Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
rt-thread
提交
0fc1ac61
R
rt-thread
项目概览
BaiXuePrincess
/
rt-thread
与 Fork 源项目一致
Fork自
RT-Thread / rt-thread
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
R
rt-thread
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
0fc1ac61
编写于
7月 31, 2014
作者:
wuyangyong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add more SPI device driver.
上级
2c47f2e6
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
3192 addition
and
2 deletion
+3192
-2
components/drivers/spi/SConscript
components/drivers/spi/SConscript
+22
-2
components/drivers/spi/device_driver_list.txt
components/drivers/spi/device_driver_list.txt
+15
-0
components/drivers/spi/enc28j60.c
components/drivers/spi/enc28j60.c
+876
-0
components/drivers/spi/enc28j60.h
components/drivers/spi/enc28j60.h
+329
-0
components/drivers/spi/spi_flash_at45dbxx.c
components/drivers/spi/spi_flash_at45dbxx.c
+437
-0
components/drivers/spi/spi_flash_at45dbxx.h
components/drivers/spi/spi_flash_at45dbxx.h
+17
-0
components/drivers/spi/spi_flash_sst25vfxx.c
components/drivers/spi/spi_flash_sst25vfxx.c
+346
-0
components/drivers/spi/spi_flash_sst25vfxx.h
components/drivers/spi/spi_flash_sst25vfxx.h
+32
-0
components/drivers/spi/spi_flash_w25qxx.c
components/drivers/spi/spi_flash_w25qxx.c
+371
-0
components/drivers/spi/spi_flash_w25qxx.h
components/drivers/spi/spi_flash_w25qxx.h
+34
-0
components/drivers/spi/spi_wifi_rw009.c
components/drivers/spi/spi_wifi_rw009.c
+590
-0
components/drivers/spi/spi_wifi_rw009.h
components/drivers/spi/spi_wifi_rw009.h
+123
-0
未找到文件。
components/drivers/spi/SConscript
浏览文件 @
0fc1ac61
from
building
import
*
cwd
=
GetCurrentDir
()
src
=
Glob
(
'*.c'
)
cwd
=
GetCurrentDir
()
src
=
[
'spi_core.c'
,
'spi_dev.c'
]
CPPPATH
=
[
cwd
+
'/../include'
]
src_device
=
[]
if
GetDepend
(
'RT_USING_SPI_WIFI'
):
src_device
+=
[
'spi_wifi_rw009.c'
]
if
GetDepend
(
'RT_USING_W25QXX'
):
src_device
+=
[
'spi_flash_w25qxx.c'
]
if
GetDepend
(
'RT_USING_ENC28J60'
):
src_device
+=
[
'enc28j60.c'
]
if
GetDepend
(
'RT_USING_AT45DBXX'
):
src_device
+=
[
'spi_flash_at45dbxx.c'
]
if
GetDepend
(
'RT_USING_SST25VFXX'
):
src_device
+=
[
'spi_flash_sst25vfxx.c'
]
src
+=
src_device
group
=
DefineGroup
(
'DeviceDrivers'
,
src
,
depend
=
[
'RT_USING_SPI'
],
CPPPATH
=
CPPPATH
)
Return
(
'group'
)
components/drivers/spi/device_driver_list.txt
0 → 100644
浏览文件 @
0fc1ac61
spi_wifi_rw009.c/spi_wifi_rw009.h
RW009
http://www.rt-thread.com/
enc28j60.c/enc28j60.h
http://www.microchip.com/
spi_flash_at45dbxx.c/spi_flash_at45dbxx.h
http://www.atmel.com/
spi_flash_sst25vfxx.c/spi_flash_sst25vfxx.h
http://www.microchip.com/
spi_flash_w25qxx.c/spi_flash_w25qxx.h
http://www.winbond.com/
components/drivers/spi/enc28j60.c
0 → 100644
浏览文件 @
0fc1ac61
#include "enc28j60.h"
#define NET_TRACE
#define ETH_RX_DUMP
#define ETH_TX_DUMP
#ifdef NET_TRACE
#define NET_DEBUG rt_kprintf
#else
#define NET_DEBUG(...)
#endif
/* #ifdef NET_TRACE */
struct
enc28j60_tx_list_typedef
{
struct
enc28j60_tx_list_typedef
*
prev
;
struct
enc28j60_tx_list_typedef
*
next
;
rt_uint32_t
addr
;
/* pkt addr in buffer */
rt_uint32_t
len
;
/* pkt len */
volatile
rt_bool_t
free
;
/* 0:busy, 1:free */
};
static
struct
enc28j60_tx_list_typedef
enc28j60_tx_list
[
2
];
static
volatile
struct
enc28j60_tx_list_typedef
*
tx_current
;
static
volatile
struct
enc28j60_tx_list_typedef
*
tx_ack
;
static
struct
rt_event
tx_event
;
/* private enc28j60 define */
/* enc28j60 spi interface function */
static
uint8_t
spi_read_op
(
struct
rt_spi_device
*
spi_device
,
uint8_t
op
,
uint8_t
address
);
static
void
spi_write_op
(
struct
rt_spi_device
*
spi_device
,
uint8_t
op
,
uint8_t
address
,
uint8_t
data
);
static
uint8_t
spi_read
(
struct
rt_spi_device
*
spi_device
,
uint8_t
address
);
static
void
spi_write
(
struct
rt_spi_device
*
spi_device
,
rt_uint8_t
address
,
rt_uint8_t
data
);
static
void
enc28j60_clkout
(
struct
rt_spi_device
*
spi_device
,
rt_uint8_t
clk
);
static
void
enc28j60_set_bank
(
struct
rt_spi_device
*
spi_device
,
uint8_t
address
);
static
uint32_t
enc28j60_interrupt_disable
(
struct
rt_spi_device
*
spi_device
);
static
void
enc28j60_interrupt_enable
(
struct
rt_spi_device
*
spi_device
,
uint32_t
level
);
static
uint16_t
enc28j60_phy_read
(
struct
rt_spi_device
*
spi_device
,
rt_uint8_t
address
);
static
void
enc28j60_phy_write
(
struct
rt_spi_device
*
spi_device
,
rt_uint8_t
address
,
uint16_t
data
);
static
rt_bool_t
enc28j60_check_link_status
(
struct
rt_spi_device
*
spi_device
);
#define enc28j60_lock(dev) rt_mutex_take(&((struct net_device*)dev)->lock, RT_WAITING_FOREVER);
#define enc28j60_unlock(dev) rt_mutex_release(&((struct net_device*)dev)->lock);
static
struct
net_device
enc28j60_dev
;
static
uint8_t
Enc28j60Bank
;
//struct rt_spi_device * spi_device;
static
uint16_t
NextPacketPtr
;
static
void
_delay_us
(
uint32_t
us
)
{
volatile
uint32_t
len
;
for
(;
us
>
0
;
us
--
)
for
(
len
=
0
;
len
<
20
;
len
++
);
}
/* enc28j60 spi interface function */
static
uint8_t
spi_read_op
(
struct
rt_spi_device
*
spi_device
,
uint8_t
op
,
uint8_t
address
)
{
uint8_t
send_buffer
[
2
];
uint8_t
recv_buffer
[
1
];
uint32_t
send_size
=
1
;
send_buffer
[
0
]
=
op
|
(
address
&
ADDR_MASK
);
send_buffer
[
1
]
=
0xFF
;
/* do dummy read if needed (for mac and mii, see datasheet page 29). */
if
(
address
&
0x80
)
{
send_size
=
2
;
}
rt_spi_send_then_recv
(
spi_device
,
send_buffer
,
send_size
,
recv_buffer
,
1
);
return
(
recv_buffer
[
0
]);
}
static
void
spi_write_op
(
struct
rt_spi_device
*
spi_device
,
uint8_t
op
,
uint8_t
address
,
uint8_t
data
)
{
uint32_t
level
;
uint8_t
buffer
[
2
];
level
=
rt_hw_interrupt_disable
();
buffer
[
0
]
=
op
|
(
address
&
ADDR_MASK
);
buffer
[
1
]
=
data
;
rt_spi_send
(
spi_device
,
buffer
,
2
);
rt_hw_interrupt_enable
(
level
);
}
/* enc28j60 function */
static
void
enc28j60_clkout
(
struct
rt_spi_device
*
spi_device
,
rt_uint8_t
clk
)
{
/* setup clkout: 2 is 12.5MHz: */
spi_write
(
spi_device
,
ECOCON
,
clk
&
0x7
);
}
static
void
enc28j60_set_bank
(
struct
rt_spi_device
*
spi_device
,
uint8_t
address
)
{
/* set the bank (if needed) .*/
if
((
address
&
BANK_MASK
)
!=
Enc28j60Bank
)
{
/* set the bank. */
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_CLR
,
ECON1
,
(
ECON1_BSEL1
|
ECON1_BSEL0
));
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
ECON1
,
(
address
&
BANK_MASK
)
>>
5
);
Enc28j60Bank
=
(
address
&
BANK_MASK
);
}
}
static
uint8_t
spi_read
(
struct
rt_spi_device
*
spi_device
,
uint8_t
address
)
{
/* set the bank. */
enc28j60_set_bank
(
spi_device
,
address
);
/* do the read. */
return
spi_read_op
(
spi_device
,
ENC28J60_READ_CTRL_REG
,
address
);
}
static
void
spi_write
(
struct
rt_spi_device
*
spi_device
,
rt_uint8_t
address
,
rt_uint8_t
data
)
{
/* set the bank. */
enc28j60_set_bank
(
spi_device
,
address
);
/* do the write. */
spi_write_op
(
spi_device
,
ENC28J60_WRITE_CTRL_REG
,
address
,
data
);
}
static
uint16_t
enc28j60_phy_read
(
struct
rt_spi_device
*
spi_device
,
rt_uint8_t
address
)
{
uint16_t
value
;
/* Set the right address and start the register read operation. */
spi_write
(
spi_device
,
MIREGADR
,
address
);
spi_write
(
spi_device
,
MICMD
,
MICMD_MIIRD
);
_delay_us
(
15
);
/* wait until the PHY read completes. */
while
(
spi_read
(
spi_device
,
MISTAT
)
&
MISTAT_BUSY
);
/* reset reading bit */
spi_write
(
spi_device
,
MICMD
,
0x00
);
value
=
spi_read
(
spi_device
,
MIRDL
)
|
spi_read
(
spi_device
,
MIRDH
)
<<
8
;
return
(
value
);
}
static
void
enc28j60_phy_write
(
struct
rt_spi_device
*
spi_device
,
rt_uint8_t
address
,
uint16_t
data
)
{
/* set the PHY register address. */
spi_write
(
spi_device
,
MIREGADR
,
address
);
/* write the PHY data. */
spi_write
(
spi_device
,
MIWRL
,
data
);
spi_write
(
spi_device
,
MIWRH
,
data
>>
8
);
/* wait until the PHY write completes. */
while
(
spi_read
(
spi_device
,
MISTAT
)
&
MISTAT_BUSY
)
{
_delay_us
(
15
);
}
}
static
uint32_t
enc28j60_interrupt_disable
(
struct
rt_spi_device
*
spi_device
)
{
uint32_t
level
;
/* switch to bank 0 */
enc28j60_set_bank
(
spi_device
,
EIE
);
/* get last interrupt level */
level
=
spi_read
(
spi_device
,
EIE
);
/* disable interrutps */
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_CLR
,
EIE
,
level
);
return
level
;
}
static
void
enc28j60_interrupt_enable
(
struct
rt_spi_device
*
spi_device
,
uint32_t
level
)
{
/* switch to bank 0 */
enc28j60_set_bank
(
spi_device
,
EIE
);
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
EIE
,
level
);
}
/*
* Access the PHY to determine link status
*/
static
rt_bool_t
enc28j60_check_link_status
(
struct
rt_spi_device
*
spi_device
)
{
uint16_t
reg
;
int
duplex
;
reg
=
enc28j60_phy_read
(
spi_device
,
PHSTAT2
);
duplex
=
reg
&
PHSTAT2_DPXSTAT
;
if
(
reg
&
PHSTAT2_LSTAT
)
{
/* on */
return
RT_TRUE
;
}
else
{
/* off */
return
RT_FALSE
;
}
}
/************************* RT-Thread Device Interface *************************/
void
enc28j60_isr
(
void
)
{
eth_device_ready
(
&
enc28j60_dev
.
parent
);
NET_DEBUG
(
"enc28j60_isr
\r\n
"
);
}
static
void
_tx_chain_init
(
void
)
{
enc28j60_tx_list
[
0
].
next
=
&
enc28j60_tx_list
[
1
];
enc28j60_tx_list
[
1
].
next
=
&
enc28j60_tx_list
[
0
];
enc28j60_tx_list
[
0
].
prev
=
&
enc28j60_tx_list
[
1
];
enc28j60_tx_list
[
1
].
prev
=
&
enc28j60_tx_list
[
0
];
enc28j60_tx_list
[
0
].
addr
=
TXSTART_INIT
;
enc28j60_tx_list
[
1
].
addr
=
TXSTART_INIT
+
MAX_TX_PACKAGE_SIZE
;
enc28j60_tx_list
[
0
].
free
=
RT_TRUE
;
enc28j60_tx_list
[
1
].
