshalling is not perfect: Go and XML are different languages.

Go #fit—/N A%l Unmarshal F1—4~J77%8H func (*Parser) Unmarshal fi#ZH XML #4f4 Go

Bzt AR 5EER:Go fll XML B8 2R AR HTE S

We consider a simple example before looking at the details. We take the XML document given earlier

of

AV & MR B A AT AT AT 25 H A XML SORY

<petson>
<name>
<family> Newmatch </family>
<petsonal> Jan </petrsonal>
</name>

<email type="personal">

We would like to map this onto the Go structures

BT ARBAVEILIX A S] Go £

This requites several comments:

EEE ST

10.

11.

12.

13.

14.

15.

10.

Unmarshalling uses the Go teflection package. This requites that all fields by public i.e. start
with a capital letter. Eatlier versions of Go used case-insensitive matching to match fields

such as the XML string "name" to the field Name. Now, though, case-sensitive matching is
used. To perform a match, the structure fields must be tagged to show the XML string that

will be matched against. This changes Petson to

type Person struct {
Name Name ‘xml:"name""

Email [[Email ‘xml:"email""

While tagging of fields can attach XML strings to fields, it can't do so with the names of the
structures. An additional field is required, with field name "XMILName". This only affects

the top-level struct, Person

type Person struct {
XMIName Name ‘xml:"person""
Name Name “xml:"name""

Email [[Email “xml:"email"*

Repeated tags in the map to a slice in Go

Attributes within tags will match to fields in a structure only if the Go field has the tag ",attt".
This occurs with the field Type of Email, whete matching the attribute "type" of the "email"
tag requires “xml:"type,atte""

If an XML tag has no attributes and only has character data, then it matches a stting field by
the same name (case-sensitive, though). So the tag “xml:"family"" with character data

"Newmatch" maps to the string field Family

17.

10.

11.

12.

13.

14.

15.

But if the tag has attributes, then it must map to a structure. Go assigns the character data to
the field with tag ,chardata. This occurs with the "email" data and the field Address with

tag ,chardata

i Go reflection WAMRH . XERFTATBENA, WAE U1 KREFEITS.
FHIAR Go AN X 43 A/ NG TEEC R U EC BB A XML FR4E “name” X iz
Name F-B. (HZIMAENE case-sensitive ULHT, AT ILHC 25k FBUR L AUHAR

IERE R XML AR, LARLAT IS . Person BT B iZ /2

type Person struct {

Name Name “xml:"name""

Email [[Email ‘xml:"email""

YRR BT XML R (1R AT T2 R AR A, oM
BRI EINFBL S “XMLName” o XM S5, 1B Person 4

‘F

type Person struct {
XMLName Name “xml:"person""
Name Name ‘xml:"name""

Email [[Email ‘xml:"email""

HE R IC ST E] Go HY slice
BALE R M RI PR R VT W (Y 2500 7B, KA TE Go FRUGHRIC” ate” o 284
N Email 2R Type FBE, BRI xml"type,atte™ A BEVCACHT A “type”

JEIERY “email”

16. JN5—> XML AR A R IE T H A SRR A4 E UL —1> sting F-BUZ T
M) A FRAX KNG AL) o T LRSS xml:" family" 10} 7 5 3C
A” Newmarch” WL %] Family [string 7Bt

17, B SRR A BAE IR A4 E X MRHEL U BE]— 145K Go fEFBUAARIC
% chardata (Y30 W R IR 7t Address J5HRIC,chardata [5B EARHL email
I SCAME

A program to unmarshal the document above is

FR 2 b SR R — MR

/* Unmarshal

*/

package main

import (
"encoding/xml"
"
"os"
//"strings"
)

type Person struct {
XMILName Name “xml:"person""
Name Name “xml:"name""

Email [JEmail xml:"email"*

type Name struct {

Family string “xml:"family""

Personal string “xml:"personal""

type Email struct {
Type string “xml:"type,atte""

Address string “xml:" chardata"*

func main() {
str := “<rxml version="1.0" encoding="utf-8"?>
<petson>
<name>
<family> Newmarch </family>
<petsonal> Jan </petsonal>
</name>
<email type="personal">
jan@newmarch.name
</email>
<email type="work">
j-newmatrch@boxhill.edu.au
</email>

</person>"

var person Person

err := xml.Unmarshal([[byte(str), &person)

checkError(ert)

// now use the petson structute e.g.
fmt.Println("Family name: \"" + person.Name.Family + "\"")

fmt.Println("Second email address: \"" + person.Email[1].Address + "\"")

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal error ", ettr.Etroz())

os.Exit(1)

(Note the spaces are correct.). The strict rules are given in the package specification.

(EEZRZ T . Go LML H T BTN o

Marshalling XML

Yl XML

Go 1 also has support for marshalling data structures into an XML document. The function is

Gol WTFPHEUR LA N XML SR X IR EUE

func Marshal(v interface} {) ([Jbyte, error)

This was used as a check in the last two lines of the previous program.

X AR 2 i TR Py Y i Jm P T

XHTML

XHTML

HTML does not conform to XML syntax. It has unterminated tags such as '
'. XHTML is a
cleanup of HTML to make it compliant to XML. Documents in XHTML can be managed using the

techniques above for XML.

HTML JEAREG XML iRk, S TE bR -
" o XHTML Jg HTML [y B3¢ XML (975 £ XHTML SCRHTa] DL T #R1FE XML
HIEAR

HTML

There is some support in the XML package to handle HTML documents even though they are not
XML-compliant. The XML parser discussed eatlier can handle many HTML documents if it is

modified by

XML AR T3 3 Pl SR AL P HTML SCRE R AL TA B A B A XML Hes o i e
XML fitfr et 250 Tl MR 7> HTML SCHf:

parset := xml.NewDecodet(t)
parser.Strict = false
patser.AutoClose = xml. HTMLAutoClose

parset.Entity = xml. HTMLEntity

Conclusion

Go has basic support for dealing with XML strings. It does not as yet have mechanisms for dealing

with XML specification languages such as XML Schema or Relax NG.

Go HEASHFXT XML FAFRYALEE, 1T B EABATH 10 XML L 135 5 11 XML Schema 5 Relax
NG HIAEERHLH] o

Remote Procedure Call

R A

Introduction

Socket and HTTP programming use a message-passing paradigm. A client sends a message to
a server which usually sends a message back. Both sides are responsible for creating
messages in a format understood by both sides, and in reading the data out of those
messages.

