/* * File : drv_sdram.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2015 RT-Thread Develop Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2015-08-03 xiaonong The first version for STM32F7 */ #include "drv_sdram.h" static SDRAM_HandleTypeDef sdramHandle; static FMC_SDRAM_TimingTypeDef Timing; static FMC_SDRAM_CommandTypeDef Command; /** * @brief Initializes SDRAM MSP. * @param hsdram: SDRAM handle * @param Params * @retval None */ static void SDRAM_MspInit(SDRAM_HandleTypeDef *hsdram, void *Params) { static DMA_HandleTypeDef dma_handle; GPIO_InitTypeDef gpio_init_structure; /* Enable FMC clock */ __HAL_RCC_FMC_CLK_ENABLE(); /* Enable chosen DMAx clock */ SDRAM_DMA_CLK_ENABLE(); /* Enable GPIOs clock */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); /* Common GPIO configuration */ gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_PULLUP; gpio_init_structure.Speed = GPIO_SPEED_FAST; gpio_init_structure.Alternate = GPIO_AF12_FMC; /* GPIOC configuration */ gpio_init_structure.Pin = GPIO_PIN_3; HAL_GPIO_Init(GPIOC, &gpio_init_structure); /* GPIOD configuration */ gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_3 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_14 | GPIO_PIN_15; HAL_GPIO_Init(GPIOD, &gpio_init_structure); /* GPIOE configuration */ gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_7| GPIO_PIN_8 | GPIO_PIN_9 |\ GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |\ GPIO_PIN_15; HAL_GPIO_Init(GPIOE, &gpio_init_structure); /* GPIOF configuration */ gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2| GPIO_PIN_3 | GPIO_PIN_4 |\ GPIO_PIN_5 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |\ GPIO_PIN_15; HAL_GPIO_Init(GPIOF, &gpio_init_structure); /* GPIOG configuration */ gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4| GPIO_PIN_5 | GPIO_PIN_8 |\ GPIO_PIN_15; HAL_GPIO_Init(GPIOG, &gpio_init_structure); /* GPIOH configuration */ gpio_init_structure.Pin = GPIO_PIN_3 | GPIO_PIN_5; HAL_GPIO_Init(GPIOH, &gpio_init_structure); /* Configure common DMA parameters */ dma_handle.Init.Channel = SDRAM_DMA_CHANNEL; dma_handle.Init.Direction = DMA_MEMORY_TO_MEMORY; dma_handle.Init.PeriphInc = DMA_PINC_ENABLE; dma_handle.Init.MemInc = DMA_MINC_ENABLE; dma_handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; dma_handle.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; dma_handle.Init.Mode = DMA_NORMAL; dma_handle.Init.Priority = DMA_PRIORITY_HIGH; dma_handle.Init.FIFOMode = DMA_FIFOMODE_DISABLE; dma_handle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; dma_handle.Init.MemBurst = DMA_MBURST_SINGLE; dma_handle.Init.PeriphBurst = DMA_PBURST_SINGLE; dma_handle.Instance = SDRAM_DMA_STREAM; /* Associate the DMA handle */ __HAL_LINKDMA(hsdram, hdma, dma_handle); /* Deinitialize the stream for new transfer */ HAL_DMA_DeInit(&dma_handle); /* Configure the DMA stream */ HAL_DMA_Init(&dma_handle); /* NVIC configuration for DMA transfer complete interrupt */ HAL_NVIC_SetPriority(SDRAM_DMA_IRQn, 5, 0); HAL_NVIC_EnableIRQ(SDRAM_DMA_IRQn); } /** * @brief DeInitializes SDRAM MSP. * @param hsdram: SDRAM handle * @param Params * @retval None */ static void SDRAM_MspDeInit(SDRAM_HandleTypeDef *hsdram, void *Params) { static DMA_HandleTypeDef dma_handle; /* Disable NVIC configuration for DMA interrupt */ HAL_NVIC_DisableIRQ(SDRAM_DMA_IRQn); /* Deinitialize the stream for new transfer */ dma_handle.Instance = SDRAM_DMA_STREAM; HAL_DMA_DeInit(&dma_handle); /* GPIO pins clock, FMC clock and DMA clock can be shut down in the applications by surcharging this __weak function */ } /** * @brief Programs the SDRAM device. * @param RefreshCount: SDRAM refresh counter value * @retval None */ static void SDRAM_InitializationSequence(uint32_t RefreshCount) { __IO uint32_t tmpmrd = 0; /* Step 1: Configure a clock configuration enable command */ Command.