free
=
RT_TRUE
;
tx_current
=
&
enc28j60_tx_list
[
0
];
tx_ack
=
tx_current
;
}
/* initialize the interface */
static
rt_err_t
enc28j60_init
(
rt_device_t
dev
)
{
struct
net_device
*
enc28j60
=
(
struct
net_device
*
)
dev
;
struct
rt_spi_device
*
spi_device
=
enc28j60
->
spi_device
;
enc28j60_lock
(
dev
);
_tx_chain_init
();
// perform system reset
spi_write_op
(
spi_device
,
ENC28J60_SOFT_RESET
,
0
,
ENC28J60_SOFT_RESET
);
rt_thread_delay
(
RT_TICK_PER_SECOND
/
50
);
/* delay 20ms */
NextPacketPtr
=
RXSTART_INIT
;
// Rx start
spi_write
(
spi_device
,
ERXSTL
,
RXSTART_INIT
&
0xFF
);
spi_write
(
spi_device
,
ERXSTH
,
RXSTART_INIT
>>
8
);
// set receive pointer address
spi_write
(
spi_device
,
ERXRDPTL
,
RXSTOP_INIT
&
0xFF
);
spi_write
(
spi_device
,
ERXRDPTH
,
RXSTOP_INIT
>>
8
);
// RX end
spi_write
(
spi_device
,
ERXNDL
,
RXSTOP_INIT
&
0xFF
);
spi_write
(
spi_device
,
ERXNDH
,
RXSTOP_INIT
>>
8
);
// TX start
spi_write
(
spi_device
,
ETXSTL
,
TXSTART_INIT
&
0xFF
);
spi_write
(
spi_device
,
ETXSTH
,
TXSTART_INIT
>>
8
);
// set transmission pointer address
spi_write
(
spi_device
,
EWRPTL
,
TXSTART_INIT
&
0xFF
);
spi_write
(
spi_device
,
EWRPTH
,
TXSTART_INIT
>>
8
);
// TX end
spi_write
(
spi_device
,
ETXNDL
,
TXSTOP_INIT
&
0xFF
);
spi_write
(
spi_device
,
ETXNDH
,
TXSTOP_INIT
>>
8
);
// do bank 1 stuff, packet filter:
// For broadcast packets we allow only ARP packtets
// All other packets should be unicast only for our mac (MAADR)
//
// The pattern to match on is therefore
// Type ETH.DST
// ARP BROADCAST
// 06 08 -- ff ff ff ff ff ff -> ip checksum for theses bytes=f7f9
// in binary these poitions are:11 0000 0011 1111
// This is hex 303F->EPMM0=0x3f,EPMM1=0x30
spi_write
(
spi_device
,
ERXFCON
,
ERXFCON_UCEN
|
ERXFCON_CRCEN
|
ERXFCON_BCEN
);
// do bank 2 stuff
// enable MAC receive
spi_write
(
spi_device
,
MACON1
,
MACON1_MARXEN
|
MACON1_TXPAUS
|
MACON1_RXPAUS
);
// enable automatic padding to 60bytes and CRC operations
// spi_write_op(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN);
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
MACON3
,
MACON3_PADCFG0
|
MACON3_TXCRCEN
|
MACON3_FRMLNEN
|
MACON3_FULDPX
);
// bring MAC out of reset
// set inter-frame gap (back-to-back)
// spi_write(MABBIPG, 0x12);
spi_write
(
spi_device
,
MABBIPG
,
0x15
);
spi_write
(
spi_device
,
MACON4
,
MACON4_DEFER
);
spi_write
(
spi_device
,
MACLCON2
,
63
);
// set inter-frame gap (non-back-to-back)
spi_write
(
spi_device
,
MAIPGL
,
0x12
);
spi_write
(
spi_device
,
MAIPGH
,
0x0C
);
// Set the maximum packet size which the controller will accept
// Do not send packets longer than MAX_FRAMELEN:
spi_write
(
spi_device
,
MAMXFLL
,
MAX_FRAMELEN
&
0xFF
);
spi_write
(
spi_device
,
MAMXFLH
,
MAX_FRAMELEN
>>
8
);
// do bank 3 stuff
// write MAC address
// NOTE: MAC address in ENC28J60 is byte-backward
spi_write
(
spi_device
,
MAADR0
,
enc28j60
->
dev_addr
[
5
]);
spi_write
(
spi_device
,
MAADR1
,
enc28j60
->
dev_addr
[
4
]);
spi_write
(
spi_device
,
MAADR2
,
enc28j60
->
dev_addr
[
3
]);
spi_write
(
spi_device
,
MAADR3
,
enc28j60
->
dev_addr
[
2
]);
spi_write
(
spi_device
,
MAADR4
,
enc28j60
->
dev_addr
[
1
]);
spi_write
(
spi_device
,
MAADR5
,
enc28j60
->
dev_addr
[
0
]);
/* output off */
spi_write
(
spi_device
,
ECOCON
,
0x00
);
// enc28j60_phy_write(PHCON1, 0x00);
enc28j60_phy_write
(
spi_device
,
PHCON1
,
PHCON1_PDPXMD
);
// full duplex
// no loopback of transmitted frames
enc28j60_phy_write
(
spi_device
,
PHCON2
,
PHCON2_HDLDIS
);
enc28j60_set_bank
(
spi_device
,
ECON2
);
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
ECON2
,
ECON2_AUTOINC
);
// switch to bank 0
enc28j60_set_bank
(
spi_device
,
ECON1
);
// enable all interrutps
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
EIE
,
0xFF
);
// enable packet reception
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
ECON1
,
ECON1_RXEN
);
/* clock out */
enc28j60_clkout
(
spi_device
,
2
);
enc28j60_phy_write
(
spi_device
,
PHLCON
,
0xD76
);
//0x476
rt_thread_delay
(
RT_TICK_PER_SECOND
/
50
);
/* delay 20ms */
enc28j60_unlock
(
dev
);
return
RT_EOK
;
}
/* control the interface */
static
rt_err_t
enc28j60_control
(
rt_device_t
dev
,
rt_uint8_t
cmd
,
void
*
args
)
{
struct
net_device
*
enc28j60
=
(
struct
net_device
*
)
dev
;
switch
(
cmd
)
{
case
NIOCTL_GADDR
:
/* get mac address */
if
(
args
)
rt_memcpy
(
args
,
enc28j60
->
dev_addr
,
6
);
else
return
-
RT_ERROR
;
break
;
default
:
break
;
}
return
RT_EOK
;
}
/* Open the ethernet interface */
static
rt_err_t
enc28j60_open
(
rt_device_t
dev
,
uint16_t
oflag
)
{
return
RT_EOK
;
}
/* Close the interface */
static
rt_err_t
enc28j60_close
(
rt_device_t
dev
)
{
return
RT_EOK
;
}
/* Read */
static
rt_size_t
enc28j60_read
(
rt_device_t
dev
,
rt_off_t
pos
,
void
*
buffer
,
rt_size_t
size
)
{
rt_set_errno
(
-
RT_ENOSYS
);
return
RT_EOK
;
}
/* Write */
static
rt_size_t
enc28j60_write
(
rt_device_t
dev
,
rt_off_t
pos
,
const
void
*
buffer
,
rt_size_t
size
)
{
rt_set_errno
(
-
RT_ENOSYS
);
return
0
;
}
/* ethernet device interface */
/* Transmit packet. */
static
rt_err_t
enc28j60_tx
(
rt_device_t
dev
,
struct
pbuf
*
p
)
{
struct
net_device
*
enc28j60
=
(
struct
net_device
*
)
dev
;
struct
rt_spi_device
*
spi_device
=
enc28j60
->
spi_device
;
struct
pbuf
*
q
;
rt_uint32_t
level
;
#ifdef ETH_TX_DUMP
rt_size_t
dump_count
=
0
;
rt_uint8_t
*
dump_ptr
;
rt_size_t
dump_i
;
#endif
if
(
tx_current
->
free
==
RT_FALSE
)
{
NET_DEBUG
(
"[Tx] no empty buffer!
\r\n
"
);
while
(
tx_current
->
free
==
RT_FALSE
)
{
rt_err_t
result
;
rt_uint32_t
recved
;
/* there is no block yet, wait a flag */
result
=
rt_event_recv
(
&
tx_event
,
0x01
,
RT_EVENT_FLAG_AND
|
RT_EVENT_FLAG_CLEAR
,
RT_WAITING_FOREVER
,
&
recved
);
RT_ASSERT
(
result
==
RT_EOK
);
}
NET_DEBUG
(
"[Tx] wait empty buffer done!
\r\n
"
);
}
enc28j60_lock
(
dev
);
/* disable enc28j60 interrupt */
level
=
enc28j60_interrupt_disable
(
spi_device
);
// Set the write pointer to start of transmit buffer area
// spi_write(EWRPTL, TXSTART_INIT&0xFF);
// spi_write(EWRPTH, TXSTART_INIT>>8);
spi_write
(
spi_device
,
EWRPTL
,
(
tx_current
->
addr
)
&
0xFF
);
spi_write
(
spi_device
,
EWRPTH
,
(
tx_current
->
addr
)
>>
8
);
// Set the TXND pointer to correspond to the packet size given
tx_current
->
len
=
p
->
tot_len
;
// spi_write(ETXNDL, (TXSTART_INIT+ p->tot_len + 1)&0xFF);
// spi_write(ETXNDH, (TXSTART_INIT+ p->tot_len + 1)>>8);
// write per-packet control byte (0x00 means use macon3 settings)
spi_write_op
(
spi_device
,
ENC28J60_WRITE_BUF_MEM
,
0
,
0x00
);
#ifdef ETH_TX_DUMP
NET_DEBUG
(
"tx_dump, size:%d
\r\n
"
,
p
->
tot_len
);
#endif
for
(
q
=
p
;
q
!=
NULL
;
q
=
q
->
next
)
{
uint8_t
cmd
=
ENC28J60_WRITE_BUF_MEM
;
rt_spi_send_then_send
(
enc28j60
->
spi_device
,
&
cmd
,
1
,
q
->
payload
,
q
->
len
);
#ifdef ETH_RX_DUMP
dump_ptr
=
q
->
payload
;
for
(
dump_i
=
0
;
dump_i
<
q
->
len
;
dump_i
++
)
{
NET_DEBUG
(
"%02x "
,
*
dump_ptr
);
if
(
((
dump_count
+
1
)
%
8
)
==
0
)
{
NET_DEBUG
(
" "
);
}
if
(
((
dump_count
+
1
)
%
16
)
==
0
)
{
NET_DEBUG
(
"
\r\n
"
);
}
dump_count
++
;
dump_ptr
++
;
}
#endif
}
#ifdef ETH_RX_DUMP
NET_DEBUG
(
"
\r\n
"
);
#endif
// send the contents of the transmit buffer onto the network
if
(
tx_current
==
tx_ack
)
{
NET_DEBUG
(
"[Tx] stop, restart!
\r\n
"
);
// TX start
spi_write
(
spi_device
,
ETXSTL
,
(
tx_current
->
addr
)
&
0xFF
);
spi_write
(
spi_device
,
ETXSTH
,
(
tx_current
->
addr
)
>>
8
);
// TX end
spi_write
(
spi_device
,
ETXNDL
,
(
tx_current
->
addr
+
tx_current
->
len
)
&
0xFF
);
spi_write
(
spi_device
,
ETXNDH
,
(
tx_current
->
addr
+
tx_current
->
len
)
>>
8
);
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
ECON1
,
ECON1_TXRTS
);
}
else
{
NET_DEBUG
(
"[Tx] busy, add to chain!
\r\n
"
);
}
tx_current
->
free
=
RT_FALSE
;
tx_current
=
tx_current
->
next
;
/* Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12. */
if
(
(
spi_read
(
spi_device
,
EIR
)
&
EIR_TXERIF
)
)
{
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_CLR
,
ECON1
,
ECON1_TXRST
);
}
/* enable enc28j60 interrupt */
enc28j60_interrupt_enable
(
spi_device
,
level
);
enc28j60_unlock
(
dev
);
return
RT_EOK
;
}
/* recv packet. */
static
struct
pbuf
*
enc28j60_rx
(
rt_device_t
dev
)
{
struct
net_device
*
enc28j60
=
(
struct
net_device
*
)
dev
;
struct
rt_spi_device
*
spi_device
=
enc28j60
->
spi_device
;
struct
pbuf
*
p
=
RT_NULL
;
uint8_t
eir
,
eir_clr
;
uint32_t
pk_counter
;
rt_uint32_t
level
;
rt_uint32_t
len
;
rt_uint16_t
rxstat
;
enc28j60_lock
(
dev
);
/* disable enc28j60 interrupt */
level
=
enc28j60_interrupt_disable
(
spi_device
);
/* get EIR */
eir
=
spi_read
(
spi_device
,
EIR
);
while
(
eir
&
~
EIR_PKTIF
)
{
eir_clr
=
0
;
/* clear PKTIF */
if
(
eir
&
EIR_PKTIF
)
{
NET_DEBUG
(
"EIR_PKTIF
\r\n
"
);
/* switch to bank 0. */
enc28j60_set_bank
(
spi_device
,
EIE
);
/* disable rx interrutps. */
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_CLR
,
EIE
,
EIE_PKTIE
);
eir_clr
|=
EIR_PKTIF
;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_PKTIF);
}
/* clear DMAIF */
if
(
eir
&
EIR_DMAIF
)
{
NET_DEBUG
(
"EIR_DMAIF
\r\n
"
);
eir_clr
|=
EIR_DMAIF
;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_DMAIF);
}
/* LINK changed handler */
if
(
eir
&
EIR_LINKIF
)
{
rt_bool_t
link_status
;
NET_DEBUG
(
"EIR_LINKIF
\r\n
"
);
link_status
=
enc28j60_check_link_status
(
spi_device
);
/* read PHIR to clear the flag */
enc28j60_phy_read
(
spi_device
,
PHIR
);
eir_clr
|=
EIR_LINKIF
;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_LINKIF);
eth_device_linkchange
(
&
(
enc28j60
->
parent
),
link_status
);
}
if
(
eir
&
EIR_TXIF
)
{
/* A frame has been transmitted. */
enc28j60_set_bank
(
spi_device
,
EIR
);
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_CLR
,
EIR
,
EIR_TXIF
);
tx_ack
->
free
=
RT_TRUE
;
tx_ack
=
tx_ack
->
next
;
if
(
tx_ack
->
free
==
RT_FALSE
)
{
NET_DEBUG
(
"[tx isr] Tx chain not empty, continue send the next pkt!
\r\n
"
);
// TX start
spi_write
(
spi_device
,
ETXSTL
,
(
tx_ack
->
addr
)
&
0xFF
);
spi_write
(
spi_device
,
ETXSTH
,
(
tx_ack
->
addr
)
>>
8
);
// TX end
spi_write
(
spi_device
,
ETXNDL
,
(
tx_ack
->
addr
+
tx_ack
->
len
)
&
0xFF
);
spi_write
(
spi_device
,
ETXNDH
,
(
tx_ack
->
addr
+
tx_ack
->
len
)
>>
8
);
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
ECON1
,
ECON1_TXRTS
);
}
else
{
NET_DEBUG
(
"[tx isr] Tx chain empty, stop!
\r\n
"
);
}
/* set event */
rt_event_send
(
&
tx_event
,
0x01
);
}
/* wake up handler */
if
(
eir
&
EIR_WOLIF
)
{
NET_DEBUG
(
"EIR_WOLIF
\r\n
"
);
eir_clr
|=
EIR_WOLIF
;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_WOLIF);
}
/* TX Error handler */
if
((
eir
&
EIR_TXERIF
)
!=
0
)
{
NET_DEBUG
(
"EIR_TXERIF re-start tx chain!
\r\n
"
);
enc28j60_set_bank
(
spi_device
,
ECON1
);
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
ECON1
,
ECON1_TXRST
);
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_CLR
,
ECON1
,
ECON1_TXRST
);
eir_clr
|=
EIR_TXERIF
;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXERIF);
/* re-init tx chain */
_tx_chain_init
();
}
/* RX Error handler */
if
((
eir
&
EIR_RXERIF
)
!=
0
)
{
NET_DEBUG
(
"EIR_RXERIF re-start rx!
\r\n
"
);
NextPacketPtr
=
RXSTART_INIT
;
enc28j60_set_bank
(
spi_device
,
ECON1
);
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
ECON1
,
ECON1_RXRST
);
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_CLR
,
ECON1
,
ECON1_RXRST
);
/* switch to bank 0. */
enc28j60_set_bank
(
spi_device
,
ECON1
);
/* enable packet reception. */
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
ECON1
,
ECON1_RXEN
);
eir_clr
|=
EIR_RXERIF
;
// enc28j60_set_bank(spi_device, EIR);
// spi_write_op(spi_device, ENC28J60_BIT_FIELD_CLR, EIR, EIR_RXERIF);
}
enc28j60_set_bank
(
spi_device
,
EIR
);
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_CLR
,
EIR
,
eir_clr
);
eir
=
spi_read
(
spi_device
,
EIR
);
}
/* read pkt */
pk_counter
=
spi_read
(
spi_device
,
EPKTCNT
);
if
(
pk_counter
)
{
/* Set the read pointer to the start of the received packet. */
spi_write
(
spi_device
,
ERDPTL
,
(
NextPacketPtr
));
spi_write
(
spi_device
,
ERDPTH
,
(
NextPacketPtr
)
>>
8
);
/* read the next packet pointer. */
NextPacketPtr
=
spi_read_op
(
spi_device
,
ENC28J60_READ_BUF_MEM
,
0
);
NextPacketPtr
|=
spi_read_op
(
spi_device
,
ENC28J60_READ_BUF_MEM
,
0
)
<<
8
;
/* read the packet length (see datasheet page 43). */
len
=
spi_read_op
(
spi_device
,
ENC28J60_READ_BUF_MEM
,
0
);
//0x54
len
|=
spi_read_op
(
spi_device
,
ENC28J60_READ_BUF_MEM
,
0
)
<<
8
;
//5554
len
-=
4
;
//remove the CRC count
// read the receive status (see datasheet page 43)
rxstat
=
spi_read_op
(
spi_device
,
ENC28J60_READ_BUF_MEM
,
0
);
rxstat
|=
((
rt_uint16_t
)
spi_read_op
(
spi_device
,
ENC28J60_READ_BUF_MEM
,
0
))
<<
8
;
// check CRC and symbol errors (see datasheet page 44, table 7-3):
// The ERXFCON.CRCEN is set by default. Normally we should not
// need to check this.
if
((
rxstat
&
0x80
)
==
0
)
{
// invalid
len
=
0
;
}
else
{
/* allocation pbuf */
p
=
pbuf_alloc
(
PBUF_LINK
,
len
,
PBUF_RAM
);
if
(
p
!=
RT_NULL
)
{
struct
pbuf
*
q
;
#ifdef ETH_RX_DUMP
rt_size_t
dump_count
=
0
;
rt_uint8_t
*
dump_ptr
;
rt_size_t
dump_i
;
NET_DEBUG
(
"rx_dump, size:%d
\r\n
"
,
len
);
#endif
for
(
q
=
p
;
q
!=
RT_NULL
;
q
=
q
->
next
)
{
uint8_t
cmd
=
ENC28J60_READ_BUF_MEM
;
rt_spi_send_then_recv
(
spi_device
,
&
cmd
,
1
,
q
->
payload
,
q
->
len
);
#ifdef ETH_RX_DUMP
dump_ptr
=
q
->
payload
;
for
(
dump_i
=
0
;
dump_i
<
q
->
len
;
dump_i
++
)
{
NET_DEBUG
(
"%02x "
,
*
dump_ptr
);
if
(
((
dump_count
+
1
)
%
8
)
==
0
)
{
NET_DEBUG
(
" "
);
}
if
(
((
dump_count
+
1
)
%
16
)
==
0
)
{
NET_DEBUG
(
"
\r\n
"
);
}
dump_count
++
;
dump_ptr
++
;
}
#endif
}
#ifdef ETH_RX_DUMP
NET_DEBUG
(
"
\r\n
"
);
#endif
}
}
/* Move the RX read pointer to the start of the next received packet. */
/* This frees the memory we just read out. */
spi_write
(
spi_device
,
ERXRDPTL
,
(
NextPacketPtr
));
spi_write
(
spi_device
,
ERXRDPTH
,
(
NextPacketPtr
)
>>
8
);
/* decrement the packet counter indicate we are done with this packet. */
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
ECON2
,
ECON2_PKTDEC
);
}
else
{
/* switch to bank 0. */
enc28j60_set_bank
(
spi_device
,
ECON1
);
/* enable packet reception. */
spi_write_op
(
spi_device
,
ENC28J60_BIT_FIELD_SET
,
ECON1
,
ECON1_RXEN
);
level
|=
EIE_PKTIE
;
}
/* enable enc28j60 interrupt */
enc28j60_interrupt_enable
(
spi_device
,
level
);
enc28j60_unlock
(
dev
);
return
p
;
}
rt_err_t
enc28j60_attach
(
const
char
*
spi_device_name
)
{
struct
rt_spi_device
*
spi_device
;
spi_device
=
(
struct
rt_spi_device
*
)
rt_device_find
(
spi_device_name
);
if
(
spi_device
==
RT_NULL
)
{
NET_DEBUG
(
"spi device %s not found!