Socket Al HTTP Zwf% {0 Rl EALEMA, — A im kil 17— ME B4 kSS
i, A] AN N S . P I G S — AU AT B AR AR 3, AR A LT R
H A S

However, most standalone applications do not make so much use of message passing techniques.
Generally the preferred mechanism is that of the function (or method or procedure) call. In this style,
a program will call a function with a list of parameters, and on completion of the function call will
have a set of return values. These values may be the function value, or if addresses have been passed
as parameters then the contents of those addresses might have been changed.

SR, KRB ENNT AR MRS HIEEEEEAR. —BORYL, FEE M & BARE
method/procedure) I FIE A E#. ERHNIET, BFSAHERENSEA—RIIZH,
A5 R Se e =B Bl — R IR EIE . X IR [EME S B REHE, B it R 3
RBEHHLE A, BASEEERESHEYL.

The remote procedure call is an attempt to bring this style of programming into the network world.
Thus a client will make what looks to it like 2 normal procedute call. The client-side will package this
into a network message and transfer it to the server. The server will unpack this and turn it back into
a procedure call on the setver side. The results of this call will be packaged up for return to the client.
T RR IS AR VA P AT B AR KU A\ W25 i 57 2 P T R = L — DI SRR R
¥ORH, MEFmSITEIEEREEAHEE, REEBEITRRES. RSEEHFEC, R
SRR B RAER S inrE B, ME/ErEREREBHTEAERSE .

Diagrammatically it looks like

Glient Server
procedure
program _ .
implementations
i 10 5 6
Client Server
procedure procedure
stubs stubs
2 9 A Fi
3
Network Metwork
routines routines
8
where the steps are
HERFRINE, Bl S XN ET
Glient Server
procedure
program _ .
implementations
i 10 5 6
Client Server
procedure procedure
stubs stubs
2 9 A Fi
3
Network Metwork
routines routines
8
2 NP IR

1. The client calls the local stub procedure. The stub packages up the parameters into a
network message. This is called marshalling.

2. Networking functions in the O/S kernel are called by the stub to send the message.

3. 'The kernel sends the message(s) to the remote system. This may be connection-otiented or

connectionless.

4. A server stub unmarshals the arguments from the network message.
5. 'The server stub executes a local procedure call.

6. The procedure completes, returning execution to the server stub.

7. The server stub marshals the return values into a network message.
8. The return messages are sent back.

9. The client stub reads the messages using the network functions.

10. The message is unmarshalled. and the return values are set on the stack for the local process.

1 FPREMAAMARY ROE, FRVRSESEITEENEHRE, XTI
G

2. OS W BRI MEEE RS PR RAAREEHS .

3. ARIBHEBERRSTIR RS . X AT LA [AEER BE B TTE AR,

4. RFAFSIRHFRT RS BSEUAMETHE IR,

5. WS SSIREFRTT RESPT A 9 A

6. FEIIRTH, BREZITEREMST AR R

7. WRSFESRAFRT RSIBREME&R AR MAHE R .

8. JHEHHRE

9. FPIRAART R MAEE REUEBGRE

10. JHEBIFME. R)EIREMERE AR PRI

There are two common styles for implementing RPC. The first is typified by Sun's RPC/ONC and by
CORBA. In this, a specification of the service is given in some abstract language such as CORBA
IDL (interface definition language). This is then compiled into code for the client and for the server.
The client then writes 2 normal program containing calls to a procedure/function/method which is
linked to the generated client-side code. The server-side code is actually a server itself, which is linked

to the procedure implementation that you write.

AR AR A A B R X% . 55—~ LA SUN JT& #J CORBA K RPC/ONC A
o XH, MRIFTHIHEHEF M CORBA IDLEEMESUER)MRIES =4, REMIERA
PATRIG T BIFFBAE client YAl server ¥ P EEMAI IS —MEMREFEERINE
SR TT I, server S AATSERR LR server IRSTHISEMA, REIEREIRLIMIERF

In this way, the client-side code is almost identical in appearance to a normal procedure call.
Generally there is a little extra code to locate the server. In Sun's ONC, the address of the server must
be known; in CORBA a naming setvice is called to find the address of the server; In Java RMI, the

IDL is Java itself and a naming service is used to find the address of the service.

XHE, FPmAREEA LR EENEF AR AR T —BRYL, 7E server HHl
EMRBESHE RS £ SUN PRI ONC L, server ¥ ik AR AN FFH « ZE CORBA
B, — B RS = E 305 F M5 A58tk . T 7E JAVA RMI o1, IDL H Java K ZESCHL,
SRR e A PR R A S s R

In the second style, you have to make use of a special client API. You hand the function name and its
parameters to this library on the client side. On the server side, you have to explicitly write the server

yourself, as well as the remote procedure implementation.

FERFPRUES, VRS FE—2RAIR] client 3 AP, JX28 API, WIFR¥E, MBHRA
A RH) client RAFHH. SHARRIR, 7E server Wi, MRASARRFRABRUHR, 6F
X LELTRR R EH S E

This approach is used by many RPC systems, such as Web Setvices. It is also the approach used by

Go's RPC.

R4 RPC RGHRRA T XM E:, HiN Web Services. 2448, Go f9 PRC 3R T iXHERI T
%o

Go RPC

Go RPC

Go's RPC is so far unique to Go. It is different to the other RPC systems, so a Go client will only talk
to a Go server. It uses the Gob setialisation system discussed in chapter X, which defines the data

types which can be used.

Go i) RPC 2IEFE MAEH . BE55IM RPC RGEAME, FTLA Go B client HEEER Go HY server
. EMAESTEITLH Gob FFIMMRZEEE, FRE AT AN SHERE,

RPC systems generally make some restrictions on the functions that can be called across the network.
This is so that the RPC system can propetly determine what are value arguments to be sent, what are

reference arguments to receive answets, and how to signal errors.

RPC RGE—BRULEXTITR R R EA A — 2 RE. XMt N4 RPC RGEH] LAE 243
PEMLESHER LR, WLETIHSEOREZEE, LIRS IRE R .

* the function must be public (begin with a capital lettet);

* have exactly two arguments, the first is a pointer to value data to be received by the function
from the client, and the second is a pointer to hold the answers to be returned to the client;
and

* have a return value of type os.Error

© BEURRARNWHEREFHKE)

- BHOA2MEHSH, B—NMEE “BlEy” — 8RN dient 35 R SRAIEE
B, BAER RS —FIA client Y5 &K HYIR EIE.