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 1; Command.ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT); /* Step 2: Insert 100 us minimum delay */ /* Inserted delay is equal to 1 ms due to systick time base unit (ms) */ HAL_Delay(1); /* Step 3: Configure a PALL (precharge all) command */ Command.CommandMode = FMC_SDRAM_CMD_PALL; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 1; Command.ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT); /* Step 4: Configure an Auto Refresh command */ Command.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 8; Command.ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT); /* Step 5: Program the external memory mode register */ tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 |\ SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL |\ SDRAM_MODEREG_CAS_LATENCY_2 |\ SDRAM_MODEREG_OPERATING_MODE_STANDARD |\ SDRAM_MODEREG_WRITEBURST_MODE_SINGLE; Command.CommandMode = FMC_SDRAM_CMD_LOAD_MODE; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 1; Command.ModeRegisterDefinition = tmpmrd; /* Send the command */ HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT); /* Step 6: Set the refresh rate counter */ /* Set the device refresh rate */ HAL_SDRAM_ProgramRefreshRate(&sdramHandle, RefreshCount); } /** * @brief Reads an amount of data from the SDRAM memory in polling mode. * @param uwStartAddress: Read start address * @param pData: Pointer to data to be read * @param uwDataSize: Size of read data from the memory * @retval SDRAM status */ rt_err_t SDRAM_ReadData(uint32_t Address, uint32_t *Data, uint32_t DataSize) { if(HAL_SDRAM_Read_32b(&sdramHandle, (uint32_t *)Address, Data, DataSize) != HAL_OK) { return RT_ERROR; } else { return RT_EOK; } } /** * @brief Reads an amount of data from the SDRAM memory in DMA mode. * @param uwStartAddress: Read start address * @param pData: Pointer to data to be read * @param uwDataSize: Size of read data from the memory * @retval SDRAM status */ rt_err_t SDRAM_ReadDataDMA(uint32_t Address, uint32_t *Data, uint32_t DataSize) { if(HAL_SDRAM_Read_DMA(&sdramHandle, (uint32_t *)Address, Data, DataSize) != HAL_OK) { return RT_ERROR; } else { return RT_EOK; } } /** * @brief Writes an amount of data to the SDRAM memory in polling mode. * @param uwStartAddress: Write start address * @param pData: Pointer to data to be written * @param uwDataSize: Size of written data from the memory * @retval SDRAM status */ rt_err_t SDRAM_WriteData(uint32_t Address, uint32_t *Data, uint32_t DataSize) { if(HAL_SDRAM_Write_32b(&sdramHandle, (uint32_t *)Address, Data, DataSize) != HAL_OK) { return RT_ERROR; } else { return RT_EOK; } } /** * @brief Writes an amount of data to the SDRAM memory in DMA mode. * @param Address: Write start address * @param Data: Pointer to data to be written * @param DataSize: Size of written data from the memory * @retval SDRAM status */ rt_err_t SDRAM_WriteDataDMA(uint32_t Address, uint32_t *Data, uint32_t DataSize) { if(HAL_SDRAM_Write_DMA(&sdramHandle, (uint32_t *)Address, Data, DataSize) != HAL_OK) { return RT_ERROR; } else { return RT_EOK; } } /** * @brief Initializes the SDRAM device. * @retval SDRAM status */ rt_err_t sdram_hw_init(void) { static uint8_t sdramstatus = RT_ERROR; /* SDRAM device configuration */ sdramHandle.Instance = FMC_SDRAM_DEVICE; /* Timing configuration for 100Mhz as SD clock frequency (System clock is up to 200Mhz) */ Timing.LoadToActiveDelay = 2; Timing.ExitSelfRefreshDelay = 7; Timing.SelfRefreshTime = 4; Timing.RowCycleDelay = 7; Timing.WriteRecoveryTime = 2; Timing.RPDelay = 2; Timing.RCDDelay = 2; sdramHandle.Init.SDBank = FMC_SDRAM_BANK1; sdramHandle.