\r\n
"
,
spi_device_name
);
return
-
RT_ENOSYS
;
}
/* config spi */
{
struct
rt_spi_configuration
cfg
;
cfg
.
data_width
=
8
;
cfg
.
mode
=
RT_SPI_MODE_0
|
RT_SPI_MSB
;
/* SPI Compatible Modes 0 */
cfg
.
max_hz
=
20
*
1000
*
1000
;
/* SPI Interface with Clock Speeds Up to 20 MHz */
rt_spi_configure
(
spi_device
,
&
cfg
);
}
/* config spi */
memset
(
&
enc28j60_dev
,
0
,
sizeof
(
enc28j60_dev
));
rt_event_init
(
&
tx_event
,
"eth_tx"
,
RT_IPC_FLAG_FIFO
);
enc28j60_dev
.
spi_device
=
spi_device
;
/* detect device */
{
uint16_t
value
;
/* perform system reset. */
spi_write_op
(
spi_device
,
ENC28J60_SOFT_RESET
,
0
,
ENC28J60_SOFT_RESET
);
rt_thread_delay
(
1
);
/* delay 20ms */
enc28j60_dev
.
emac_rev
=
spi_read
(
spi_device
,
EREVID
);
value
=
enc28j60_phy_read
(
spi_device
,
PHHID2
);
enc28j60_dev
.
phy_rev
=
value
&
0x0F
;
enc28j60_dev
.
phy_pn
=
(
value
>>
4
)
&
0x3F
;
enc28j60_dev
.
phy_id
=
(
enc28j60_phy_read
(
spi_device
,
PHHID1
)
|
((
value
>>
10
)
<<
16
))
<<
3
;
if
(
enc28j60_dev
.
phy_id
!=
0x00280418
)
{
NET_DEBUG
(
"ENC28J60 PHY ID not correct!
\r\n
"
);
NET_DEBUG
(
"emac_rev:%d
\r\n
"
,
enc28j60_dev
.
emac_rev
);
NET_DEBUG
(
"phy_rev:%02X
\r\n
"
,
enc28j60_dev
.
phy_rev
);
NET_DEBUG
(
"phy_pn:%02X
\r\n
"
,
enc28j60_dev
.
phy_pn
);
NET_DEBUG
(
"phy_id:%08X
\r\n
"
,
enc28j60_dev
.
phy_id
);
return
RT_EIO
;
}
}
/* OUI 00-04-A3 (hex): Microchip Technology, Inc. */
enc28j60_dev
.
dev_addr
[
0
]
=
0x00
;
enc28j60_dev
.
dev_addr
[
1
]
=
0x04
;
enc28j60_dev
.
dev_addr
[
2
]
=
0xA3
;
/* set MAC address, only for test */
enc28j60_dev
.
dev_addr
[
3
]
=
0x12
;
enc28j60_dev
.
dev_addr
[
4
]
=
0x34
;
enc28j60_dev
.
dev_addr
[
5
]
=
0x56
;
/* init rt-thread device struct */
enc28j60_dev
.
parent
.
parent
.
type
=
RT_Device_Class_NetIf
;
enc28j60_dev
.
parent
.
parent
.
init
=
enc28j60_init
;
enc28j60_dev
.
parent
.
parent
.
open
=
enc28j60_open
;
enc28j60_dev
.
parent
.
parent
.
close
=
enc28j60_close
;
enc28j60_dev
.
parent
.
parent
.
read
=
enc28j60_read
;
enc28j60_dev
.
parent
.
parent
.
write
=
enc28j60_write
;
enc28j60_dev
.
parent
.
parent
.
control
=
enc28j60_control
;
/* init rt-thread ethernet device struct */
enc28j60_dev
.
parent
.
eth_rx
=
enc28j60_rx
;
enc28j60_dev
.
parent
.
eth_tx
=
enc28j60_tx
;
rt_mutex_init
(
&
enc28j60_dev
.
lock
,
"enc28j60"
,
RT_IPC_FLAG_FIFO
);
eth_device_init
(
&
(
enc28j60_dev
.
parent
),
"e0"
);
return
RT_EOK
;
}
#ifdef RT_USING_FINSH
#include <finsh.h>
/*
* Debug routine to dump useful register contents
*/
static
void
enc28j60
(
void
)
{
struct
rt_spi_device
*
spi_device
=
enc28j60_dev
.
spi_device
;
enc28j60_lock
(
&
enc28j60_dev
);
rt_kprintf
(
"-- enc28j60 registers:
\n
"
);
rt_kprintf
(
"HwRevID: 0x%02X
\n
"
,
spi_read
(
spi_device
,
EREVID
));
rt_kprintf
(
"Cntrl: ECON1 ECON2 ESTAT EIR EIE
\n
"
);
rt_kprintf
(
" 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X
\n
"
,
spi_read
(
spi_device
,
ECON1
),
spi_read
(
spi_device
,
ECON2
),
spi_read
(
spi_device
,
ESTAT
),
spi_read
(
spi_device
,
EIR
),
spi_read
(
spi_device
,
EIE
));
rt_kprintf
(
"MAC : MACON1 MACON3 MACON4
\n
"
);
rt_kprintf
(
" 0x%02X 0x%02X 0x%02X
\n
"
,
spi_read
(
spi_device
,
MACON1
),
spi_read
(
spi_device
,
MACON3
),
spi_read
(
spi_device
,
MACON4
));
rt_kprintf
(
"Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL
\n
"
);
rt_kprintf
(
" 0x%04X 0x%04X 0x%04X 0x%04X "
,
(
spi_read
(
spi_device
,
ERXSTH
)
<<
8
)
|
spi_read
(
spi_device
,
ERXSTL
),
(
spi_read
(
spi_device
,
ERXNDH
)
<<
8
)
|
spi_read
(
spi_device
,
ERXNDL
),
(
spi_read
(
spi_device
,
ERXWRPTH
)
<<
8
)
|
spi_read
(
spi_device
,
ERXWRPTL
),
(
spi_read
(
spi_device
,
ERXRDPTH
)
<<
8
)
|
spi_read
(
spi_device
,
ERXRDPTL
));
rt_kprintf
(
"0x%02X 0x%02X 0x%04X
\n
"
,
spi_read
(
spi_device
,
ERXFCON
),
spi_read
(
spi_device
,
EPKTCNT
),
(
spi_read
(
spi_device
,
MAMXFLH
)
<<
8
)
|
spi_read
(
spi_device
,
MAMXFLL
));
rt_kprintf
(
"Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP
\n
"
);
rt_kprintf
(
" 0x%04X 0x%04X 0x%02X 0x%02X 0x%02X
\n
"
,
(
spi_read
(
spi_device
,
ETXSTH
)
<<
8
)
|
spi_read
(
spi_device
,
ETXSTL
),
(
spi_read
(
spi_device
,
ETXNDH
)
<<
8
)
|
spi_read
(
spi_device
,
ETXNDL
),
spi_read
(
spi_device
,
MACLCON1
),
spi_read
(
spi_device
,
MACLCON2
),
spi_read
(
spi_device
,
MAPHSUP
));
rt_kprintf
(
"PHY : PHCON1 PHSTAT1
\r\n
"
);
rt_kprintf
(
" 0x%04X 0x%04X
\r\n
"
,
enc28j60_phy_read
(
spi_device
,
PHCON1
),
enc28j60_phy_read
(
spi_device
,
PHSTAT1
));
enc28j60_unlock
(
&
enc28j60_dev
);
}
FINSH_FUNCTION_EXPORT
(
enc28j60
,
dump
enc28j60
registers
);
#endif
components/drivers/spi/enc28j60.h
0 → 100644
浏览文件 @
0fc1ac61
#ifndef EN28J60_H_INCLUDED
#define EN28J60_H_INCLUDED
#include <stdint.h>
#include <rtthread.h>
#include <drivers/spi.h>
#include <netif/ethernetif.h>
// ENC28J60 Control Registers
// Control register definitions are a combination of address,
// bank number, and Ethernet/MAC/PHY indicator bits.
// - Register address (bits 0-4)
// - Bank number (bits 5-6)
// - MAC/PHY indicator (bit 7)
#define ADDR_MASK 0x1F
#define BANK_MASK 0x60
#define SPRD_MASK 0x80
// All-bank registers
#define EIE 0x1B
#define EIR 0x1C
#define ESTAT 0x1D
#define ECON2 0x1E
#define ECON1 0x1F
// Bank 0 registers
#define ERDPTL (0x00|0x00)
#define ERDPTH (0x01|0x00)
#define EWRPTL (0x02|0x00)
#define EWRPTH (0x03|0x00)
#define ETXSTL (0x04|0x00)
#define ETXSTH (0x05|0x00)
#define ETXNDL (0x06|0x00)
#define ETXNDH (0x07|0x00)
#define ERXSTL (0x08|0x00)
#define ERXSTH (0x09|0x00)
#define ERXNDL (0x0A|0x00)
#define ERXNDH (0x0B|0x00)
#define ERXRDPTL (0x0C|0x00)
#define ERXRDPTH (0x0D|0x00)
#define ERXWRPTL (0x0E|0x00)
#define ERXWRPTH (0x0F|0x00)
#define EDMASTL (0x10|0x00)
#define EDMASTH (0x11|0x00)
#define EDMANDL (0x12|0x00)
#define EDMANDH (0x13|0x00)
#define EDMADSTL (0x14|0x00)
#define EDMADSTH (0x15|0x00)
#define EDMACSL (0x16|0x00)
#define EDMACSH (0x17|0x00)
// Bank 1 registers
#define EHT0 (0x00|0x20)
#define EHT1 (0x01|0x20)
#define EHT2 (0x02|0x20)
#define EHT3 (0x03|0x20)
#define EHT4 (0x04|0x20)
#define EHT5 (0x05|0x20)
#define EHT6 (0x06|0x20)
#define EHT7 (0x07|0x20)
#define EPMM0 (0x08|0x20)
#define EPMM1 (0x09|0x20)
#define EPMM2 (0x0A|0x20)
#define EPMM3 (0x0B|0x20)
#define EPMM4 (0x0C|0x20)
#define EPMM5 (0x0D|0x20)
#define EPMM6 (0x0E|0x20)
#define EPMM7 (0x0F|0x20)
#define EPMCSL (0x10|0x20)
#define EPMCSH (0x11|0x20)
#define EPMOL (0x14|0x20)
#define EPMOH (0x15|0x20)
#define EWOLIE (0x16|0x20)
#define EWOLIR (0x17|0x20)
#define ERXFCON (0x18|0x20)
#define EPKTCNT (0x19|0x20)
// Bank 2 registers
#define MACON1 (0x00|0x40|0x80)
#define MACON2 (0x01|0x40|0x80)
#define MACON3 (0x02|0x40|0x80)
#define MACON4 (0x03|0x40|0x80)
#define MABBIPG (0x04|0x40|0x80)
#define MAIPGL (0x06|0x40|0x80)
#define MAIPGH (0x07|0x40|0x80)
#define MACLCON1 (0x08|0x40|0x80)
#define MACLCON2 (0x09|0x40|0x80)
#define MAMXFLL (0x0A|0x40|0x80)
#define MAMXFLH (0x0B|0x40|0x80)
#define MAPHSUP (0x0D|0x40|0x80)
#define MICON (0x11|0x40|0x80)
#define MICMD (0x12|0x40|0x80)
#define MIREGADR (0x14|0x40|0x80)
#define MIWRL (0x16|0x40|0x80)
#define MIWRH (0x17|0x40|0x80)
#define MIRDL (0x18|0x40|0x80)
#define MIRDH (0x19|0x40|0x80)
// Bank 3 registers
#define MAADR1 (0x00|0x60|0x80)
#define MAADR0 (0x01|0x60|0x80)
#define MAADR3 (0x02|0x60|0x80)
#define MAADR2 (0x03|0x60|0x80)
#define MAADR5 (0x04|0x60|0x80)
#define MAADR4 (0x05|0x60|0x80)
#define EBSTSD (0x06|0x60)
#define EBSTCON (0x07|0x60)
#define EBSTCSL (0x08|0x60)
#define EBSTCSH (0x09|0x60)
#define MISTAT (0x0A|0x60|0x80)
#define EREVID (0x12|0x60)
#define ECOCON (0x15|0x60)
#define EFLOCON (0x17|0x60)
#define EPAUSL (0x18|0x60)
#define EPAUSH (0x19|0x60)
// PHY registers
#define PHCON1 0x00
#define PHSTAT1 0x01
#define PHHID1 0x02
#define PHHID2 0x03
#define PHCON2 0x10
#define PHSTAT2 0x11
#define PHIE 0x12
#define PHIR 0x13
#define PHLCON 0x14
// ENC28J60 ERXFCON Register Bit Definitions
#define ERXFCON_UCEN 0x80
#define ERXFCON_ANDOR 0x40
#define ERXFCON_CRCEN 0x20
#define ERXFCON_PMEN 0x10
#define ERXFCON_MPEN 0x08
#define ERXFCON_HTEN 0x04
#define ERXFCON_MCEN 0x02
#define ERXFCON_BCEN 0x01
// ENC28J60 EIE Register Bit Definitions
#define EIE_INTIE 0x80
#define EIE_PKTIE 0x40
#define EIE_DMAIE 0x20
#define EIE_LINKIE 0x10
#define EIE_TXIE 0x08
#define EIE_WOLIE 0x04
#define EIE_TXERIE 0x02
#define EIE_RXERIE 0x01
// ENC28J60 EIR Register Bit Definitions
#define EIR_PKTIF 0x40
#define EIR_DMAIF 0x20
#define EIR_LINKIF 0x10
#define EIR_TXIF 0x08
#define EIR_WOLIF 0x04
#define EIR_TXERIF 0x02
#define EIR_RXERIF 0x01
// ENC28J60 ESTAT Register Bit Definitions
#define ESTAT_INT 0x80
#define ESTAT_LATECOL 0x10
#define ESTAT_RXBUSY 0x04
#define ESTAT_TXABRT 0x02
#define ESTAT_CLKRDY 0x01
// ENC28J60 ECON2 Register Bit Definitions
#define ECON2_AUTOINC 0x80
#define ECON2_PKTDEC 0x40
#define ECON2_PWRSV 0x20
#define ECON2_VRPS 0x08
// ENC28J60 ECON1 Register Bit Definitions
#define ECON1_TXRST 0x80
#define ECON1_RXRST 0x40
#define ECON1_DMAST 0x20
#define ECON1_CSUMEN 0x10
#define ECON1_TXRTS 0x08
#define ECON1_RXEN 0x04
#define ECON1_BSEL1 0x02
#define ECON1_BSEL0 0x01
// ENC28J60 MACON1 Register Bit Definitions
#define MACON1_LOOPBK 0x10
#define MACON1_TXPAUS 0x08
#define MACON1_RXPAUS 0x04
#define MACON1_PASSALL 0x02
#define MACON1_MARXEN 0x01
// ENC28J60 MACON2 Register Bit Definitions
#define MACON2_MARST 0x80
#define MACON2_RNDRST 0x40
#define MACON2_MARXRST 0x08
#define MACON2_RFUNRST 0x04
#define MACON2_MATXRST 0x02
#define MACON2_TFUNRST 0x01
// ENC28J60 MACON3 Register Bit Definitions
#define MACON3_PADCFG2 0x80
#define MACON3_PADCFG1 0x40
#define MACON3_PADCFG0 0x20
#define MACON3_TXCRCEN 0x10
#define MACON3_PHDRLEN 0x08
#define MACON3_HFRMLEN 0x04
#define MACON3_FRMLNEN 0x02
#define MACON3_FULDPX 0x01
// ENC28J60 MACON4 Register Bit Definitions
#define MACON4_DEFER (1<<6)
#define MACON4_BPEN (1<<5)
#define MACON4_NOBKOFF (1<<4)
// ENC28J60 MICMD Register Bit Definitions
#define MICMD_MIISCAN 0x02
#define MICMD_MIIRD 0x01
// ENC28J60 MISTAT Register Bit Definitions
#define MISTAT_NVALID 0x04
#define MISTAT_SCAN 0x02
#define MISTAT_BUSY 0x01
// ENC28J60 PHY PHCON1 Register Bit Definitions
#define PHCON1_PRST 0x8000
#define PHCON1_PLOOPBK 0x4000
#define PHCON1_PPWRSV 0x0800
#define PHCON1_PDPXMD 0x0100
// ENC28J60 PHY PHSTAT1 Register Bit Definitions
#define PHSTAT1_PFDPX 0x1000
#define PHSTAT1_PHDPX 0x0800
#define PHSTAT1_LLSTAT 0x0004
#define PHSTAT1_JBSTAT 0x0002
/* ENC28J60 PHY PHSTAT2 Register Bit Definitions */
#define PHSTAT2_TXSTAT (1 << 13)
#define PHSTAT2_RXSTAT (1 << 12)
#define PHSTAT2_COLSTAT (1 << 11)
#define PHSTAT2_LSTAT (1 << 10)
#define PHSTAT2_DPXSTAT (1 << 9)
#define PHSTAT2_PLRITY (1 << 5)
// ENC28J60 PHY PHCON2 Register Bit Definitions
#define PHCON2_FRCLINK 0x4000