* A os.Error FALR[E{E

For example, a valid function is

BT, — N EIER R RIZ R I T XA

F(&T1, &T?2) os.Error

The restriction on arguments means that you typically have to define a structure type. Go's RPC uses
the gob package for marshalling and unmarshalling data, so the argument types have to follow the

rules of gob as discussed in an eatlier chapter.

FriBEX S EH R E R RIR AT EE LHIERE. Go B RPC = gob HIRImAMEL
HEHE, P T2ECA, RATERRZATTEIER gob RIALNIE SCHUFT Ao

We shall follow the example given in the Go documentation, as this illustrates the important points.
The setver petforms two operations which are ttivial - they do not require the "grunt" of RPC, but
are simple to understand. The two operations are to multiply two integers, and the second is to find

the quotient and remainder after dividing the first by the second.

KMPLZSFE Go WE I XHERIBIF, FAXEHIFRRT —ERER. Server PAT 27
BE, RERERERFFRESE, XEBM RPC WALEENAT, MEFEFEHTH
fi#o H—FERIERWNBEAR, B MRS —TEFRUSE -ANEFREREBR

The two values to be manipulated are given in a structure:

2RISR T — A

type Values struct {

X,Y int

The sum is just an int, while the quotient/remainder is another structure

P AR int, TREERRBES — kR

type Quotient struct {

Quo, Rem int

We will have two functions, multiply and divide to be callable on the RPC setver. These functions
will need to be registered with the RPC system. The function Register takes a single parameter, which

is an intetface. So we need a type with these two functions:

HMNAEXFNERF, WElRTGENERE, BT RPC B server W F M. XERFI S
JLEREME] RPC REEE K. HEL Register i — interface KRSH. FrLABNIELS
RPN EREE L — T REL

type Arith int

func (t *Arith) Multiply(args *Args, reply *int) os.Error {
*reply = args.A * args.B

teturn nil

func (t *Arith) Divide(args *Args, quo *Quotient) os.Etror {
if args.B == 0 {
return os.ErrotString("divide by zero")

}
quo.Quo = args.A / args.B
quo.Rem = args.A % args.B

return nil

The underlying type of Arith is given as int. That doesn't matter - any type could have done.

Arith BJFHYEFRERIR int. XAEER - (EMREEATLL

An object of this type can now be registered using Register, and then its methods can be called by the

RPC system.

XA RBHIXTRIAE R LAR Register BECRIEM, ZJ5, RPC REMATLAARRXANTET -

HTTP RPC Setrver

HTTP RPC fR%5#s

Any RPC needs a transport mechanism to get messages across the network. Go can use HTTP or
TCP. The advantage of the HTTP mechanism is that it can leverage off the HTTP suport libraty.
You need to add an RPC handler to the HTTP layer which is done using HandleHTTP and then start

an HTTP setver. The complete code is

Ef RPC REGEARTRZ — MERHLHI RS W 2 %% TH S - Go W] LAF] HTTP B{ TCP. i HTTP
PLEIRI S BUR AT MERY HTTP SRR . /R EET HandleHTTP #£ HTTP /2 L
—/>RPC 2t#8%, MAEE3—1 HTTP 55, SERAMAEERH

*x
* ArithServer

*/

package main

import (
"fmt"
"net/tpc"
"etrors"
"net/http"
)

type Args struct {

A, Bint

fmt.Println(err.Error())

HTTP RPC client

HTTP RPC % /%4

The client needs to set up an HTTP connection to the RPC server. It needs to prepate a structure
with the values to be sent, and the addtess of a variable to store the results in. Then it can make a Call

with arguments:

FEPmRERE A HTTP E#, K& RPC fli5rds. P InFEAE 1%t RPC fiis54x
HIER. ERERE MRS EREEENEME, UK — M RZREERNZE . 25,
EBATLAAZEck WA T, 8T

e The name of the temote function to execute
e 'The values to be sent

e The addtess of a variable to store the result in

© BEAARZERER ST
© WRIERBIRE A
© BEFREMERA R

A client that calls both functions of the arithmetic server is

—/MA R AR 4% LROX P B R E & P iR XA

/**
* ArithClient

*/

args := Args{17, 8}
var reply int
err = client.Call("Arith.Multiply", args, &reply)
if etr 1= nil {
log.Fatal("atith etror:", etr)

}
fmt Printf("Arith: %d*%d=%d\n", atgs.A, args.B, reply)

var quot Quotient
err = client.Call("Atith.Divide", args, ")
if err 1= nil {

log.Fatal("atith error:", etr)

}
fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B, quot.Quo, quot.Rem)

TCP RPC setver

TCP RPC fR 553

A version of the server that uses TCP sockets is

— M TCP socket B AR S5 #% 2 IXFERY

J*x
* TCPATrithServer

*/

package main

func checkError(ert error) {
if etr 1= nil {
fmt.Println("Fatal error ", err.Error())

os.Exit(1)

Note that the call to Accept is blocking, and just handles client connections. If the server wishes to

do other work as well, it should call this in a goroutine.

Bib—m, XF Accept A EMEERN, FRAEEZ P wERE. MRRS A EHHUE
BIRENE, FRABNIZFE goroutine FIAHE .

T'CP RPC client

TCP RPC 7% ¥

A client that uses the T'CP setver and calls both functions of the arithmetic setver is

—/MEH TCP &%, RAEERTT B RS2 H P B & P IR XY o

J**
* TCPArithClient

*/

package main

import (
"net/rpc"

" fmt"

lllog"

fmt Printf("Arith: %d*%d=%d\n", atgs.A, args.B, reply)

var quot Quotient
err = client.Call("Arith.Divide", args, ")
if err 1= nil {

log.Fatal("atith error:", etr)

}
fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B, quot.Quo, quot.Rem)

Matching values

HmEITED

We note that the types of the value arguments are not the same on the client and server. In the server,
we have used Values while in the client we used Args. That doesn't matter, as we are following the
rules of gob setialisation, and the names an types of the two structutes' fields match. Better

programming practise would say that the names should be the samel*

A TERBIFE server YAl client ¥aHIEHRRAFF AR . FEMRST2w%0, FATHEIR Values T
FEEFRBNIAT Argse XFFABIAM, FABNTEIT gob BATHHN, TEERE
AT BRI ARG, EREFRIMELEINEREN], ST HRMZMEE. *

However, this does point out a possible trap in using Go RPC. If we change the structure in the client

to be, say,

AT, IXHEH T go T REFFAERIFERFRY AT REYE. R BATKET client IRHIEEAIMA, HHITT
B,

type Values struct {

C,Bint

then gob has no problems: on the setver-side the unmarshalling will ignore the value of C given by

the client, and use the default zero value for A.