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8; sdramHandle.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12; sdramHandle.Init.MemoryDataWidth = SDRAM_MEMORY_WIDTH; sdramHandle.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4; sdramHandle.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_2; sdramHandle.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE; sdramHandle.Init.SDClockPeriod = SDCLOCK_PERIOD; sdramHandle.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE; sdramHandle.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0; /* SDRAM controller initialization */ SDRAM_MspInit(&sdramHandle, NULL); /* __weak function can be rewritten by the application */ if(HAL_SDRAM_Init(&sdramHandle, &Timing) != HAL_OK) { sdramstatus = RT_ERROR; } else { sdramstatus = RT_EOK; } /* SDRAM initialization sequence */ SDRAM_InitializationSequence(REFRESH_COUNT); return sdramstatus; } /** * @brief DeInitializes the SDRAM device. * @retval SDRAM status */ rt_err_t sdram_hw_deinit(void) { static uint8_t sdramstatus = RT_ERROR; /* SDRAM device de-initialization */ sdramHandle.Instance = FMC_SDRAM_DEVICE; if(HAL_SDRAM_DeInit(&sdramHandle) != HAL_OK) { sdramstatus = RT_ERROR; } else { sdramstatus = RT_EOK; } /* SDRAM controller de-initialization */ SDRAM_MspDeInit(&sdramHandle, NULL); return sdramstatus; } /** * @brief Handles SDRAM DMA transfer interrupt request. * @retval None */ void SDRAM_DMA_IRQHandler(void) { HAL_DMA_IRQHandler(sdramHandle.hdma); } #ifdef RT_USING_FINSH #include int sdram_test(void) { uint32_t i; volatile uint32_t *wr_ptr; volatile uint8_t *char_wr_ptr; volatile uint16_t *short_wr_ptr; /* initialize memory */ rt_kprintf("SDRAM初始化...\r\n"); wr_ptr = (uint32_t *)SDRAM_DEVICE_ADDR; char_wr_ptr = (uint8_t *)wr_ptr; /* 进行8位数据写测试前先清除数据*/ rt_kprintf("清除SDRAM数据...\r\n"); for (i = 0; i < SDRAM_DEVICE_SIZE / 4; i++) { *wr_ptr++ = 0x00; //写入0x00 } /* 8 bit write */ rt_kprintf("写入8位数据...\r\n"); for (i = 0; i < SDRAM_DEVICE_SIZE / 4; i++) { *char_wr_ptr++ = 0x11; *char_wr_ptr++ = 0x22; *char_wr_ptr++ = 0x33; *char_wr_ptr++ = 0x44; } /* 校验写入的数据*/ rt_kprintf("校验数据...\r\n"); wr_ptr = (uint32_t *)SDRAM_DEVICE_ADDR; for (i = 0; i < SDRAM_DEVICE_SIZE / 8; i++) { if (*wr_ptr != 0x44332211) /* be aware of endianess */ { /* byte comparison failure */ rt_kprintf("校验失败,测试完毕!\r\n"); return 1; /* fatal error */ } wr_ptr++; } /* byte comparison succeed. */ rt_kprintf("继续测试16位数据写入...\r\n"); wr_ptr = (uint32_t *)SDRAM_DEVICE_ADDR; short_wr_ptr = (uint16_t *)wr_ptr; /* Clear content before 16 bit access test */ rt_kprintf("清除SDRAM中的数据...\r\n"); for (i = 0; i < SDRAM_DEVICE_SIZE / 4; i++) { *wr_ptr++ = 0; } /* 16 bit write */ rt_kprintf("写入16位数据...\r\n"); for (i = 0; i < (SDRAM_DEVICE_SIZE / 4); i++) { *short_wr_ptr++ = 0x5AA5; *short_wr_ptr++ = 0xAA55; } /* Verifying */ wr_ptr = (uint32_t *)SDRAM_DEVICE_ADDR; //wr_ptr -= SDRAM_BASE_ADDR/4; for (i = 0; i < SDRAM_DEVICE_SIZE / 4; i++) { if (*wr_ptr != 0xAA555AA5) /* be aware of endianess */ { /* 16-bit half word failure */ rt_kprintf("校验失败,测试完毕!\r\n"); return 1; /* fatal error */ } wr_ptr++; } /* 16-bit half word comparison succeed. */ rt_kprintf("校验成功,测试完毕!\r\n"); return 0; } FINSH_FUNCTION_EXPORT(sdram_test, SDRAM read write test) #endif