#define PHCON2_TXDIS 0x2000
#define PHCON2_JABBER 0x0400
#define PHCON2_HDLDIS 0x0100
// ENC28J60 Packet Control Byte Bit Definitions
#define PKTCTRL_PHUGEEN 0x08
#define PKTCTRL_PPADEN 0x04
#define PKTCTRL_PCRCEN 0x02
#define PKTCTRL_POVERRIDE 0x01
/* ENC28J60 Transmit Status Vector */
#define TSV_TXBYTECNT 0
#define TSV_TXCOLLISIONCNT 16
#define TSV_TXCRCERROR 20
#define TSV_TXLENCHKERROR 21
#define TSV_TXLENOUTOFRANGE 22
#define TSV_TXDONE 23
#define TSV_TXMULTICAST 24
#define TSV_TXBROADCAST 25
#define TSV_TXPACKETDEFER 26
#define TSV_TXEXDEFER 27
#define TSV_TXEXCOLLISION 28
#define TSV_TXLATECOLLISION 29
#define TSV_TXGIANT 30
#define TSV_TXUNDERRUN 31
#define TSV_TOTBYTETXONWIRE 32
#define TSV_TXCONTROLFRAME 48
#define TSV_TXPAUSEFRAME 49
#define TSV_BACKPRESSUREAPP 50
#define TSV_TXVLANTAGFRAME 51
#define TSV_SIZE 7
#define TSV_BYTEOF(x) ((x) / 8)
#define TSV_BITMASK(x) (1 << ((x) % 8))
#define TSV_GETBIT(x, y) (((x)[TSV_BYTEOF(y)] & TSV_BITMASK(y)) ? 1 : 0)
/* ENC28J60 Receive Status Vector */
#define RSV_RXLONGEVDROPEV 16
#define RSV_CARRIEREV 18
#define RSV_CRCERROR 20
#define RSV_LENCHECKERR 21
#define RSV_LENOUTOFRANGE 22
#define RSV_RXOK 23
#define RSV_RXMULTICAST 24
#define RSV_RXBROADCAST 25
#define RSV_DRIBBLENIBBLE 26
#define RSV_RXCONTROLFRAME 27
#define RSV_RXPAUSEFRAME 28
#define RSV_RXUNKNOWNOPCODE 29
#define RSV_RXTYPEVLAN 30
#define RSV_SIZE 6
#define RSV_BITMASK(x) (1 << ((x) - 16))
#define RSV_GETBIT(x, y) (((x) & RSV_BITMASK(y)) ? 1 : 0)
// SPI operation codes
#define ENC28J60_READ_CTRL_REG 0x00
#define ENC28J60_READ_BUF_MEM 0x3A
#define ENC28J60_WRITE_CTRL_REG 0x40
#define ENC28J60_WRITE_BUF_MEM 0x7A
#define ENC28J60_BIT_FIELD_SET 0x80
#define ENC28J60_BIT_FIELD_CLR 0xA0
#define ENC28J60_SOFT_RESET 0xFF
// The RXSTART_INIT should be zero. See Rev. B4 Silicon Errata
// buffer boundaries applied to internal 8K ram
// the entire available packet buffer space is allocated
//
#define MAX_TX_PACKAGE_SIZE (1536)
// start with recbuf at 0/
#define RXSTART_INIT 0x0
// receive buffer end
#define RXSTOP_INIT (0x1FFF - MAX_TX_PACKAGE_SIZE*2) - 1
// start TX buffer at 0x1FFF-0x0600, pace for one full ethernet frame (~1500 bytes)
#define TXSTART_INIT (0x1FFF - MAX_TX_PACKAGE_SIZE*2)
// stp TX buffer at end of mem
#define TXSTOP_INIT 0x1FFF
// max frame length which the conroller will accept:
#define MAX_FRAMELEN 1518
#define MAX_ADDR_LEN 6
struct
net_device
{
/* inherit from ethernet device */
struct
eth_device
parent
;
/* interface address info. */
rt_uint8_t
dev_addr
[
MAX_ADDR_LEN
];
/* hw address */
rt_uint8_t
emac_rev
;
rt_uint8_t
phy_rev
;
rt_uint8_t
phy_pn
;
rt_uint32_t
phy_id
;
/* spi device */
struct
rt_spi_device
*
spi_device
;
struct
rt_mutex
lock
;
};
/* export function */
extern
rt_err_t
enc28j60_attach
(
const
char
*
spi_device_name
);
extern
void
enc28j60_isr
(
void
);
#endif // EN28J60_H_INCLUDED
components/drivers/spi/spi_flash_at45dbxx.c
0 → 100644
浏览文件 @
0fc1ac61
/*
* File : rtdef.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2011, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-12-16 aozima the first version
*/
#include <stdint.h>
#include "spi_flash_at45dbxx.h"
#define FLASH_DEBUG
#define DMA_BUFFER_SIZE 512
#ifdef FLASH_DEBUG
#define FLASH_TRACE rt_kprintf
#else
#define FLASH_TRACE(...)
#endif
/**< #ifdef FLASH_DEBUG */
/* JEDEC Manufacturers ID */
#define MF_ID (0x1F)
/* atmel */
#define DENSITY_CODE_011D (0x02)
/* AT45DB011D Density Code : 00010 = 1-Mbit */
#define DENSITY_CODE_021D (0x03)
/* AT45DB021D Density Code : 00011 = 2-Mbit */
#define DENSITY_CODE_041D (0x04)
/* AT45DB041D Density Code : 00100 = 4-Mbit */
#define DENSITY_CODE_081D (0x05)
/* AT45DB081D Density Code : 00101 = 8-Mbit */
#define DENSITY_CODE_161D (0x06)
/* AT45DB161D Density Code : 00110 = 16-Mbit */
#define DENSITY_CODE_321D (0x07)
/* AT45DB321D Density Code : 00111 = 32-Mbit */
#define DENSITY_CODE_642D (0x08)
/* AT45DB642D Density Code : 01000 = 64-Mbit */
struct
JEDEC_ID
{
uint8_t
manufacturer_id
;
/* Manufacturer ID */
uint8_t
density_code
:
5
;
/* Density Code */
uint8_t
family_code
:
3
;
/* Family Code */
uint8_t
version_code
:
5
;
/* Product Version Code */
uint8_t
mlc_code
:
3
;
/* MLC Code */
uint8_t
byte_count
;
/* Byte Count */
};
#define AT45DB_BUFFER_1_WRITE 0x84
#define AT45DB_BUFFER_2_WRITE 0x87
#define AT45DB_BUFFER_1_READ 0xD4
#define AT45DB_BUFFER_2_READ 0xD6
#define AT45DB_B1_TO_MM_PAGE_PROG_WITH_ERASE 0x83
#define AT45DB_B2_TO_MM_PAGE_PROG_WITH_ERASE 0x86
#define AT45DB_MM_PAGE_TO_B1_XFER 0x53
#define AT45DB_MM_PAGE_TO_B2_XFER 0x55
#define AT45DB_PAGE_ERASE 0x81
#define AT45DB_SECTOR_ERASE 0x7C
#define AT45DB_READ_STATE_REGISTER 0xD7
#define AT45DB_MM_PAGE_READ 0xD2
#define AT45DB_MM_PAGE_PROG_THRU_BUFFER1 0x82
#define AT45DB_CMD_JEDEC_ID 0x9F
static
struct
spi_flash_at45dbxx
spi_flash_at45dbxx
;
/*****************************************************************************/
/*Status Register Format: */
/* ------------------------------------------------------------------------- */
/* | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 | */
/* |--------|--------|--------|--------|--------|--------|--------|--------| */
/* |RDY/BUSY| COMP | device density | X | X | */
/* ------------------------------------------------------------------------- */
/* 0:busy | | AT45DB041:0111 | protect|page size */
/* 1:ready | | AT45DB161:1011 | */
/* --------------------------------------------------------------------------*/
/*****************************************************************************/
static
uint8_t
AT45DB_StatusRegisterRead
(
void
)
{
return
rt_spi_sendrecv8
(
spi_flash_at45dbxx
.
rt_spi_device
,
AT45DB_READ_STATE_REGISTER
);
}
static
void
wait_busy
(
void
)
{
uint16_t
i
=
0
;
while
(
i
++
<
10000
)
{
if
(
AT45DB_StatusRegisterRead
()
&
0x80
)
{
return
;
}
}
FLASH_TRACE
(
"
\r\n
SPI_FLASH timeout!!!
\r\n
"
);
}
/* RT-Thread Device Driver Interface */
static
rt_err_t
AT45DB_flash_init
(
rt_device_t
dev
)
{
return
RT_EOK
;
}
static
rt_err_t
AT45DB_flash_open
(
rt_device_t
dev
,
rt_uint16_t
oflag
)
{
return
RT_EOK
;
}
static
rt_err_t
AT45DB_flash_close
(
rt_device_t
dev
)
{
return
RT_EOK
;
}
static
rt_err_t
AT45DB_flash_control
(
rt_device_t
dev
,
rt_uint8_t
cmd
,
void
*
args
)
{
RT_ASSERT
(
dev
!=
RT_NULL
);
if
(
cmd
==
RT_DEVICE_CTRL_BLK_GETGEOME
)
{
struct
rt_device_blk_geometry
*
geometry
;
geometry
=
(
struct
rt_device_blk_geometry
*
)
args
;
if
(
geometry
==
RT_NULL
)
return
-
RT_ERROR
;
geometry
->
bytes_per_sector
=
512
;
geometry
->
sector_count
=
4096
;
geometry
->
block_size
=
4096
;
/* block erase: 4k */
}
return
RT_EOK
;
}
static
rt_size_t
AT45DB_flash_read_page_256
(
rt_device_t
dev
,
rt_off_t
pos
,
void
*
buffer
,
rt_size_t
size
)
{
uint32_t
index
,
nr
;
uint8_t
*
read_buffer
=
buffer
;
nr
=
size
;
for
(
index
=
0
;
index
<
nr
;
index
++
)
{
uint32_t
page
=
pos
;
uint8_t
send_buffer
[
8
];
uint32_t
i
;
for
(
i
=
0
;
i
<
sizeof
(
send_buffer
);
i
++
)
{
send_buffer
[
i
]
=
0
;
}
send_buffer
[
0
]
=
AT45DB_MM_PAGE_READ
;
send_buffer
[
1
]
=
(
uint8_t
)(
page
>>
7
);
send_buffer
[
2
]
=
(
uint8_t
)(
page
<<
1
);
rt_spi_send_then_recv
(
spi_flash_at45dbxx
.
rt_spi_device
,
send_buffer
,
8
,
read_buffer
,
256
);
read_buffer
+=
256
;
page
++
;
}
return
size
;
}
static
rt_size_t
AT45DB_flash_read_page_512
(
rt_device_t
dev
,
rt_off_t
pos
,
void
*
buffer
,
rt_size_t
size
)
{
uint32_t
index
,
nr
;
uint8_t
*
read_buffer
=
buffer
;
nr
=
size
;
for
(
index
=
0
;
index
<
nr
;
index
++
)
{
uint32_t
page
=
pos
;
uint8_t
send_buffer
[
8
];
uint32_t
i
;
for
(
i
=
0
;
i
<
sizeof
(
send_buffer
);
i
++
)
{
send_buffer
[
i
]
=
0
;
}
send_buffer
[
0
]
=
AT45DB_MM_PAGE_READ
;
send_buffer
[
1
]
=
(
uint8_t
)(
page
>>
6
);
send_buffer
[
2
]
=
(
uint8_t
)(
page
<<
2
);
rt_spi_send_then_recv
(
spi_flash_at45dbxx
.
rt_spi_device
,
send_buffer
,
8
,
read_buffer
,
512
);
read_buffer
+=
512
;
page
++
;
}
return
size
;
}
static
rt_size_t
AT45DB_flash_read_page_1024
(
rt_device_t
dev
,
rt_off_t
pos
,
void
*
buffer
,
rt_size_t
size
)
{
uint32_t
index
,
nr
;
uint8_t
*
read_buffer
=
buffer
;
nr
=
size
;
for
(
index
=
0
;
index
<
nr
;
index
++
)
{
uint32_t
page
=
pos
;
uint8_t
send_buffer
[
8
];
uint32_t
i
;
for
(
i
=
0
;
i
<
sizeof
(
send_buffer
);
i
++
)
{
send_buffer
[
i
]
=
0
;
}
send_buffer
[
0
]
=
AT45DB_MM_PAGE_READ
;
send_buffer
[
1
]
=
(
uint8_t
)(
page
>>
5
);
send_buffer
[
2
]
=
(
uint8_t
)(
page
<<
3
);
rt_spi_send_then_recv
(
spi_flash_at45dbxx
.
rt_spi_device
,
send_buffer
,
8
,
read_buffer
,
1024
);
read_buffer
+=
1024
;
page
++
;
}
return
size
;
}
static
rt_size_t
AT45DB_flash_write_page_256
(
rt_device_t
dev
,
rt_off_t
pos
,
const
void
*
buffer
,
rt_size_t
size
)
{
rt_uint32_t
index
,
nr
;
const
uint8_t
*
write_buffer
=
buffer
;
nr
=
size
;
for
(
index
=
0
;
index
<
nr
;
index
++
)
{
uint32_t
page
=
pos
;
uint8_t
send_buffer
[
4
];
send_buffer
[
0
]
=
AT45DB_MM_PAGE_PROG_THRU_BUFFER1
;
send_buffer
[
1
]
=
(
uint8_t
)
(
page
>>
7
);
send_buffer
[
2
]
=
(
uint8_t
)
(
page
<<
1
);
send_buffer
[
3
]
=
0
;
rt_spi_send_then_send
(
spi_flash_at45dbxx
.
rt_spi_device
,
send_buffer
,
4
,
write_buffer
,
256
);
write_buffer
+=
256
;
page
++
;
wait_busy
();
}
return
size
;
}
static
rt_size_t
AT45DB_flash_write_page_512
(
rt_device_t
dev
,
rt_off_t
pos
,
const
void
*
buffer
,
rt_size_t
size
)
{
rt_uint32_t
index
,
nr
;
const
uint8_t
*
write_buffer
=
buffer
;
nr
=
size
;
for
(
index
=
0
;
index
<
nr
;
index
++
)
{
uint32_t
page
=
pos
;
uint8_t
send_buffer
[
4
];
send_buffer
[
0
]
=
AT45DB_MM_PAGE_PROG_THRU_BUFFER1
;
send_buffer
[
1
]
=
(
uint8_t
)
(
page
>>
6
);
send_buffer
[
2
]
=
(
uint8_t
)
(
page
<<
2
);
send_buffer
[
3
]
=
0
;
rt_spi_send_then_send
(
spi_flash_at45dbxx
.
rt_spi_device
,
send_buffer
,
4
,
write_buffer
,
512
);
write_buffer
+=
512
;
page
++
;
wait_busy
();
}
return
size
;
}
static
rt_size_t
AT45DB_flash_write_page_1024
(
rt_device_t
dev
,
rt_off_t
pos
,
const
void
*
buffer
,
rt_size_t
size
)
{
rt_uint32_t
index
,
nr
;
const
uint8_t
*
write_buffer
=
buffer
;
nr
=
size
;
for
(
index
=
0
;
index
<
nr
;
index
++
)
{
uint32_t
page
=
pos
;
uint8_t
send_buffer
[
4
];
send_buffer
[
0
]
=
AT45DB_MM_PAGE_PROG_THRU_BUFFER1
;
send_buffer
[
1
]
=
(
uint8_t
)
(
page
>>
5
);
send_buffer
[
2
]
=
(
uint8_t
)
(
page
<<
3
);
send_buffer
[
3
]
=
0
;
rt_spi_send_then_send
(
spi_flash_at45dbxx
.
rt_spi_device
,
send_buffer
,
4
,
write_buffer
,
1024
);
write_buffer
+=
1024
;
page
++
;
wait_busy
();
}
return
size
;
}
rt_err_t
at45dbxx_init
(
const
char
*
flash_device_name
,
const
char
*
spi_device_name
)
{
struct
rt_spi_device
*
rt_spi_device
;
struct
JEDEC_ID
*
JEDEC_ID
;
rt_spi_device
=
(
struct
rt_spi_device
*
)
rt_device_find
(
spi_device_name
);
if
(
rt_spi_device
==
RT_NULL
)
{
FLASH_TRACE
(
"spi device %s not found!