XX T gob RUEB A AKEM]: £ server I FIAHMR S ZHEK H client By CAAEH
MIMEFERS A

Using Go RPC will require a rigid enforcement of the stability of field names and types by the
programmer. We note that there is no vetsion control mechanism to do this, and no mechanism in

gob to signal any possible mismatches.

F Go RPC BRI FBUAFRAIR BB — B AR T A IR . ATERE], BEEMAIAR
B HINHIESR gob AL, HBAEMBREGEALERRIFHLGH .

JSON

JSON

This section adds nothing new to the eatlier concepts. It just uses a different "wire" format for the
data, JSON instead of gob. As such, clients or servers could be wtitten in other language that

understand sockets and JSON.

R 2B . REMAT A —FMEEIEN "BEIR" %X, F JSON RHE gob.
TR T, A4 client Al server 3B H 55— iR = KK EME socket] JSON.

JSON RPC client

JSON RPC %/ 3%

A client that calls both functions of the arithmetic server is

2P A TR RS SR B R T

client, etr := jsontpc.Dial("tcp", setvice)
if etr 1= nil {
log.Fatal("dialing:", err)
}
// Synchronous call
args := Args{17, 8}
var reply int
err = client.Call("Arith.Multiply", args, &reply)
if err 1= nil {
log.Fatal("atith error:", etr)

}
fint.Printf(" Arith: %d*%d=%d\n", args.A, args.B, reply)

var quot Quotient
err = client.Call("Arith.Divide", args, ")
if err 1= nil {
log.Fatal("atith etror:", etr)
}

fmt.Printf("Arith: %d/%d=%d remainder %d\n", args.A, args.B, quot.Quo, quot.Rem)

JSON RPC setver

JSON RPC R3¢

A version of the server that uses JSON encoding is

JSON JiRHI AR 55 s ARSI T

/* JSONArithServer

}

jsonrpc.ServeConn(conn)

func checkError(ert error) {
if err 1= nil {

fmt.Println("Fatal error ", err.Error())

os.Exit(1)
}
}
Conclusion
St

RPC is a popular means of distributing applications. Several ways of doing it have been presented
here. What is missing from Go is suppott for the cutrently fashionable (but extremely badly

enginereed) SOAP RPC mechanism.

RPC B—MRATHIA AR . RERR T WL LIERITT . Go FIAIRRLIT
R H G R SLHHARALF A7) SOAP RPC AL,

Netwotk channels

WM& channels

Warning

B

The netchan package is being reworked. While it was in eatlier versions of Go, it is not in Go 1. Itis
available in the old/netchan package if you still need it. This chapter describes this old version. Do

not use it for new code.

IUAE netchan fLIEAEEHTR T HT X Go | ZHIMUAHI AN RE, R LALE old/netchan
KEE. X—EMEN 2 IERANER . EAEEFAMPEHE.

Introduction

fa s

There are many models for sharing information between communicating processes. One of the more
elegant is Hoare's concept of channels. In this, there is no shared memory, so that none of the issues
of accessing common memory arise. Instead, one process will send a message along a channel to

another process. Channels may be synchronous, or asynchronous, buffered or unbuffered.

KT R EE EA T 2R HhEC AN 2 Hoare $2 I channels 158 o {EIX—
fll v ARTREALE AR, R B A7 S R R [iT Ak G . B Az i 2 i
channel f£3H7H &, : HFRA 1 channel [A] 53— HFE &K IETHE, channels 7] LUE 25

0, Wl LU, v LU, il LU i

Go has channels as first order data types in the language. The canonical example of using channels is
Erastophene's prime sieve: one goroutine generates integers from 2 upwards. These are pumped into
a seties of channels that act as sieves. Each filter is distinguished by a different prime, and it removes

from its stream each number that is divisible by its prime. So the '2' goroutine filters out even

numbers, while the '3' goroutine filters out multiples of 3. The first number that comes out of the

current set of filters must be a new prime, and this is used to start a new filter with a new channel.

Go A channel /F20 55— SR AL —] channel BYZH4] 12 Erastophene [3K
e fi 1> goroutine) 2 FFARAE CREARL, KX LB R T E A — RANWE NI IEARH] channel,
B i IARRBRERR R, S0 HERER A SRR BB R EATHIER , v LA
“2” goroutine IYEIETAMEL, “3” goroutine YA 3 HIMFEL BB IIX—RFIL
T IE HRAY IR — DI REL, SRR FIT R channel, FBTERECAE R HHE
Ty, TEIMER

The efficacy of many thousands of goroutines communicating by many thousands of channels
depends on how well the implementation of these primitives is done. Go is designed to optimise

these, so this type of program is feasible.

Kt goroutine Z [A]1 channel 18 YRR IR T IR AYIHFIR . Go RANILILIL, B
LAX R & rIATRY

Go also supports distributed channels using the netchan package. But network communications ate
thousands of times slower than channel communications on a single computer. Running a sieve on a
network over TCP would be ludicrously slow. Nevertheless, it gives a programming option that may

be useful in many situations.

Go hilid netchan 6357 F5 704 2 channelo {HJE RZK[A] channel 18 {F YRR L L B — LN L
channel [AJIE{EHRCRAG. (EMZS Bt TCP PrilzfT— Mk as H2 2R H. 280, X
SRR AL T IR, T HXAERLENE LT A

Go's netwotk channel model is somewhat similar in concept to the RPC model: a server creates
channels and registers them with the network channel API. A client does a lookup for channels on a
server. At this point both sides have a shared channel over which they can communicate. Note that
communication is one-way: if you want to send information both ways, open two channels one for

each direction.

Go AYMZ channel FHRIRERFET L _EAN RPC AR : iR 55 d 1 E channel SR)5 I 44 channel
APLEMVEAT, B/ usfEi S5 28 LA channelo XFEARSS S RI% S it A 7 — 1l LUHE.
HFHIILEE channels TERIXFIE(FZHRARY, WRFEEBIR &G, NEEAJTIR
B1%—> channel,

Channel setver

ik 5528 Channel

In order to make a channel visible to clients, you need to exporrit. This is done by creating an
exporter using NewExporter with no parameters. The server then calls ListenAndServe to Isiten and
handle responses. This takes two patameters, the first being the underlying transport mechanism such

as "tcp" and the second being the network listening address (usually just a port number.

F kA channel X% Al W, RFRE-FAHE . XA LUEIE AT 24 NewExporter 1] —
DS, Z AR5 # H ListenAndServe 507 AbFEIEK . ListenAndSetve i T2

B B M RISEREAIE, I “ep” 5 B RIENIEE CERFUZ—RES) .

For each channel, the server creates a normal local channel and then calls Expott to bind this to the
network channel. At the time of export, the direction of communication must be specified. Clients

search for channels by name, which is a string. This is specified to the exporter.

XFEF channel, flR 554 Q1 — 508 FO A channel, S8)5 14 F Export 14 & 40 21 % % channel
Lo FESH IR, WAHE BTG I T 1) o 5) 3 i) LU 447 (— MR R) 85 channel,

The server then uses the local channels in the normal way, reading or writing on them. We illustrate
with an "echo" server which reads lines and sends them back. It needs two channels for this. The
channel that the client writes to we name "echo-out". On the server side this is a read channel.
Similarly, the channel that the client reads from we call "echo-in", which is a write channel to the

Server.

55 6% 5T MGG AT A channel —#, 13IER S AL, FATLL—1 “echo” 55a%
MBI, EBRASCR, FEREARIERIL . EFREMN channel, FATHEE 50 R 5 A K

channel Mfif “echo-out” , FERS:
channel TYfi§ “echo-in” , RS

The setver program is

MR 55 aRE P I

/* EchoServer
Y

package main

import (
"t
"os"
"old/netchan"
)
func main() {

HE 2>

fr L

v, FHE SRR . MBI,) s FH SR SRR Y

LSV Ciip

// exportet, ett := netchan NewExpotter("tcp", ":2345")

exporter := netchan.NewExporter()

err := exporter.ListenAndServe("tcp", ":2345")

checkErrozr(etr)

echoln := make(chan string)

echoOut := make(chan string)

expotter.Export("echo-in", echoln, netchan.Send)

exportet.Export("echo-out", echoOut, netchan.Recv)

for {

fmt.Println("Getting from echoOut")

Note: at the time of writing, the server will sometimes fail with an error message "netchan export:

error encoding client response”. This is logged as Issue 1805

TFE RS FHITHE, HRF#5A]GESSICF) “netchan export: error encoding client
response” JIEFERTE, I TNHJEBTHE L Issue 1805,

Channel client

% % Channel

In order to find an exported channel, the client must importit. This is created using Import which
takes a protocol and a network service address of "host:port". This is then used to import a network
channel by name and bind it to a local channel. Note that channel variables are references, so you do

not need to pass their addresses to functions that change them.

AT HREN FHY channel, & A FAE . (1 H Import Jik AT LASERL, B4
PMUAFITEU “hostport” WZEARSS Hilk. ZJEstaEEN 2T SN, FFHPEZ]AM channel
o TR, channel AFFJE 7/ /35, N F A BSOS BT THY BREL 33 channel B HBHE

The following client gets two channels to and from the echo server, and then writes and reads ten

messages:

LATR % i 8 P 7 channel [/ MIRSS 400 5320 IS, S8R B AR BUCEI Y 45 F 2

/* EchoClient
*/

package main

import (
"fmt"
"old/netchan"
"os"

)

func main() {

if len(os.Azgs) I= 2 {
fmt.Println("Usage: ", os.A1gs[0], "host:port™)
os.Exit(1)

}

service := os.Args[1]

importer, err := netchan.Import("tcp", service)

checkErrozr(etr)

fmt.Println("Got importer")
echoln := make(chan string)
importer.Import("echo-in", echoln, netchan.Recv, 1)

fmt.Println("Imported in")

echoOut := make(chan string)
importer.Import("echo-out", echoOut, netchan.Send, 1)

fmt.Println("Imported out")

forn:=0;n < 10; n++ {
echoOut <- "hello "
s, ok := <-echoln
if lok {
fmt.Println("Read failure")
break
}
fmt.Println(s, n)
}
close(echoOut)

os.Exit(0)

func checkError(ert error) {
if err 1= nil {

fmt.Println("Fatal error ", err.Error())

os.Exit(1)

Handling Timeouts

b PR

Because these channels use the network, there is alwasy the possibility of network errors leading to
timeouts. Andrew Gerrand points out a solution using timeouts: "[Set up a timeout channel.] We can
then use a select statement to receive from either ch or timeout. If nothing artives on ch after one

second, the timeout case is selected and the attempt to read from ch is abandoned."

(KA channel fifi F IXIZ%3805 , (746 BRI 2545 1R S B0 AT B . Andrew Gerrand $2H T
— P IJpE timeouts: "[Set up a timeout channel.]F AT AT LAHF select 1EA] M ch 52 timeout 5%

BRI 1 i ch BeAURENER., tmeout IEHLES, HFFEM ch ZREUF S

timeout := make(chan bool, 1)
go func() {
time.Sleep(1e9) // one second

timeout <- true

HY

select {
case <- ch:

// a read from ch has occurred
case <- timeout:

// the read from ch has timed out

Channels of channels

{&33% channel Y channel

The online Go tutorial at http://golang.org/doc/go_tutotial html has an example of multiplexing,
where channels of channels are used. The idea is that instread of sharing one channel, a new
communicator is given their own channel to have a privagye conversation. That is, a client is sent a

channel from a server through a shared channel, and uses that private channel.

4 Go 55 (http://golang.org/doc/go_tutorialhtml) HfE/R T — M 12 221047, Hr
i T %% channel [} channelo 32X /535 T S22 channel, BTG ERERE G T fl(]]
H O channel JTFAA L. B, B imiB it L5 channel MR S5 €83 4151 channel,

ZIEAE XA AAA channel FEATIEE .

This doesn't work directly with network channels: a channel cannot be sent over a network channel.
So we have to be a little more indirect. Each time a client connects to a servet, the server builds new
network channels and exports them with new names. Then it sends the names of these new channels

to the client which imports them. It uses these new channels for communicaiton.