\r\n
"
,
spi_device_name
);
return
-
RT_ENOSYS
;
}
spi_flash_at45dbxx
.
rt_spi_device
=
rt_spi_device
;
/* config spi */
{
struct
rt_spi_configuration
cfg
;
cfg
.
data_width
=
8
;
cfg
.
mode
=
RT_SPI_MODE_0
|
RT_SPI_MSB
;
/* SPI Compatible Modes 0 and 3 */
cfg
.
max_hz
=
66000000
;
/* Atmel RapidS Serial Interface: 66MHz Maximum Clock Frequency */
rt_spi_configure
(
spi_flash_at45dbxx
.
rt_spi_device
,
&
cfg
);
}
/* read JEDEC ID */
{
uint8_t
cmd
;
uint8_t
id_recv
[
6
];
JEDEC_ID
=
(
struct
JEDEC_ID
*
)
id_recv
;
cmd
=
AT45DB_CMD_JEDEC_ID
;
rt_spi_send_then_recv
(
spi_flash_at45dbxx
.
rt_spi_device
,
&
cmd
,
1
,
id_recv
,
6
);
/**< 1FH = Atmel */
/**< 001 = Atmel DataFlash */
if
(
JEDEC_ID
->
manufacturer_id
!=
0x1F
||
JEDEC_ID
->
family_code
!=
0x01
)
{
FLASH_TRACE
(
"Manufacturers ID or Memory Type error!
\r\n
"
);
FLASH_TRACE
(
"JEDEC Read-ID Data : %02X %02X %02X
\r\n
"
,
id_recv
[
0
],
id_recv
[
1
],
id_recv
[
2
]);
return
-
RT_ENOSYS
;
}
if
(
JEDEC_ID
->
density_code
==
DENSITY_CODE_011D
)
{
/**< AT45DB011D Density Code : 00010 = 1-Mbit */
FLASH_TRACE
(
"AT45DB011D detection
\r\n
"
);
spi_flash_at45dbxx
.
geometry
.
bytes_per_sector
=
256
;
/* Page Erase (256 Bytes) */
spi_flash_at45dbxx
.
geometry
.
sector_count
=
512
;
/* 1-Mbit / 8 / 256 = 512 */
spi_flash_at45dbxx
.
geometry
.
block_size
=
1024
*
2
;
/* Block Erase (2-Kbytes) */
}
else
if
(
JEDEC_ID
->
density_code
==
DENSITY_CODE_021D
)
{
/**< AT45DB021D Density Code : 00011 = 2-Mbit */
FLASH_TRACE
(
"AT45DB021D detection
\r\n
"
);
spi_flash_at45dbxx
.
geometry
.
bytes_per_sector
=
256
;
/* Page Erase (256 Bytes) */
spi_flash_at45dbxx
.
geometry
.
sector_count
=
512
*
2
;
/* 2-Mbit / 8 / 256 = 1024 */
spi_flash_at45dbxx
.
geometry
.
block_size
=
1024
*
2
;
/* Block Erase (2-Kbytes) */
}
else
if
(
JEDEC_ID
->
density_code
==
DENSITY_CODE_041D
)
{
/**< AT45DB041D Density Code : 00100 = 4-Mbit */
FLASH_TRACE
(
"AT45DB041D detection
\r\n
"
);
spi_flash_at45dbxx
.
geometry
.
bytes_per_sector
=
256
;
/* Page Erase (256 Bytes) */
spi_flash_at45dbxx
.
geometry
.
sector_count
=
512
*
4
;
/* 4-Mbit / 8 / 256 = 2048 */
spi_flash_at45dbxx
.
geometry
.
block_size
=
1024
*
2
;
/* Block Erase (2-Kbytes) */
}
else
if
(
JEDEC_ID
->
density_code
==
DENSITY_CODE_081D
)
{
/**< AT45DB081D Density Code : 00101 = 8-Mbit */
FLASH_TRACE
(
"AT45DB081D detection
\r\n
"
);
spi_flash_at45dbxx
.
geometry
.
bytes_per_sector
=
256
;
/* Page Erase (256 Bytes) */
spi_flash_at45dbxx
.
geometry
.
sector_count
=
512
*
8
;
/* 8-Mbit / 8 / 256 = 4096 */
spi_flash_at45dbxx
.
geometry
.
block_size
=
1024
*
2
;
/* Block Erase (2-Kbytes) */
}
else
if
(
JEDEC_ID
->
density_code
==
DENSITY_CODE_161D
)
{
/**< AT45DB161D Density Code : 00110 = 16-Mbit */
FLASH_TRACE
(
"AT45DB161D detection
\r\n
"
);
spi_flash_at45dbxx
.
geometry
.
bytes_per_sector
=
512
;
/* Page Erase (512 Bytes) */
spi_flash_at45dbxx
.
geometry
.
sector_count
=
256
*
16
;
/* 16-Mbit / 8 / 512 = 4096 */
spi_flash_at45dbxx
.
geometry
.
block_size
=
1024
*
4
;
/* Block Erase (4-Kbytes) */
}
else
if
(
JEDEC_ID
->
density_code
==
DENSITY_CODE_321D
)
{
/**< AT45DB321D Density Code : 00111 = 32-Mbit */
FLASH_TRACE
(
"AT45DB321D detection
\r\n
"
);
spi_flash_at45dbxx
.
geometry
.
bytes_per_sector
=
512
;
/* Page Erase (512 Bytes) */
spi_flash_at45dbxx
.
geometry
.
sector_count
=
256
*
32
;
/* 32-Mbit / 8 / 512 = 8192 */
spi_flash_at45dbxx
.
geometry
.
block_size
=
1024
*
4
;
/* Block Erase (4-Kbytes) */
}
else
if
(
JEDEC_ID
->
density_code
==
DENSITY_CODE_642D
)
{
/**< AT45DB642D Density Code : 01000 = 64-Mbit */
FLASH_TRACE
(
"AT45DB642D detection
\r\n
"
);
spi_flash_at45dbxx
.
geometry
.
bytes_per_sector
=
1024
;
/* Page Erase (1 Kbyte) */
spi_flash_at45dbxx
.
geometry
.
sector_count
=
128
*
64
;
/* 64-Mbit / 8 / 1024 = 8192 */
spi_flash_at45dbxx
.
geometry
.
block_size
=
1024
*
8
;
/* Block Erase (8 Kbytes) */
}
else
{
FLASH_TRACE
(
"Memory Capacity error!
\r\n
"
);
return
-
RT_ENOSYS
;
}
}
/* register device */
spi_flash_at45dbxx
.
flash_device
.
type
=
RT_Device_Class_Block
;
spi_flash_at45dbxx
.
flash_device
.
init
=
AT45DB_flash_init
;
spi_flash_at45dbxx
.
flash_device
.
open
=
AT45DB_flash_open
;
spi_flash_at45dbxx
.
flash_device
.
close
=
AT45DB_flash_close
;
spi_flash_at45dbxx
.
flash_device
.
control
=
AT45DB_flash_control
;
if
(
JEDEC_ID
->
density_code
==
DENSITY_CODE_642D
)
{
spi_flash_at45dbxx
.
flash_device
.
read
=
AT45DB_flash_read_page_1024
;
spi_flash_at45dbxx
.
flash_device
.
write
=
AT45DB_flash_write_page_1024
;
}
else
if
(
JEDEC_ID
->
density_code
==
DENSITY_CODE_161D
||
JEDEC_ID
->
density_code
==
DENSITY_CODE_321D
)
{
spi_flash_at45dbxx
.
flash_device
.
read
=
AT45DB_flash_read_page_512
;
spi_flash_at45dbxx
.
flash_device
.
write
=
AT45DB_flash_write_page_512
;
}
else
{
spi_flash_at45dbxx
.
flash_device
.
read
=
AT45DB_flash_read_page_256
;
spi_flash_at45dbxx
.
flash_device
.
write
=
AT45DB_flash_write_page_256
;
}
/* no private */
spi_flash_at45dbxx
.
flash_device
.
user_data
=
RT_NULL
;
rt_device_register
(
&
spi_flash_at45dbxx
.
flash_device
,
flash_device_name
,
RT_DEVICE_FLAG_RDWR
|
RT_DEVICE_FLAG_STANDALONE
);
return
RT_EOK
;
}
components/drivers/spi/spi_flash_at45dbxx.h
0 → 100644
浏览文件 @
0fc1ac61
#ifndef SPI_FLASH_AT45DBXX_H_INCLUDED
#define SPI_FLASH_AT45DBXX_H_INCLUDED
#include <rtthread.h>
#include <drivers/spi.h>
struct
spi_flash_at45dbxx
{
struct
rt_device
flash_device
;
struct
rt_device_blk_geometry
geometry
;
struct
rt_spi_device
*
rt_spi_device
;
};
extern
rt_err_t
at45dbxx_init
(
const
char
*
flash_device_name
,
const
char
*
spi_device_name
);
#endif // SPI_FLASH_AT45DBXX_H_INCLUDED
components/drivers/spi/spi_flash_sst25vfxx.c
0 → 100644
浏览文件 @
0fc1ac61
/*
* File : rtdef.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2011, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-12-16 aozima the first version
*/
#include <stdint.h>
#include "spi_flash_sst25vfxx.h"
#define FLASH_DEBUG
#ifdef FLASH_DEBUG
#define FLASH_TRACE rt_kprintf
#else
#define FLASH_TRACE(...)
#endif
/* #ifdef FLASH_DEBUG */
/* JEDEC Manufacturers ID */
#define MF_ID (0xBF)
/* JEDEC Device ID : Memory Type */
#define MT_ID (0x25)
/* JEDEC Device ID: Memory Capacity */
#define MC_ID_SST25VF020B (0x8C)
/* 2Mbit */
#define MC_ID_SST25VF040B (0x8D)
/* 4Mbit */
#define MC_ID_SST25VF080B (0x8E)
/* 8Mbit */
#define MC_ID_SST25VF016B (0x41)
/* 16Mbit */
#define MC_ID_SST25VF032B (0x4A)
/* 32Mbit */
#define MC_ID_SST25VF064C (0x4B)
/* 64Mbit */
/* command list */
#define CMD_RDSR (0x05)
#define CMD_WRSR (0x01)
#define CMD_EWSR (0x50)
#define CMD_WRDI (0x04)
#define CMD_WREN (0x06)
#define CMD_READ (0x03)
#define CMD_FAST_READ (0x0B)
#define CMD_BP (0x02)
#define CMD_AAIP (0xAD)
#define CMD_ERASE_4K (0x20)
#define CMD_ERASE_32K (0x52)
#define CMD_ERASE_64K (0xD8)
#define CMD_ERASE_full (0xC7)
#define CMD_JEDEC_ID (0x9F)
#define CMD_EBSY (0x70)
#define CMD_DBSY (0x80)
#define DUMMY (0xFF)
static
struct
spi_flash_sst25vfxx
spi_flash_sst25vfxx
;
static
uint8_t
sst25vfxx_read_status
(
struct
spi_flash_sst25vfxx
*
spi_flash
)
{
return
rt_spi_sendrecv8
(
spi_flash
->
rt_spi_device
,
CMD_RDSR
);
}
static
void
sst25vfxx_wait_busy
(
struct
spi_flash_sst25vfxx
*
spi_flash
)
{
while
(
sst25vfxx_read_status
(
spi_flash
)
&
(
0x01
));
}
/** \brief write N page on [page]
*
* \param page uint32_t unit : byte (4096 * N,1 page = 4096byte)
* \param buffer const uint8_t*
* \param size uint32_t unit : byte ( 4096*N )
* \return uint32_t
*
*/
static
uint32_t
sst25vfxx_page_write
(
struct
spi_flash_sst25vfxx
*
spi_flash
,
uint32_t
page
,
const
uint8_t
*
buffer
,
uint32_t
size
)
{
uint32_t
index
;
uint32_t
need_wirte
=
size
;
uint8_t
send_buffer
[
6
];
page
&=
~
0xFFF
;
// page size = 4096byte
send_buffer
[
0
]
=
CMD_WREN
;
rt_spi_send
(
spi_flash
->
rt_spi_device
,
send_buffer
,
1
);
send_buffer
[
0
]
=
CMD_ERASE_4K
;
send_buffer
[
1
]
=
(
page
>>
16
);
send_buffer
[
2
]
=
(
page
>>
8
);
send_buffer
[
3
]
=
(
page
);
rt_spi_send
(
spi_flash
->
rt_spi_device
,
send_buffer
,
4
);
sst25vfxx_wait_busy
(
spi_flash
);
// wait erase done.
send_buffer
[
0
]
=
CMD_WREN
;
rt_spi_send
(
spi_flash
->
rt_spi_device
,
send_buffer
,
1
);
send_buffer
[
0
]
=
CMD_AAIP
;
send_buffer
[
1
]
=
(
uint8_t
)(
page
>>
16
);
send_buffer
[
2
]
=
(
uint8_t
)(
page
>>
8
);
send_buffer
[
3
]
=
(
uint8_t
)(
page
);
send_buffer
[
4
]
=
*
buffer
++
;
send_buffer
[
5
]
=
*
buffer
++
;
need_wirte
-=
2
;
rt_spi_send
(
spi_flash
->
rt_spi_device
,
send_buffer
,
6
);
sst25vfxx_wait_busy
(
spi_flash
);
for
(
index
=
0
;
index
<
need_wirte
/
2
;
index
++
)
{
send_buffer
[
0
]
=
CMD_AAIP
;
send_buffer
[
1
]
=
*
buffer
++
;
send_buffer
[
2
]
=
*
buffer
++
;
rt_spi_send
(
spi_flash
->
rt_spi_device
,
send_buffer
,
3
);
sst25vfxx_wait_busy
(
spi_flash
);
}
send_buffer
[
0
]
=
CMD_WRDI
;
rt_spi_send
(
spi_flash
->
rt_spi_device
,
send_buffer
,
1
);
return
size
;
}
/* RT-Thread device interface */
static
rt_err_t
sst25vfxx_flash_init
(
rt_device_t
dev
)
{
return
RT_EOK
;
}
static
rt_err_t
sst25vfxx_flash_open
(
rt_device_t
dev
,
rt_uint16_t
oflag
)
{
rt_err_t
result
;
uint8_t
send_buffer
[
2
];
struct
spi_flash_sst25vfxx
*
spi_flash
=
(
struct
spi_flash_sst25vfxx
*
)
dev
;
/* lock spi flash */
result
=
rt_mutex_take
(
&
(
spi_flash
->
lock
),
RT_WAITING_FOREVER
);
if
(
result
!=
RT_EOK
)
{
return
result
;
}
send_buffer
[
0
]
=
CMD_DBSY
;
rt_spi_send
(
spi_flash
->
rt_spi_device
,
send_buffer
,
1
);
send_buffer
[
0
]
=
CMD_EWSR
;
rt_spi_send
(
spi_flash
->
rt_spi_device
,
send_buffer
,
1
);
send_buffer
[
0
]
=
CMD_WRSR
;
send_buffer
[
1
]
=
0
;
rt_spi_send
(
spi_flash
->
rt_spi_device
,
send_buffer
,
2
);
/* release lock */
rt_mutex_release
(
&
(
spi_flash
->
lock
));
return
RT_EOK
;
}
static
rt_err_t
sst25vfxx_flash_close
(
rt_device_t
dev
)
{
return
RT_EOK
;
}
static
rt_err_t
sst25vfxx_flash_control
(
rt_device_t
dev
,
rt_uint8_t
cmd
,
void
*
args
)
{
struct
spi_flash_sst25vfxx
*
spi_flash
;
spi_flash
=
(
struct
spi_flash_sst25vfxx
*
)
dev
;
RT_ASSERT
(
dev
!=
RT_NULL
);
if
(
cmd
==
RT_DEVICE_CTRL_BLK_GETGEOME
)
{
struct
rt_device_blk_geometry
*
geometry
;
geometry
=
(
struct
rt_device_blk_geometry
*
)
args
;
if
(
geometry
==
RT_NULL
)
return
-
RT_ERROR
;
geometry
->
bytes_per_sector
=
spi_flash
->
geometry
.