SRTTIRNS 4% channel ANEE/EH], 4% channel NGEAIE channel, i LAFRAN TEL RS R 25 B
FRRE iR S5 A%, RGN, — T channel, SKJE BT AT S HAMAT. Z)5S

NEATHIE P i IR TR LEHT channel 447 $5c)i i HIX 29T channel FET101{5
A server is
i 55 AR
/* EchoChanServer
Y

package main

import (

"old/netchan"

"strconv"

var count int = 0

func main() {

exporter := netchan.NewExporter()
err := exporter.ListenAndServe("tcp", ":2345")

checkErrozr(etr)

echo := make(chan string)
expotter.Export("echo", echo, netchan.Send)
for {
sCount := strconv.Itoa(count)
lock := make(chan string)

go handleSession(exporter, sCount, lock)

<-lock
echo <- sCount
count++

exporter.Drain(-1)

func handleSession(exporter *netchan Exporter, sCount string, lock chan string) {

and a client is

E AL N TTIRY

import (

"fmt"
"old/netchan"
"os"

)

func main() {

if len(os.Args) I= 2 {
fmt.Println("Usage: ", 0s.Args[0], "host:port")
os.Exit(1)

}

service := os.Args[1]

importer, err := netchan.Import("tcp", setvice)

checkEtror(ert)

fmt.Println("Got importer")
echo := make(chan string)
importer.Import("echo", echo, netchan.Recv, 1)

fmt.Println("Imported in")

count := <-echo

fmt.Println(count)

echoln := make(chan string)

importer.Import("echoln"+count, echoln, netchan.Recv, 1)

echoOut := make(chan string)

importer.Import("echoOut"+count, echoOut, netchan.Send, 1)

forn:=1;n < 10; n++ {
echoOut <- "hello "
s := <-echoln
fmt.Println(s, n)

}

close(echoOut)

os.Exit(0)

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal etror ", ett.Etroz())

os.Exit(1)

Conclusion

B 4

ARy

Network channels are a distributed analogue of local channels. They behave approximately the same,

but due to limitations of the model some things have to be done a little differently.

6% channel 2 AH] channel [94A7 AL BATRIUATIETARR , (62t PRI, 77
e SR,

Web sockets

Web sockets

Web sockets are designed to answer a common problem with web systems: the server is unable to
initiate or push content to a user agent such as a browser. Web sockets allow a full duplex connection

to be established to allow this. Go has neatly complete support for them.

Web sockets BLVE A T2 T MU mIZE RGe b i) — 5 IR AR5 a8 JCiE Ak el i
WA S, Bl Yiss . Web sockets REAS N, — 2R T EFERI TIX Lo
Go EE XM E I TS 8 .

Warning

B

The Web Sockets package is not currently in the main Go 1 tree and is not included in the current

distributions. To use it, you need to install it by

Web Sockets 14 FFAFE Go 1 RFIERMEHE, WABRSAELIPABE. N THEHE,

PRAASEE U 4 R BT

go get code.google.com/p/ go.net/websocket

Introduction

The websockets model will change for release t61. This describes the new package, not the package in
r60 and earlier. If you do not have 161, at the time of writing, use hg pull; hg update weekly to

download it.

websockets (R ? 2 VEAE 61 WA BEMECAR T o U BREFTIOEL, TIASE 160 a3
R TR OAR . GnERAR Y ATIAA 161 A,] hgpull; hg update weekly K 3o

The standard model of interaction between a web user agent such as a browser and a web server such
as Apache is that the user agent makes HTTP requests and the server makes a single reply to each one.
In the case of a browser, the request is made by clicking on a link, entering a URL into the address
bat, clicking on the forward or back buttons, etc. The response is treated as a new page and is loaded

into a browser window.

FRAREE (I baas) A web 55 &% (B0 Apache) [HET S ELABR AR Z XA :
F A AE HTTP 355K, SRR IR SF SR A 05K o« DATIVEAR 2801, 3RI2 1R il e
AE LA P A R i BT R SRR LA AT A o T W o7 U230 Ve T] ER i D

This traditional model has many drawbacks. The first is that each request opens and closes a new
TCP connection. HTTP 1.1 solved this by allowing persistent connections, so that a connection could
be held open for a short period to allow for multiple requests (e.g. for images) to be made on the

same server.

RXFPEGRI AR Z B B, B MERAS I RIS — 158y TCP 14, HTTP 1.1 18
L AR AR R A, — MR B RIS AR FHT I PIRZS, Mk 2114 [
— RS AR AR 2 AR R T E AR Y.

While HTTP 1.1 persistent connections alleviate the problem of slow loading of a page with many
graphics, it does not improve the interaction model. Even with forms, the model is still that of
submitting the form and displaying the response as a new page. JavaScript helps in allowing etror

checking to be performed on form data before submission, but does not change the model.

BIR HTTP 11 IR AR T A RZ & A 1 DT N 2z 18 R, (R8I0 2 0A st
F A5 B g 351 R AEAT LA DL, AR IR R AR S B IR R I — /1 DT /DA M R
BIRAE JavaScript FIFT BN T REMEIFELR SR AT TH R, (BIRIATOA B XA AR o

AJAX (Asynchronous JavaScript and XML) made a significant advance to the user interaction model.
This allows a browser to make a request and just use the response to update the display in place using
the HTML Document Object Model (DOM). But again the interaction model is the same. AJAX just
affects how the browser manages the returned pages. There is no explicit extra support in Go for
AJAX, as none is needed: the HTTP server just sees an ordinary HTTP POST request with possibly

some XML or JSON data, and this can be dealt with using techniques already discussed.

AJAX (52 JavaScript A1 XML) XS ELARAL (TR HY 0. & ARV T & AR TSRO E L
DOM 41 7 A ¢ BT 2 DT 5@ S A (RS ERRI A R R B . AJAX U2
MR T P ST g xR B DU R AL F T e Go AN AJAX VLSRRI RN SCHE, HAha X
AL HTTP R S5 2B BB AR E LA HTTP POST 53R (1 AT A5 —£8 XML 1% JSON
Hejm), IXPE R AT LA B 2R M SR BEA T AL

All of these are still browser to server communication. What is missing is server initiated
communications to the browser. This can be filled by Web sockets: the browser (or any user agent)
keeps open a long-lived TCP connection to a Web sockets server. The TCP connection allows eithet

side to send arbitrary packets, so any application protocol can be used on a web socket.

HIT T4 N AR 2 0 s 17 IR 55 sl o il A2 IR 55 2 1000 T 2 B2 T Web sockets
TEJF A] SRR MR A 23 B 00 8 i (el A B A P D PR E5 TS — 55N Web sockets fli55
Y TCP K. JX4¢ TCP M AV LKA TR AR, IR LME web socket EAf
FAEAT A 5 J2 AL o

How a websocket is started is by the user agent sending a special HTTP request that says "switch to
web sockets". The TCP connection underlying the HTTP request is kept open, but both user agent
and server switch to using the web sockets protocol instead of getting an HTTP response and closing

the socket.

websocket /& B FACHLAR 5% “UIHE] web sockets” 455k HTTP iR 4507, HTTP i
KA A TCP LSRR RAS, AR AR E]— HTTP IR f5 5, [5HH
JARTFRFIAR 55w 2t W 1) 46 21 {5] web sockets %o

Note that it is still the browser or user agent that initiates the Web socket connection. The browser
does not run a TCP server of its own. While the specification is complex, the protocol is designed to
be faitly easy to use. The client opens an HTTP connection and then replaces the HTTP protocol

with its own WS protocol, re-using the same TCP connection.

EFRERRYZ, 139802 Ve ge el F P AR K — 4% Web socket BEHEMY . W VTS H HIF
BOAIBFT—A TCP iR 55dwe ? BIRMIEUIRE 2 BYIGE B BOHS S B HI. &) 5w T
ok HTTP &8, 845 M WS FRSUput HTTP P, HH T [R—%% TCP k.

Web socket setrver

Web socket IR 5528

A web socket server starts off by being an HTTP server, accepting TCP conections and handling the
HTTP requests on the TCP connection. When a request comes in that switches that connection to a
being a web socket connection, the protocol handler is changed from an HTTP handler to a
WebSocket handler. So it is only that TCP connection that gets its role changed: the server continues
to be an HTTP server for other requests, while the TCP socket undetlying that one connection is

used as a web socket.

web socket IR95- @i W12 HTTP RS-, #52 TCP e, WFIZER: R HTTP 355K,
YRZERAL K web socket TEREHY IR EDRZ G , AL B G A —1> HTTP AL HLER 548 g,
WebSocket ZLHLAS o fir MU TCP B AL 10 HENEREFTA I TCP socket 25 i
web socket SR A1 T HBFRIME, RS2 —1 HTTP R4

One of the simple servers HHTP we discussed in Chapter 8: HTTP registered varous handlers such
as a file handler or a function handler. To handle web socket requests we simply register a different
type of handler - a web socket handler. Which handler the server uses is based on the URL pattern.
For example, a file handler might be registered for "/", a function handler for "/cgi-bin/..." and a web

sockets handler for " /ws".

FEZTT 8 HTTP HIRATTHE T — DR B A IR 5 T 1 2% U RRHI AL BEES , BN SO AL LS
PREALIRESSE . N 1 ALTE web socket 13K, FRATMUTT 73 SMEM— TP AL A9 AL R &5 -web socket
SbFRAS o RGFAFEET URL BCACRIL HIX AL AR Bilan, /" NSCHFHAEEES, "/ cgi-bin/..."
FIPREAb RS, "/ ws" A web sockets ZbFH Ao

An HTTP server that is only expecting to be used for web sockets might run by

W EIBE T MU T web sockets [HTTP 5%

func main() {
http.Handle("/", websocket.Handler(WSHandler))
ert := http.ListenAndSetve(":12345", nil)

checkErrozr(etr)

A more complex server might handle both HT'TP and web socket requests simply by adding in more

handlers.

ISR 22 AL B &, — A BN IR S5 v) LARRI I AL HTTP 353K Al web socket 353K o

The Message object

Message X%

HTTP is a stream protocol. Web sockets are frame-based. You prepare a block of data (of any size)
and send it as a set of frames. Frames can contain either strings in UTF-8 encoding or a sequence of

bytes.

HTTP J2ift il o Web sockets 25T Mo VR AT LAAL AT ROR/ NI — B, # HAE N —4A
Wik &3k o WIRTLAEL A UTE-8 ZRA% I 7445 B ol & 15 P 41 o

The simplest way of using web sockets is just to prepate a block of data and ask the Go websocket
library to package it as a set of frame data, send them across the wire and receive it as the same block.
The websocket package contains a convenience object Message to do just that. The Message object
has two methods, Send and Receive which take a websocket as first parameter. The second parameter

is either the address of a variable to store data in, or the data to be sent. Code to send string data

would look like

I] B {8 web sockets YT IAHU@ R I EHEIIRG 1L Go B websocket [HEFHE il —
MRS, I AR, SRR A FEREE . websocket £ AT MUY
Message X GORMHUIXLE . Message X506 Send Ml Receive Wi/1J7i%, ENINS —TSE02—

> websocket X%, 9 NS HEURAAEERIHME . KIE TR BREERIAIES RSB

msgToSend := "Hello"

err := websocket.Message.Send(ws, msgToSend)

var msgToReceive stting

err := websocket.Message Receive(conn, &msgToReceive)

Code to send byte data would look like

oevssaatls 21 SR TN IR

dataToSend := [|byte{0, 1, 2}

err := websocket.Message.Send(ws, dataToSend)

var dataToReceive [|byte

err := websocket.Message.Receive(conn, &dataToReceive)

An echo setrver to send and receive string data is given below. Note that in web sockets either side can
initiate sending of messages, and in this server we send messages from the server to a client when it

connects (send/receive) instead of the more normal receive/send server. The server is

ML D AOE TR B BRI echo MRS5S #AI5 . (BAERENZE, 7E web sockets
PR R, ST DAUREIH B &% . iXEl, MR umiER S, RS A ST & i AR
B/, TARERIEIL/ Kk RS mmT

/* EchoServer
*/

package main

import (
"fmt"
"het /htl.‘p"

"OS"

// " "

"code.google.com/p/go.net/websocket"

func Echo(ws *websocket.Conn) {

fmt.Println("Echoing")

forn:=0;n < 10; n++ {
msg:= "Hello " + stting(n+48)
fmt.Println("Sending to client: " + msg)
err := websocket.Message.Send(ws, msg)
if err 1= nil {

fmt.Println("Can't send")

A client that talks to this server is

TR S5 foedi BEA T2 B 2 P S ARG 0 R

fmt.Println("Couldn't receive msg " + ert.Error())
break

}

fmt.Println("Received from server: " + msg)

// teturn the msg

err = websocket.Message.Send(conn, msg)

if err I= nil {

fmt.Println("Coduln't return msg")

break

}

os.Exit(0)

func checkError(ert error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())

os.Exit(1)

The utl for the client running on the same machine as the server should be ws://localhost:12345/

M P IR SS arimiaf TAE R — S PLas LI, 25 i P s) utll 2808 ws://localhost: 12345/

The JSON object

JSON X{%

It is expected that many websocket clients and servers will exchange data in JSON format. For Go

programs this means that a Go object will be marshalled into JSON format as described in Chapter 4:

Serialisation and then sent as a UTF-8 string, while the receiver will read this string and unmarshal it

back into a Go object.