bytes_per_sector
;
geometry
->
sector_count
=
spi_flash
->
geometry
.
sector_count
;
geometry
->
block_size
=
spi_flash
->
geometry
.
block_size
;
}
return
RT_EOK
;
}
static
rt_size_t
sst25vfxx_flash_read
(
rt_device_t
dev
,
rt_off_t
pos
,
void
*
buffer
,
rt_size_t
size
)
{
rt_err_t
result
;
uint8_t
send_buffer
[
4
];
struct
spi_flash_sst25vfxx
*
spi_flash
=
(
struct
spi_flash_sst25vfxx
*
)
dev
;
uint32_t
offset
=
pos
*
spi_flash
->
geometry
.
bytes_per_sector
;
/* lock spi flash */
result
=
rt_mutex_take
(
&
(
spi_flash
->
lock
),
RT_WAITING_FOREVER
);
if
(
result
!=
RT_EOK
)
{
return
0
;
}
send_buffer
[
0
]
=
CMD_WRDI
;
rt_spi_send
(
spi_flash
->
rt_spi_device
,
send_buffer
,
1
);
send_buffer
[
0
]
=
CMD_READ
;
send_buffer
[
1
]
=
(
uint8_t
)(
offset
>>
16
);
send_buffer
[
2
]
=
(
uint8_t
)(
offset
>>
8
);
send_buffer
[
3
]
=
(
uint8_t
)(
offset
);
rt_spi_send_then_recv
(
spi_flash
->
rt_spi_device
,
send_buffer
,
4
,
buffer
,
size
*
spi_flash
->
geometry
.
bytes_per_sector
);
/* release lock */
rt_mutex_release
(
&
(
spi_flash
->
lock
));
return
size
;
}
static
rt_size_t
sst25vfxx_flash_write
(
rt_device_t
dev
,
rt_off_t
pos
,
const
void
*
buffer
,
rt_size_t
size
)
{
uint32_t
i
;
rt_err_t
result
;
const
uint8_t
*
write_buffer
=
buffer
;
struct
spi_flash_sst25vfxx
*
spi_flash
=
(
struct
spi_flash_sst25vfxx
*
)
dev
;
/* lock spi flash */
result
=
rt_mutex_take
(
&
(
spi_flash
->
lock
),
RT_WAITING_FOREVER
);
if
(
result
!=
RT_EOK
)
{
return
0
;
}
for
(
i
=
0
;
i
<
size
;
i
++
)
{
sst25vfxx_page_write
(
spi_flash
,
(
pos
+
i
)
*
spi_flash
->
geometry
.
bytes_per_sector
,
write_buffer
,
spi_flash
->
geometry
.
bytes_per_sector
);
write_buffer
+=
spi_flash
->
geometry
.
bytes_per_sector
;
}
/* release lock */
rt_mutex_release
(
&
(
spi_flash
->
lock
));
return
size
;
}
rt_err_t
sst25vfxx_init
(
const
char
*
flash_device_name
,
const
char
*
spi_device_name
)
{
struct
rt_spi_device
*
rt_spi_device
;
struct
spi_flash_sst25vfxx
*
spi_flash
=
&
spi_flash_sst25vfxx
;
rt_spi_device
=
(
struct
rt_spi_device
*
)
rt_device_find
(
spi_device_name
);
if
(
rt_spi_device
==
RT_NULL
)
{
FLASH_TRACE
(
"spi device %s not found!
\r\n
"
,
spi_device_name
);
return
-
RT_ENOSYS
;
}
spi_flash
->
rt_spi_device
=
rt_spi_device
;
/* config spi */
{
struct
rt_spi_configuration
cfg
;
cfg
.
data_width
=
8
;
cfg
.
mode
=
RT_SPI_MODE_0
|
RT_SPI_MSB
;
/* SPI Compatible: Mode 0 and Mode 3 */
cfg
.
max_hz
=
50000000
;
/* 50M */
rt_spi_configure
(
spi_flash
->
rt_spi_device
,
&
cfg
);
}
/* init flash */
{
rt_uint8_t
cmd
;
rt_uint8_t
id_recv
[
3
];
cmd
=
CMD_WRDI
;
rt_spi_send
(
spi_flash
->
rt_spi_device
,
&
cmd
,
1
);
/* read flash id */
cmd
=
CMD_JEDEC_ID
;
rt_spi_send_then_recv
(
spi_flash
->
rt_spi_device
,
&
cmd
,
1
,
id_recv
,
3
);
if
(
id_recv
[
0
]
!=
MF_ID
||
id_recv
[
1
]
!=
MT_ID
)
{
FLASH_TRACE
(
"Manufacturers ID or Memory Type error!
\r\n
"
);
FLASH_TRACE
(
"JEDEC Read-ID Data : %02X %02X %02X
\r\n
"
,
id_recv
[
0
],
id_recv
[
1
],
id_recv
[
2
]);
return
-
RT_ENOSYS
;
}
spi_flash
->
geometry
.
bytes_per_sector
=
4096
;
spi_flash
->
geometry
.
block_size
=
4096
;
/* block erase: 4k */
if
(
id_recv
[
2
]
==
MC_ID_SST25VF020B
)
{
FLASH_TRACE
(
"SST25VF020B detection
\r\n
"
);
spi_flash
->
geometry
.
sector_count
=
64
;
}
else
if
(
id_recv
[
2
]
==
MC_ID_SST25VF040B
)
{
FLASH_TRACE
(
"SST25VF040B detection
\r\n
"
);
spi_flash
->
geometry
.
sector_count
=
128
;
}
else
if
(
id_recv
[
2
]
==
MC_ID_SST25VF080B
)
{
FLASH_TRACE
(
"SST25VF080B detection
\r\n
"
);
spi_flash
->
geometry
.
sector_count
=
256
;
}
else
if
(
id_recv
[
2
]
==
MC_ID_SST25VF016B
)
{
FLASH_TRACE
(
"SST25VF016B detection
\r\n
"
);
spi_flash
->
geometry
.
sector_count
=
512
;
}
else
if
(
id_recv
[
2
]
==
MC_ID_SST25VF032B
)
{
FLASH_TRACE
(
"SST25VF032B detection
\r\n
"
);
spi_flash
->
geometry
.
sector_count
=
1024
;
}
else
if
(
id_recv
[
2
]
==
MC_ID_SST25VF064C
)
{
FLASH_TRACE
(
"SST25VF064C detection
\r\n
"
);
spi_flash
->
geometry
.
sector_count
=
2048
;
}
else
{
FLASH_TRACE
(
"Memory Capacity error!
\r\n
"
);
return
-
RT_ENOSYS
;
}
}
/* initialize mutex lock */
rt_mutex_init
(
&
spi_flash
->
lock
,
flash_device_name
,
RT_IPC_FLAG_PRIO
);
/* register device */
spi_flash
->
flash_device
.
type
=
RT_Device_Class_Block
;
spi_flash
->
flash_device
.
init
=
sst25vfxx_flash_init
;
spi_flash
->
flash_device
.
open
=
sst25vfxx_flash_open
;
spi_flash
->
flash_device
.
close
=
sst25vfxx_flash_close
;
spi_flash
->
flash_device
.
read
=
sst25vfxx_flash_read
;
spi_flash
->
flash_device
.
write
=
sst25vfxx_flash_write
;
spi_flash
->
flash_device
.
control
=
sst25vfxx_flash_control
;
/* no private */
spi_flash
->
flash_device
.
user_data
=
RT_NULL
;
rt_device_register
(
&
spi_flash
->
flash_device
,
flash_device_name
,
RT_DEVICE_FLAG_RDWR
|
RT_DEVICE_FLAG_STANDALONE
);
return
RT_EOK
;
}
components/drivers/spi/spi_flash_sst25vfxx.h
0 → 100644
浏览文件 @
0fc1ac61
/*
* File : rtdef.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2011, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-12-16 aozima the first version
*/
#ifndef SPI_FLASH_SST25VFXX_H_INCLUDED
#define SPI_FLASH_SST25VFXX_H_INCLUDED
#include <rtthread.h>
#include <drivers/spi.h>
struct
spi_flash_sst25vfxx
{
struct
rt_device
flash_device
;
struct
rt_device_blk_geometry
geometry
;
struct
rt_spi_device
*
rt_spi_device
;
struct
rt_mutex
lock
;
};
extern
rt_err_t
sst25vfxx_init
(
const
char
*
flash_device_name
,
const
char
*
spi_device_name
);
#endif // SPI_FLASH_SST25VFXX_H_INCLUDED
components/drivers/spi/spi_flash_w25qxx.c
0 → 100644
浏览文件 @
0fc1ac61
/*
* File : spi_flash_w25qxx.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2011, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-12-16 aozima the first version
* 2012-05-06 aozima can page write.
* 2012-08-23 aozima add flash lock.
* 2012-08-24 aozima fixed write status register BUG.
*/
#include <stdint.h>
#include "spi_flash_w25qxx.h"
#define FLASH_DEBUG
#ifdef FLASH_DEBUG
#define FLASH_TRACE rt_kprintf
#else
#define FLASH_TRACE(...)
#endif
/* #ifdef FLASH_DEBUG */
#define PAGE_SIZE 4096
/* JEDEC Manufacturers ID */
#define MF_ID (0xEF)
/* JEDEC Device ID: Memory type and Capacity */
#define MTC_W25Q16_BV_CL_CV (0x4015)
/* W25Q16BV W25Q16CL W25Q16CV */
#define MTC_W25Q16_DW (0x6015)
/* W25Q16DW */
#define MTC_W25Q32_BV (0x4016)
/* W25Q32BV */
#define MTC_W25Q32_DW (0x6016)
/* W25Q32DW */
#define MTC_W25Q64_BV_CV (0x4017)
/* W25Q64BV W25Q64CV */
#define MTC_W25Q64_DW (0x4017)
/* W25Q64DW */
#define MTC_W25Q128_BV (0x4018)
/* W25Q128BV */
#define MTC_W25Q256_FV (TBD)
/* W25Q256FV */
/* command list */
#define CMD_WRSR (0x01)
/* Write Status Register */
#define CMD_PP (0x02)
/* Page Program */
#define CMD_READ (0x03)
/* Read Data */
#define CMD_WRDI (0x04)
/* Write Disable */
#define CMD_RDSR1 (0x05)
/* Read Status Register-1 */
#define CMD_WREN (0x06)
/* Write Enable */
#define CMD_FAST_READ (0x0B)
/* Fast Read */
#define CMD_ERASE_4K (0x20)
/* Sector Erase:4K */
#define CMD_RDSR2 (0x35)
/* Read Status Register-2 */
#define CMD_ERASE_32K (0x52)
/* 32KB Block Erase */
#define CMD_JEDEC_ID (0x9F)
/* Read JEDEC ID */
#define CMD_ERASE_full (0xC7)
/* Chip Erase */
#define CMD_ERASE_64K (0xD8)
/* 64KB Block Erase */
#define DUMMY (0xFF)
static
struct
spi_flash_device
spi_flash_device
;
static
void
flash_lock
(
struct
spi_flash_device
*
flash_device
)
{
rt_mutex_take
(
&
flash_device
->
lock
,
RT_WAITING_FOREVER
);
}
static
void
flash_unlock
(
struct
spi_flash_device
*
flash_device
)
{
rt_mutex_release
(
&
flash_device
->
lock
);
}
static
uint8_t
w25qxx_read_status
(
void
)
{
return
rt_spi_sendrecv8
(
spi_flash_device
.
rt_spi_device
,
CMD_RDSR1
);
}
static
void
w25qxx_wait_busy
(
void
)
{
while
(
w25qxx_read_status
()
&
(
0x01
));
}
/** \brief read [size] byte from [offset] to [buffer]
*
* \param offset uint32_t unit : byte
* \param buffer uint8_t*
* \param size uint32_t unit : byte
* \return uint32_t byte for read
*
*/
static
uint32_t
w25qxx_read
(
uint32_t
offset
,
uint8_t
*
buffer
,
uint32_t
size
)
{
uint8_t
send_buffer
[
4
];
send_buffer
[
0
]
=
CMD_WRDI
;
rt_spi_send
(
spi_flash_device
.
rt_spi_device
,
send_buffer
,
1
);
send_buffer
[
0
]
=
CMD_READ
;
send_buffer
[
1
]
=
(
uint8_t
)(
offset
>>
16
);
send_buffer
[
2
]
=
(
uint8_t
)(
offset
>>
8
);
send_buffer
[
3
]
=
(
uint8_t
)(
offset
);
rt_spi_send_then_recv
(
spi_flash_device
.
rt_spi_device
,
send_buffer
,
4
,
buffer
,
size
);
return
size
;
}
/** \brief write N page on [page]
*
* \param page_addr uint32_t unit : byte (4096 * N,1 page = 4096byte)
* \param buffer const uint8_t*
* \return uint32_t
*
*/
uint32_t
w25qxx_page_write
(
uint32_t
page_addr
,
const
uint8_t
*
buffer
)
{
uint32_t
index
;
uint8_t
send_buffer
[
4
];
RT_ASSERT
((
page_addr
&
0xFF
)
==
0
);
/* page addr must align to 256byte. */
send_buffer
[
0
]
=
CMD_WREN
;
rt_spi_send
(
spi_flash_device
.
rt_spi_device
,
send_buffer
,
1
);
send_buffer
[
0
]
=
CMD_ERASE_4K
;
send_buffer
[
1
]
=
(
page_addr
>>
16
);
send_buffer
[
2
]
=
(
page_addr
>>
8
);
send_buffer
[
3
]
=
(
page_addr
);
rt_spi_send
(
spi_flash_device
.
rt_spi_device
,
send_buffer
,
4
);
w25qxx_wait_busy
();
// wait erase done.
for
(
index
=
0
;
index
<
(
PAGE_SIZE
/
256
);
index
++
)
{
send_buffer
[
0
]
=
CMD_WREN
;
rt_spi_send
(
spi_flash_device
.
rt_spi_device
,
send_buffer
,
1
);
send_buffer
[
0
]
=
CMD_PP
;
send_buffer
[
1
]
=
(
uint8_t
)(
page_addr
>>
16
);
send_buffer
[
2
]
=
(
uint8_t
)(
page_addr
>>
8
);
send_buffer
[
3
]
=
(
uint8_t
)(
page_addr
);
rt_spi_send_then_send
(
spi_flash_device
.
rt_spi_device
,
send_buffer
,
4
,
buffer
,
256
);
buffer
+=
256
;
page_addr
+=
256
;
w25qxx_wait_busy
();
}
send_buffer
[
0
]
=
CMD_WRDI
;
rt_spi_send
(
spi_flash_device
.
rt_spi_device
,
send_buffer
,
1
);
return
PAGE_SIZE
;
}
/* RT-Thread device interface */
static
rt_err_t
w25qxx_flash_init
(
rt_device_t
dev
)
{
return
RT_EOK
;
}
static
rt_err_t
w25qxx_flash_open
(
rt_device_t
dev
,
rt_uint16_t
oflag
)
{
uint8_t
send_buffer
[
3
];
flash_lock
((
struct
spi_flash_device
*
)
dev
);
send_buffer
[
0
]
=
CMD_WREN
;
rt_spi_send
(
spi_flash_device
.
rt_spi_device
,
send_buffer
,
1
);
send_buffer
[
0
]
=
CMD_WRSR
;
send_buffer
[
1
]
=
0
;
send_buffer
[
2
]
=
0
;
rt_spi_send
(
spi_flash_device
.
rt_spi_device
,
send_buffer
,
3
);
w25qxx_wait_busy
();
flash_unlock
((
struct
spi_flash_device
*
)
dev
);
return
RT_EOK
;
}
static
rt_err_t
w25qxx_flash_close
(
rt_device_t
dev
)
{
return
RT_EOK
;
}
static
rt_err_t
w25qxx_flash_control
(
rt_device_t
dev
,
rt_uint8_t
cmd
,
void
*
args
)
{
RT_ASSERT
(
dev
!=
RT_NULL
);
if
(
cmd
==
RT_DEVICE_CTRL_BLK_GETGEOME
)
{
struct
rt_device_blk_geometry
*
geometry
;
geometry
=
(
struct
rt_device_blk_geometry
*
)
args
;
if
(
geometry
==
RT_NULL
)
return
-
RT_ERROR
;
geometry
->
bytes_per_sector
=
spi_flash_device
.
geometry
.
bytes_per_sector
;
geometry
->
sector_count
=
spi_flash_device
.
geometry
.
sector_count
;
geometry
->
block_size
=
spi_flash_device
.
geometry
.
block_size
;
}
return
RT_EOK
;
}
static
rt_size_t
w25qxx_flash_read
(
rt_device_t
dev
,
rt_off_t
pos
,
void
*
buffer
,
rt_size_t
size
)
{
flash_lock
((
struct
spi_flash_device
*
)
dev
);
w25qxx_read
(
pos
*
spi_flash_device
.
geometry
.
bytes_per_sector
,
buffer
,
size
*
spi_flash_device
.
geometry
.
bytes_per_sector
);
flash_unlock
((
struct
spi_flash_device
*
)
dev
);
return
size
;
}
static
rt_size_t
w25qxx_flash_write
(
rt_device_t
dev
,
rt_off_t
pos
,
const
void
*
buffer
,
rt_size_t
size
)
{
rt_size_t
i
=
0
;
rt_size_t
block
=
size
;
const
uint8_t
*
ptr
=
buffer
;
flash_lock
((
struct
spi_flash_device
*
)
dev
);
while
(
block
--
)
{
w25qxx_page_write
((
pos
+
i
)
*
spi_flash_device
.
geometry
.
bytes_per_sector
,
ptr
);
ptr
+=
PAGE_SIZE
;
i
++
;
}
flash_unlock
((
struct
spi_flash_device
*
)
dev
);
return
size
;
}
rt_err_t
w25qxx_init
(
const
char
*
flash_device_name
,
const
char
*
spi_device_name
)
{
struct
rt_spi_device
*
rt_spi_device
;
/* initialize mutex */
if
(
rt_mutex_init
(
&
spi_flash_device
.
lock
,
spi_device_name
,
RT_IPC_FLAG_FIFO
)
!=
RT_EOK
)
{
rt_kprintf
(
"init sd lock mutex failed
\n
"
);
return
-
RT_ENOSYS
;
}
rt_spi_device
=
(
struct
rt_spi_device
*
)
rt_device_find
(
spi_device_name
);
if
(
rt_spi_device
==
RT_NULL
)
{
FLASH_TRACE
(
"spi device %s not found!
\r\n
"
,
spi_device_name
);
return
-
RT_ENOSYS
;
}
spi_flash_device
.
rt_spi_device
=
rt_spi_device
;
/* config spi */
{
struct
rt_spi_configuration
cfg
;
cfg
.
data_width
=
8
;
cfg
.
mode
=
RT_SPI_MODE_0
|
RT_SPI_MSB
;
/* SPI Compatible: Mode 0 and Mode 3 */
cfg
.
max_hz
=
50
*
1000
*
1000
;
/* 50M */
rt_spi_configure
(
spi_flash_device
.
rt_spi_device
,
&
cfg
);
}
/* init flash */
{
rt_uint8_t
cmd
;
rt_uint8_t
id_recv
[
3
];
uint16_t
memory_type_capacity
;
flash_lock
(
&
spi_flash_device
);
cmd
=
0xFF
;
/* reset SPI FLASH, cancel all cmd in processing. */
rt_spi_send
(
spi_flash_device
.
rt_spi_device
,
&
cmd
,
1
);
cmd
=
CMD_WRDI
;
rt_spi_send
(
spi_flash_device
.
rt_spi_device
,
&
cmd
,
1
);
/* read flash id */
cmd
=
CMD_JEDEC_ID
;
rt_spi_send_then_recv
(
spi_flash_device
.
rt_spi_device
,
&
cmd
,
1
,
id_recv
,
3
);
flash_unlock
(
&
spi_flash_device
);
if
(
id_recv
[
0
]
!=
MF_ID
)
{
FLASH_TRACE
(
"Manufacturers ID error!
\r\n
"
);
FLASH_TRACE
(
"JEDEC Read-ID Data : %02X %02X %02X
\r\n
"
,
id_recv
[
0
],
id_recv
[
1
],
id_recv
[
2
]);
return
-
RT_ENOSYS
;
}
spi_flash_device
.
geometry
.
bytes_per_sector
=
4096
;
spi_flash_device
.
geometry
.
block_size
=
4096
;
/* block erase: 4k */
/* get memory type and capacity */
memory_type_capacity
=
id_recv
[
1
];
memory_type_capacity
=
(
memory_type_capacity
<<
8
)
|
id_recv
[
2
];
if
(
memory_type_capacity
==
MTC_W25Q128_BV
)
{
FLASH_TRACE
(
"W25Q128BV detection
\r\n
"
);
spi_flash_device
.
geometry
.
sector_count
=
4096
;
}
else
if
(
memory_type_capacity
==
MTC_W25Q64_BV_CV
)
{
FLASH_TRACE
(
"W25Q64BV or W25Q64CV detection
\r\n
"
);
spi_flash_device
.
geometry
.
sector_count
=
2048
;
}
else
if
(
memory_type_capacity
==
MTC_W25Q64_DW
)
{
FLASH_TRACE
(
"W25Q64DW detection
\r\n
"
);
spi_flash_device
.
geometry
.
sector_count
=
2048
;
}
else
if
(
memory_type_capacity
==
MTC_W25Q32_BV
)
{
FLASH_TRACE
(
"W25Q32BV detection
\r\n
"
);
spi_flash_device
.
geometry
.
sector_count
=
1024
;
}
else
if
(
memory_type_capacity
==
MTC_W25Q32_DW
)
{
FLASH_TRACE
(
"W25Q32DW detection
\r\n
"
);
spi_flash_device
.
geometry
.
sector_count
=
1024
;
}
else
if
(
memory_type_capacity
==
MTC_W25Q16_BV_CL_CV
)
{
FLASH_TRACE
(
"W25Q16BV or W25Q16CL or W25Q16CV detection
\r\n
"
);
spi_flash_device
.
geometry
.
sector_count
=
512
;
}
else
if
(
memory_type_capacity
==
MTC_W25Q16_DW
)
{
FLASH_TRACE
(
"W25Q16DW detection
\r\n
"
);
spi_flash_device
.
geometry
.
sector_count
=
512
;
}
else
{
FLASH_TRACE
(
"Memory Capacity error!
\r\n
"
);
return
-
RT_ENOSYS
;
}
}
/* register device */
spi_flash_device
.
flash_device
.
type
=
RT_Device_Class_Block
;
spi_flash_device
.
flash_device
.
init
=
w25qxx_flash_init
;
spi_flash_device
.
flash_device
.
open
=
w25qxx_flash_open
;
spi_flash_device
.
flash_device
.
close
=
w25qxx_flash_close
;
spi_flash_device
.
flash_device
.
read
=
w25qxx_flash_read
;
spi_flash_device
.
flash_device
.
write
=
w25qxx_flash_write
;
spi_flash_device
.
flash_device
.
control
=
w25qxx_flash_control
;
/* no private */
spi_flash_device
.
flash_device
.
user_data
=
RT_NULL
;
rt_device_register
(
&
spi_flash_device
.
flash_device
,
flash_device_name
,
RT_DEVICE_FLAG_RDWR
|
RT_DEVICE_FLAG_STANDALONE
);
return
RT_EOK
;
}
components/drivers/spi/spi_flash_w25qxx.h
0 → 100644
浏览文件 @
0fc1ac61
/*
* File : spi_flash_w25qxx.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2011, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-12-16 aozima the first version
* 2012-08-23 aozima add flash lock.
*/
#ifndef SPI_FLASH_W25QXX_H_INCLUDED
#define SPI_FLASH_W25QXX_H_INCLUDED
#include <rtthread.h>
#include <drivers/spi.h>
struct
spi_flash_device
{
struct
rt_device
flash_device
;
struct
rt_device_blk_geometry
geometry
;
struct
rt_spi_device
*
rt_spi_device
;
struct
rt_mutex
lock
;
};
extern
rt_err_t
w25qxx_init
(
const
char
*
flash_device_name
,
const
char
*
spi_device_name
);
#endif // SPI_FLASH_W25QXX_H_INCLUDED
components/drivers/spi/spi_wifi_rw009.c
0 → 100644
浏览文件 @
0fc1ac61
/*
* File : spi_wifi_rw009.c
* This file is part of RT-Thread RTOS
* Copyright by Shanghai Real-Thread Electronic Technology Co.,Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2014-07-31 aozima the first version
*/
#include <rtthread.h>
#include <drivers/spi.h>
#include <netif/ethernetif.h>
#include <netif/etharp.h>
#include <lwip/icmp.h>
#include "lwipopts.h"
#include "spi_wifi_rw009.h"
#define SSID_NAME "AP_SSID"
#define SSID_PASSWORD "AP_passwd"
//#define WIFI_DEBUG_ON
// #define ETH_RX_DUMP
// #define ETH_TX_DUMP
#ifdef WIFI_DEBUG_ON
#define WIFI_DEBUG rt_kprintf("[WIFI] ");rt_kprintf
#else
#define WIFI_DEBUG(...)
#endif
/* #ifdef WIFI_DEBUG_ON */
#define MAX_BUFFER_SIZE (sizeof(struct response) + MAX_DATA_LEN)
#define MAX_ADDR_LEN 6
struct
spi_wifi_eth
{
/* inherit from ethernet device */
struct
eth_device
parent
;
struct
rt_spi_device
*
rt_spi_device
;
/* interface address info. */
rt_uint8_t
dev_addr
[
MAX_ADDR_LEN
];
/* hw address */
rt_uint8_t
active
;
struct
rt_mempool
spi_tx_mp
;
struct
rt_mempool
spi_rx_mp
;
struct
rt_mailbox
spi_tx_mb
;
struct
rt_mailbox
eth_rx_mb
;
int
spi_tx_mb_pool
[
SPI_TX_POOL_SIZE
];
int
eth_rx_mb_pool
[
SPI_TX_POOL_SIZE
];
int
spi_wifi_cmd_mb_pool
[
3
];
struct
rt_mailbox
spi_wifi_cmd_mb
;
ALIGN
(
4
)
rt_uint8_t
spi_tx_mempool
[(
sizeof
(
struct
spi_data_packet
)
+
4
)
*
SPI_TX_POOL_SIZE
];
ALIGN
(
4
)
rt_uint8_t
spi_rx_mempool
[(
sizeof
(
struct
spi_data_packet
)
+
4
)
*
SPI_TX_POOL_SIZE
];
ALIGN
(
4
)
uint8_t
spi_hw_rx_buffer
[
MAX_BUFFER_SIZE
];
};
static
struct
spi_wifi_eth
spi_wifi_device
;
static
struct
rt_event
spi_wifi_data_event
;
static
void
resp_handler
(
struct
spi_wifi_eth
*
wifi_device
,
struct
spi_wifi_resp
*
resp
)
{
struct
spi_wifi_resp
*
resp_return
;
switch
(
resp
->
cmd
)
{
case
SPI_WIFI_CMD_INIT
:
WIFI_DEBUG
(
"resp_handler SPI_WIFI_CMD_INIT
\n
"
);
resp_return
=
(
struct
spi_wifi_resp
*
)
rt_malloc
(
sizeof
(
struct
spi_wifi_resp
));
//TODO:
memcpy
(
resp_return
,
resp
,
10
);
rt_mb_send
(
&
wifi_device
->
spi_wifi_cmd_mb
,
(
rt_uint32_t
)
resp_return
);
break
;
case
SPI_WIFI_CMD_SCAN
:
WIFI_DEBUG
(
"resp_handler SPI_WIFI_CMD_SCAN
\n
"
);
break
;
case
SPI_WIFI_CMD_JOIN
:
WIFI_DEBUG
(
"resp_handler SPI_WIFI_CMD_JOIN
\n
"
);
wifi_device
->
active
=
1
;
eth_device_linkchange
(
&
wifi_device
->
parent
,
RT_TRUE
);
break
;
default:
WIFI_DEBUG
(
"resp_handler %d
\n
"
,
resp
->
cmd
);
break
;
}
}
static
rt_err_t
spi_wifi_transfer
(
struct
spi_wifi_eth
*
dev
)
{
struct
pbuf
*
p
=
RT_NULL
;
struct
cmd_request
cmd
;
struct
response
resp
;
rt_err_t
result
;
const
struct
spi_data_packet
*
data_packet
=
RT_NULL
;
struct
spi_wifi_eth
*
wifi_device
=
(
struct
spi_wifi_eth
*
)
dev
;
struct
rt_spi_device
*
rt_spi_device
=
wifi_device
->
rt_spi_device
;
spi_wifi_int_cmd
(
0
);
while
(
spi_wifi_is_busy
());
WIFI_DEBUG
(
"sequence start!
\n
"
);
memset
(
&
cmd
,
0
,
sizeof
(
struct
cmd_request
));
cmd
.
magic1
=
CMD_MAGIC1
;
cmd
.
magic2
=
CMD_MAGIC2
;
cmd
.
flag
|=
CMD_FLAG_MRDY
;
result
=
rt_mb_recv
(
&
wifi_device
->
spi_tx_mb
,
(
rt_uint32_t
*
)
&
data_packet
,
0
);
if
((
result
==
RT_EOK
)
&&
(
data_packet
!=
RT_NULL
)
&&
(
data_packet
->
data_len
>
0
))
{
cmd
.
M2S_len
=
data_packet
->
data_len
+
member_offset
(
struct
spi_data_packet
,
buffer
);
//WIFI_DEBUG("cmd.M2S_len = %d\n", cmd.M2S_len);
}
rt_spi_send
(
rt_spi_device
,
&
cmd
,
sizeof
(
cmd
));
while
(
spi_wifi_is_busy
());
{
struct
rt_spi_message
message
;
uint32_t
max_data_len
=
0
;
/* setup message */
message
.
send_buf
=
RT_NULL
;
message
.
recv_buf
=
&
resp
;
message
.
length
=
sizeof
(
resp
);
message
.
cs_take
=
1
;
message
.
cs_release
=
0
;
rt_spi_take_bus
(
rt_spi_device
);
/* transfer message */
rt_spi_device
->
bus
->
ops
->
xfer
(
rt_spi_device
,
&
message
);
if
((
resp
.
magic1
!=
RESP_MAGIC1
)
||
(
resp
.
magic2
!=
RESP_MAGIC2
))
{
WIFI_DEBUG
(
"bad resp magic, abort!
\n
"
);
goto
_bad_resp_magic
;
}
if
(
resp
.
flag
&
RESP_FLAG_SRDY
)
{
WIFI_DEBUG
(
"RESP_FLAG_SRDY
\n
"
);
max_data_len
=
cmd
.
M2S_len
;
}
if
(
resp
.
S2M_len
)
{
WIFI_DEBUG
(
"resp.S2M_len: %d
\n
"
,
resp
.
S2M_len
);
if
(
resp
.
S2M_len
>
sizeof
(
struct
spi_data_packet
))
{
WIFI_DEBUG
(
"resp.S2M_len > sizeof(struct spi_data_packet), drop!
\n
"
);
resp
.
S2M_len
=
0
;
//drop
}
if
(
resp
.
S2M_len
>
max_data_len
)
max_data_len
=
resp
.
S2M_len
;
}
if
(
max_data_len
==
0
)
{
WIFI_DEBUG
(
"no rx or tx data!
\n
"
);
}
//WIFI_DEBUG("max_data_len = %d\n", max_data_len);
_bad_resp_magic:
/* setup message */
message
.
send_buf
=
data_packet
;
//&tx_buffer;
message
.
recv_buf
=
wifi_device
->
spi_hw_rx_buffer
;
//&rx_buffer;
message
.
length
=
max_data_len
;
message
.
cs_take
=
0
;
message
.
cs_release
=
1
;
/* transfer message */
rt_spi_device
->
bus
->
ops
->
xfer
(
rt_spi_device
,
&
message
);
rt_spi_release_bus
(
rt_spi_device
);
if
(
cmd
.
M2S_len
&&
(
resp
.
flag
&
RESP_FLAG_SRDY
))
{
rt_mp_free
((
void
*
)
data_packet
);
}
if
((
resp
.
S2M_len
)
&&
(
resp
.
S2M_len
<=
MAX_DATA_LEN
))
{
data_packet
=
(
struct
spi_data_packet
*
)
wifi_device
->
spi_hw_rx_buffer
;
if
(
data_packet
->
data_type
==
data_type_eth_data
)
{
if
(
wifi_device
->
active
)
{
p
=
pbuf_alloc
(
PBUF_LINK
,
data_packet
->
data_len
,
PBUF_RAM
);
pbuf_take
(
p
,
(
rt_uint8_t
*
)
data_packet
->
buffer
,
data_packet
->
data_len
);
rt_mb_send
(
&
wifi_device
->
eth_rx_mb
,
(
rt_uint32_t
)
p
);
eth_device_ready
((
struct
eth_device
*
)
dev
);
}
else
{
WIFI_DEBUG
(
"!active, RX drop.