AN BRI AREE , 172 websocket 2 1 i AR 55 45 S A LA JSON AR AR B TR 35462 o
£ Go F2J7 B, IXEIRE Go YA GF ALl JSON A% (FEETT_4: Serialisation A fid)
SR LA UTE-8 SERF B Rk s IS 1 BEBGZ 7 RF FR IR AR AL Go A5

The websocket convenience object JSON will do this for you. It has methods Send and Receive for

sending and receiving data, just like the Message object.

websocket B JSON X GUAR J7 EHIAVRIEUXLE . B H Send 1 Receive W7 172K A 1%
FCEOE, TEA Message X542,

A client that sends a Petson object in J[SON format is

TFTANX A5 7 it LA JSON 4% AR &% Person X542

/* PetsonClient] SON
*/

package main

import (
"code.google.com/p/go.net/websocket"
"t
"os"

)

type Person struct {
Name string

Emails [Jstring

func main() {
if len(os.Args) I= 2 {
fmt.Println("Usage: ", 0s.Args[0], "ws://host:port™)
os.Exit(1)
}

service := os.Args[1]
conn, ett := websocket.Dial(setvice, "",
"http:/ /localhost")

checkErrozr(etr)

person := Person{Name: "Jan",

Emails: [|stting{"ja@newmarch.name", "jan.newmarch@gmail.com"},

err = websocket.JSON.Send(conn, person)
if err 1= nil {
fmt.Println("Couldn't send msg " + etr.Erroz())

}

os.Exit(0)

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal etror ", ettr.Etroz())

os.Exit(1)

and a server that reads it is

BEUZERA R 55 A

fmt.Println("An email: " + €)

}
}
}
func main() {
http.Handle("/", websocket.Handler(ReceivePerson))
err := http.ListenAndSetve(":12345", nil)
checkError(ert)
}

func checkErrot(ert error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())

os.Exit(1)

The Codec type

Codec FHI

The Message and JSON objects are both instances of the type Codec. This type is defined by

Message X411 JSON X5 4R E A Codec HISLH . ZERIAE LA

type Codec struct {
Marshal func(v interface{}) (data [Jbyte, payloadType byte, etr os.Error)

Unmarshal func(data [[byte, payloadType byte, v intetface{}) (etr os.Error)

The type Codec implements the Send and Receive methods used eatlier.

Codec ZERIACFN T EITEHE M2 AU Send F1 Receive J71%

It is likely that websockets will also be used to exchange XML data. We can build an XML Codec

object by wrapping the XML marshal and unmarshal methods discussed in Chapter 12: XML to give

a suitable Codec object.

websocket [FFE A FEME R ASH: XML £cfi. AT LLUER A& 12: XML FHE & 1) XML
marshal f{] unmarshal PRECRA)E—E1EHY Codec X% .

We can create a XMLCodec package in this way:

AR LR 7 3R XMLCodec £

package xmlcodec

import (
"encoding/xml"

"code.google.com/p/go.net/websocket"

func xmlMarshal(v interface{}) (msg [Ibyte, payloadType byte, etr errot) {
/ /buff := &bytes.Buffer{}
msg, err = xml.Marshal(v)
//msgRet := buff.Bytes()

return msg, websocket. TextFrame, nil

We can then serialise Go objects such as a Person into an XML document and send it from a client to

a setver by

BRI TR T LAF B Person iXFER) Go XFG %] XML SCRY, SRJF Ak 45 IS5 25 v

func main() {
if len(os.Azgs) I= 2 {
fmt.Println("Usage: ", os.Args[0], "ws:/ /host:port")
os.Exit(1)
}

service := os.Args[1]

conn, ert := websocket.Dial(setvice, "", "http:/ /localhost")

checkErrozr(etr)

person := Person{Name: "Jan",

Emails: [|stting{"ja@newmarch.name", "jan.newmarch@gmail.com"},

err = xmlcodec. XMLCodec.Send(conn, person)
if err 1= nil {
fmt.Println("Couldn't send msg " + etr.Erroz())

}

os.Exit(0)

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal etror ", ettr.Etroz())

os.Exit(1)

A server which receives this and just prints information to the console is

Hi 55 i S 132 SO ke B A 15 2T B 212

for _, e := range person.Emails {

fmt.Println("An email: " + €)

func main() {

http.Handle("/", websocket.Handler(ReceivePetson))
err := http.ListenAndServe(":12345", nil)

checkErrozr(etr)

func checkError(etr etror) {
if err 1= nil {
fmt.Println("Fatal etror ", ett.Etroz())

os.Exit(1)

Web sockets over TLS

Web sockets over TLS

A web socket can be built above a secure TLS socket. We discussed in Chapter 8: HTTP how to use a

TLS socket using the certificates from Chapter 7: Security. That is used unchanged for web sockets.

that is, we use http.ListenAndServeTLS instead of http.ListenAndServe.

web socket AT AR FE%2 4010 TLS 25825 Lo FERTY 8 HTTP B, (i TpHe T UnHUsit it
7 7: Security BAHE TR TLS £ . BEE AT web sockers HALED, Hl 15

i | http ListenAndServeTLS [f]//& http.ListenAndServe.

i

Here is the echo server using TLS

XHE— M T TLS Y echo i55at

if err 1= nil {
fmt.Println("Can't receive")
break

}
fmt Println("Received back from client: " + reply)

}
func main() {
http.Handle("/", websocket.Handler(Echo))
err := http.ListenAndServeTLS(":12345", "jan.newmarch.name.pem",
"ptivate.pem", nil)
checkEtror(ert)
}

func checkError(ert error) {
if err 1= nil {
fmt.Println("Fatal error ", err.Error())

os.Exit(1)

The client is the same echo client as before. All that changes is the utl, which uses the "wss" scheme

instead of the "ws" scheme:

F SRR BT T echo 253, B A I GO url B A" ws BB il wss "5 2o

EchoClient wss:/ /localhost:12345/

Conclusion

The web sockets standard is nearing completion and no major changes are anticipated. This will allow
HTTP user agents and setvers to set up bi-directional socket connections and should make certain

interaction styles much easier. Go has neatly complete support for web sockets.

web sockets FifE CEUTTE, T A ARKRIME). B RV HTTP 2 IR 55 4
SRR ERR IR, MM 2 AL T R85 H 750 Go X web sockets A7 1T 58 B4 S 4F

Copytight © Jan Newmarch, jan@newmarch.name

If you like this book, please contribute using Flattr

or donate using PayPal