\n
"
);
}
}
else
if
(
data_packet
->
data_type
==
data_type_resp
)
{
WIFI_DEBUG
(
"data_type_resp
\n
"
);
resp_handler
(
dev
,
(
struct
spi_wifi_resp
*
)
data_packet
->
buffer
);
}
else
{
WIFI_DEBUG
(
"data_type: %d, %dbyte
\n
"
,
data_packet
->
data_type
,
data_packet
->
data_len
);
}
}
}
spi_wifi_int_cmd
(
1
);
WIFI_DEBUG
(
"sequence finish!
\n\n
"
);
if
((
cmd
.
M2S_len
==
0
)
&&
(
resp
.
S2M_len
==
0
))
{
return
-
RT_ERROR
;
}
return
RT_EOK
;
}
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
static
void
packet_dump
(
const
char
*
msg
,
const
struct
pbuf
*
p
)
{
rt_uint32_t
i
;
rt_uint8_t
*
ptr
=
p
->
payload
;
rt_kprintf
(
"%s %d byte
\n
"
,
msg
,
p
->
tot_len
);
for
(
i
=
0
;
i
<
p
->
tot_len
;
i
++
)
{
if
((
i
%
8
)
==
0
)
{
rt_kprintf
(
" "
);
}
if
((
i
%
16
)
==
0
)
{
rt_kprintf
(
"
\r\n
"
);
}
rt_kprintf
(
"%02x "
,
*
ptr
);
ptr
++
;
}
rt_kprintf
(
"
\n\n
"
);
}
#endif
/* dump */
/* initialize the interface */
static
rt_err_t
spi_wifi_eth_init
(
rt_device_t
dev
)
{
return
RT_EOK
;
}
static
rt_err_t
spi_wifi_eth_open
(
rt_device_t
dev
,
rt_uint16_t
oflag
)
{
return
RT_EOK
;
}
static
rt_err_t
spi_wifi_eth_close
(
rt_device_t
dev
)
{
return
RT_EOK
;
}
static
rt_size_t
spi_wifi_eth_read
(
rt_device_t
dev
,
rt_off_t
pos
,
void
*
buffer
,
rt_size_t
size
)
{
rt_set_errno
(
-
RT_ENOSYS
);
return
0
;
}
static
rt_size_t
spi_wifi_eth_write
(
rt_device_t
dev
,
rt_off_t
pos
,
const
void
*
buffer
,
rt_size_t
size
)
{
rt_set_errno
(
-
RT_ENOSYS
);
return
0
;
}
static
rt_err_t
spi_wifi_eth_control
(
rt_device_t
dev
,
rt_uint8_t
cmd
,
void
*
args
)
{
struct
spi_wifi_eth
*
wifi_device
=
(
struct
spi_wifi_eth
*
)
dev
;
struct
spi_data_packet
*
data_packet
;
struct
spi_wifi_cmd
*
wifi_cmd
;
struct
spi_wifi_resp
*
resp
;
switch
(
cmd
)
{
case
NIOCTL_GADDR
:
memcpy
(
args
,
wifi_device
->
dev_addr
,
6
);
break
;
case
SPI_WIFI_CMD_INIT
:
/* get mac address */
if
(
args
)
{
rt_err_t
result
;
data_packet
=
(
struct
spi_data_packet
*
)
rt_mp_alloc
(
&
wifi_device
->
spi_tx_mp
,
RT_WAITING_FOREVER
);
// TODO: check result.
wifi_cmd
=
(
struct
spi_wifi_cmd
*
)
data_packet
->
buffer
;
wifi_cmd
->
cmd
=
SPI_WIFI_CMD_INIT
;
data_packet
->
data_type
=
data_type_cmd
;
data_packet
->
data_len
=
member_offset
(
struct
spi_wifi_cmd
,
buffer
)
+
0
;
rt_mb_send
(
&
wifi_device
->
spi_tx_mb
,
(
rt_uint32_t
)
data_packet
);
rt_event_send
(
&
spi_wifi_data_event
,
1
);
result
=
rt_mb_recv
(
&
wifi_device
->
spi_wifi_cmd_mb
,
(
rt_uint32_t
*
)
&
resp
,
RT_WAITING_FOREVER
);
if
((
result
==
RT_EOK
)
&&
(
resp
!=
RT_NULL
))
{
WIFI_DEBUG
(
"resp cmd: %d
\n
"
,
resp
->
cmd
);
rt_memcpy
(
args
,
resp
->
buffer
,
6
);
}
}
else
return
-
RT_ERROR
;
break
;
case
SPI_WIFI_CMD_SCAN
:
case
SPI_WIFI_CMD_JOIN
:
if
(
args
)
{
struct
cmd_join
*
cmd_join
;
data_packet
=
(
struct
spi_data_packet
*
)
rt_mp_alloc
(
&
wifi_device
->
spi_tx_mp
,
RT_WAITING_FOREVER
);
wifi_cmd
=
(
struct
spi_wifi_cmd
*
)
data_packet
->
buffer
;
wifi_cmd
->
cmd
=
SPI_WIFI_CMD_JOIN
;
cmd_join
=
(
struct
cmd_join
*
)
wifi_cmd
->
buffer
;
#define WPA_SECURITY 0x00200000
#define WPA2_SECURITY 0x00400000
#define TKIP_ENABLED 0x0002
#define AES_ENABLED 0x0004
strncpy
(
cmd_join
->
ssid
,
SSID_NAME
,
SSID_NAME_LENGTH_MAX
);
strncpy
(
cmd_join
->
passwd
,
SSID_PASSWORD
,
PASSWORD_LENGTH_MAX
);
cmd_join
->
security
=
WPA2_SECURITY
|
TKIP_ENABLED
|
AES_ENABLED
;
// cmd_join->security = WPA_SECURITY | TKIP_ENABLED;
data_packet
->
data_type
=
data_type_cmd
;
data_packet
->
data_len
=
sizeof
(
struct
cmd_join
)
+
member_offset
(
struct
spi_wifi_cmd
,
buffer
);
rt_mb_send
(
&
wifi_device
->
spi_tx_mb
,
(
rt_uint32_t
)
data_packet
);
rt_event_send
(
&
spi_wifi_data_event
,
1
);
}
else
return
-
RT_ERROR
;
break
;
default
:
break
;
}
return
RT_EOK
;
}
/* transmit packet. */
rt_err_t
spi_wifi_eth_tx
(
rt_device_t
dev
,
struct
pbuf
*
p
)
{
rt_err_t
result
=
RT_EOK
;
struct
spi_data_packet
*
data_packet
;
struct
spi_wifi_eth
*
wifi_device
=
(
struct
spi_wifi_eth
*
)
dev
;
if
(
!
wifi_device
->
active
)
{
WIFI_DEBUG
(
"!active, TX drop!
\n
"
);
return
RT_EOK
;
}
/* get free tx buffer */
data_packet
=
(
struct
spi_data_packet
*
)
rt_mp_alloc
(
&
wifi_device
->
spi_tx_mp
,
RT_WAITING_FOREVER
);
if
(
data_packet
!=
RT_NULL
)
{
data_packet
->
data_type
=
data_type_eth_data
;
data_packet
->
data_len
=
p
->
tot_len
;
pbuf_copy_partial
(
p
,
data_packet
->
buffer
,
data_packet
->
data_len
,
0
);
rt_mb_send
(
&
wifi_device
->
spi_tx_mb
,
(
rt_uint32_t
)
data_packet
);
eth_device_ready
((
struct
eth_device
*
)
dev
);
}
else
return
-
RT_ERROR
;
#ifdef ETH_TX_DUMP
packet_dump
(
"TX dump"
,
p
);
#endif
/* ETH_TX_DUMP */
/* Return SUCCESS */
return
result
;
}
/* reception packet. */
struct
pbuf
*
spi_wifi_eth_rx
(
rt_device_t
dev
)
{
struct
pbuf
*
p
=
RT_NULL
;
struct
spi_wifi_eth
*
wifi_device
=
(
struct
spi_wifi_eth
*
)
dev
;
if
(
rt_mb_recv
(
&
wifi_device
->
eth_rx_mb
,
(
rt_uint32_t
*
)
&
p
,
0
)
!=
RT_EOK
)
{
return
RT_NULL
;
}
return
p
;
}
static
void
spi_wifi_data_thread_entry
(
void
*
parameter
)
{
rt_uint32_t
e
;
rt_err_t
result
;
while
(
1
)
{
/* receive first event */
if
(
rt_event_recv
(
&
spi_wifi_data_event
,
1
,
RT_EVENT_FLAG_AND
|
RT_EVENT_FLAG_CLEAR
,
RT_WAITING_FOREVER
,
&
e
)
!=
RT_EOK
)
{
continue
;
}
result
=
spi_wifi_transfer
(
&
spi_wifi_device
);
if
(
result
==
RT_EOK
)
{
rt_event_send
(
&
spi_wifi_data_event
,
1
);
}
}
}
rt_err_t
rt_hw_wifi_init
(
const
char
*
spi_device_name
)
{
memset
(
&
spi_wifi_device
,
0
,
sizeof
(
struct
spi_wifi_eth
));
spi_wifi_device
.
rt_spi_device
=
(
struct
rt_spi_device
*
)
rt_device_find
(
spi_device_name
);
if
(
spi_wifi_device
.
rt_spi_device
==
RT_NULL
)
{
WIFI_DEBUG
(
"spi device %s not found!
\r\n
"
,
spi_device_name
);
return
-
RT_ENOSYS
;
}
/* config spi */
{
struct
rt_spi_configuration
cfg
;
cfg
.
data_width
=
8
;
cfg
.
mode
=
RT_SPI_MODE_0
|
RT_SPI_MSB
;
/* SPI Compatible: Mode 0 and Mode 3 */
cfg
.
max_hz
=
1000000
;
/* 50M */
rt_spi_configure
(
spi_wifi_device
.
rt_spi_device
,
&
cfg
);
}
spi_wifi_device
.
parent
.
parent
.
init
=
spi_wifi_eth_init
;
spi_wifi_device
.
parent
.
parent
.
open
=
spi_wifi_eth_open
;
spi_wifi_device
.
parent
.
parent
.
close
=
spi_wifi_eth_close
;
spi_wifi_device
.
parent
.
parent
.
read
=
spi_wifi_eth_read
;
spi_wifi_device
.
parent
.
parent
.
write
=
spi_wifi_eth_write
;
spi_wifi_device
.
parent
.
parent
.
control
=
spi_wifi_eth_control
;
spi_wifi_device
.
parent
.
parent
.
user_data
=
RT_NULL
;
spi_wifi_device
.
parent
.
eth_rx
=
spi_wifi_eth_rx
;
spi_wifi_device
.
parent
.
eth_tx
=
spi_wifi_eth_tx
;
rt_mp_init
(
&
spi_wifi_device
.
spi_tx_mp
,
"spi_tx"
,
&
spi_wifi_device
.
spi_tx_mempool
[
0
],
sizeof
(
spi_wifi_device
.
spi_tx_mempool
),
sizeof
(
struct
spi_data_packet
));
rt_mp_init
(
&
spi_wifi_device
.
spi_rx_mp
,
"spi_rx"
,
&
spi_wifi_device
.
spi_rx_mempool
[
0
],
sizeof
(
spi_wifi_device
.
spi_rx_mempool
),
sizeof
(
struct
spi_data_packet
));
rt_mb_init
(
&
spi_wifi_device
.
spi_tx_mb
,
"spi_tx"
,
&
spi_wifi_device
.
spi_tx_mb_pool
[
0
],
SPI_TX_POOL_SIZE
,
RT_IPC_FLAG_PRIO
);
rt_mb_init
(
&
spi_wifi_device
.
eth_rx_mb
,
"eth_rx"
,
&
spi_wifi_device
.
eth_rx_mb_pool
[
0
],
SPI_TX_POOL_SIZE
,
RT_IPC_FLAG_PRIO
);
rt_mb_init
(
&
spi_wifi_device
.
spi_wifi_cmd_mb
,
"wifi_cmd"
,
&
spi_wifi_device
.
spi_wifi_cmd_mb_pool
[
0
],
sizeof
(
spi_wifi_device
.
spi_wifi_cmd_mb_pool
)
/
4
,
RT_IPC_FLAG_PRIO
);
rt_event_init
(
&
spi_wifi_data_event
,
"wifi"
,
RT_IPC_FLAG_FIFO
);
spi_wifi_hw_init
();
{
rt_thread_t
tid
;
tid
=
rt_thread_create
(
"wifi"
,
spi_wifi_data_thread_entry
,
RT_NULL
,
2048
,
RT_THREAD_PRIORITY_MAX
-
2
,
20
);
if
(
tid
!=
RT_NULL
)
rt_thread_startup
(
tid
);
}
/* init: get mac address */
{
WIFI_DEBUG
(
"wifi_control SPI_WIFI_CMD_INIT
\n
"
);
spi_wifi_eth_control
((
rt_device_t
)
&
spi_wifi_device
,
SPI_WIFI_CMD_INIT
,
(
void
*
)
&
spi_wifi_device
.
dev_addr
[
0
]);
}
/* register eth device */
eth_device_init
(
&
(
spi_wifi_device
.
parent
),
"w0"
);
eth_device_linkchange
(
&
spi_wifi_device
.
parent
,
RT_FALSE
);
{
WIFI_DEBUG
(
"wifi_control SPI_WIFI_CMD_JOIN
\n
"
);
spi_wifi_eth_control
((
rt_device_t
)
&
spi_wifi_device
,
SPI_WIFI_CMD_JOIN
,
(
void
*
)
&
spi_wifi_device
.
dev_addr
[
0
]);
WIFI_DEBUG
(
"wifi_control exit
\n
"
);
}
return
RT_EOK
;
}
void
spi_wifi_isr
(
int
vector
)
{
/* enter interrupt */
rt_interrupt_enter
();
WIFI_DEBUG
(
"spi_wifi_isr
\n
"
);
rt_event_send
(
&
spi_wifi_data_event
,
1
);
/* leave interrupt */
rt_interrupt_leave
();
}
components/drivers/spi/spi_wifi_rw009.h
0 → 100644
浏览文件 @
0fc1ac61
/*
* File : spi_wifi_rw009.h
* This file is part of RT-Thread RTOS
* Copyright by Shanghai Real-Thread Electronic Technology Co.,Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2014-07-31 aozima the first version
*/
#ifndef SPI_WIFI_H_INCLUDED
#define SPI_WIFI_H_INCLUDED
#include <stdint.h>
// little-endian
struct
cmd_request
{
uint32_t
flag
;
uint32_t
M2S_len
;
// master to slave data len.
uint32_t
magic1
;
uint32_t
magic2
;
};
#define CMD_MAGIC1 (0x67452301)
#define CMD_MAGIC2 (0xEFCDAB89)
#define CMD_FLAG_MRDY (0x01)
// little-endian
struct
response
{
uint32_t
flag
;
uint32_t
S2M_len
;
// slave to master data len.
uint32_t
magic1
;
uint32_t
magic2
;
};
#define RESP_FLAG_SRDY (0x01)
#define RESP_MAGIC1 (0x98BADCFE)
#define RESP_MAGIC2 (0x10325476)
/* spi slave configure. */
#define MAX_DATA_LEN 1520
#define SPI_TX_POOL_SIZE 2
// align check
#if (MAX_DATA_LEN & 0x03) != 0
#error MAX_DATA_LEN must ALIGN to 4byte!
#endif
typedef
enum
{
data_type_eth_data
=
0
,
data_type_cmd
,
data_type_resp
,
}
app_data_type_typedef
;
struct
spi_data_packet
{
uint32_t
data_len
;
uint32_t
data_type
;
char
buffer
[
MAX_DATA_LEN
];
};
struct
spi_wifi_cmd
{
uint32_t
cmd
;
char
buffer
[
128
];
};
struct
spi_wifi_resp
{
uint32_t
cmd
;
char
buffer
[
128
];
};
#define SPI_WIFI_CMD_INIT 128 //wait
#define SPI_WIFI_CMD_SCAN 129 //no wait
#define SPI_WIFI_CMD_JOIN 130 //no wait
/* porting */
extern
void
spi_wifi_hw_init
(
void
);
extern
void
spi_wifi_int_cmd
(
rt_bool_t
cmd
);
extern
rt_bool_t
spi_wifi_is_busy
(
void
);
/* tools */
#define node_entry(node, type, member) \
((type *)((char *)(node) - (unsigned long)(&((type *)0)->member)))
#define member_offset(type, member) \
((unsigned long)(&((type *)0)->member))
#define SSID_NAME_LENGTH_MAX (32)
#define PASSWORD_LENGTH_MAX (32)
struct
cmd_join
{
char
ssid
[
SSID_NAME_LENGTH_MAX
];
char
passwd
[
PASSWORD_LENGTH_MAX
];
uint8_t
bssid
[
8
];
// 6byte + 2byte PAD.
uint32_t
channel
;
uint32_t
security
;
};
#endif // SPI_WIFI_H_INCLUDED
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录