CMSIS_Core.htm 48.4 KB
Newer Older
M
Ming, Bai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html xmlns:p="urn:schemas-microsoft-com:office:powerpoint" xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office"><head>
  
  <title>CMSIS: Cortex Microcontroller Software Interface Standard</title><meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
  <meta name="ProgId" content="FrontPage.Editor.Document">
  <style>
<!--
/*-----------------------------------------------------------Keil Software CHM Style Sheet
-----------------------------------------------------------*/
body { color: #000000; background-color: #FFFFFF; font-size: 75%; font-family: Verdana, Arial, 'Sans Serif' }
a:link { color: #0000FF; text-decoration: underline }
a:visited { color: #0000FF; text-decoration: underline }
a:active { color: #FF0000; text-decoration: underline }
a:hover { color: #FF0000; text-decoration: underline }
h1 { font-family: Verdana; font-size: 18pt; color: #000080; font-weight: bold; text-align: Center; margin-right: 3 }
h2 { font-family: Verdana; font-size: 14pt; color: #000080; font-weight: bold; background-color: #CCCCCC; margin-top: 24; margin-bottom: 3; padding: 6 }
h3 { font-family: Verdana; font-size: 10pt; font-weight: bold; background-color: #CCCCCC; margin-top: 24; margin-bottom: 3; padding: 6 }
pre { font-family: Courier New; font-size: 10pt; background-color: #CCFFCC; margin-left: 24; margin-right: 24 }
ul { list-style-type: square; margin-top: 6pt; margin-bottom: 0 }
ol { margin-top: 6pt; margin-bottom: 0 }
li { clear: both; margin-bottom: 6pt }
table { font-size: 100%; border-width: 0; padding: 0 }
th { color: #FFFFFF; background-color: #000080; text-align: left; vertical-align: bottom; padding-right: 6pt }
tr { text-align: left; vertical-align: top }
td { text-align: left; vertical-align: top; padding-right: 6pt }
.ToolT { font-size: 8pt; color: #808080 }
.TinyT { font-size: 8pt; text-align: Center }
code { color: #000000; background-color: #E0E0E0; font-family: 'Courier New', Courier; line-height: 120%; font-style: normal }
/*-----------------------------------------------------------Notes
-----------------------------------------------------------*/
p.note { font-weight: bold; clear: both; margin-bottom: 3pt; padding-top: 6pt }
/*-----------------------------------------------------------Expanding/Contracting Divisions
-----------------------------------------------------------*/
#expand { text-decoration: none; margin-bottom: 3pt }
img.expand { border-style: none; border-width: medium }
div.expand { display: none; margin-left: 9pt; margin-top: 0 }
/*-----------------------------------------------------------Where List Tags
-----------------------------------------------------------*/
p.wh { font-weight: bold; clear: both; margin-top: 6pt; margin-bottom: 3pt }
table.wh { width: 100% }
td.whItem { white-space: nowrap; font-style: italic; padding-right: 6pt; padding-bottom: 6pt }
td.whDesc { padding-bottom: 6pt }
/*-----------------------------------------------------------Keil Table Tags
-----------------------------------------------------------*/
table.kt { width: 100%; border: 1pt solid #000000 }
th.kt { white-space: nowrap; border-bottom: 1pt solid #000000; padding-left: 6pt; padding-right: 6pt; padding-top: 4pt; padding-bottom: 4pt }
tr.kt { }
td.kt { color: #000000; background-color: #E0E0E0; border-top: 1pt solid #A0A0A0; padding-left: 6pt; padding-right: 6pt; padding-top: 2pt; padding-bottom: 2pt }
/*----------------------------------------------------------------------------------------------------------------------*/
    .style1 {
	background-color: #E0E0E0;
}
.O
	{color:#1D315B;
	font-size:149%;}
    -->
  </style></head>
<body>
<h1>Cortex Microcontroller Software Interface Standard</h1>

<p align="center">This file describes the Cortex Microcontroller Software Interface Standard (CMSIS).</p>
<p align="center">Version: 1.10 - 24. Feb. 2009</p>

<p class="TinyT">Information in this file, the accompany manuals, and software is<br>
                 Copyright © ARM Ltd.<br>All rights reserved.
</p>

<hr>

<p><span style="FONT-WEIGHT: bold">Revision History</span></p>
<ul>
	<li>Version 1.00: initial release. </li>
	<li>Version 1.01: added __LDREX<em>x</em>, __STREX<em>x</em>, and __CLREX.</li>
	<li>Version 1.02: added Cortex-M0. </li>
	<li>Version 1.10: second review. </li>
</ul>

<hr>

<h2>Contents</h2>

<ol>
  <li class="LI2"><a href="#1">About</a></li>
  <li class="LI2"><a href="#2">Coding Rules and Conventions</a></li>
  <li class="LI2"><a href="#3">CMSIS Files</a></li>
  <li class="LI2"><a href="#4">Core Peripheral Access Layer</a></li>
  <li class="LI2"><a href="#5">CMSIS Example</a></li>
</ol>

<h2><a name="1"></a>About</h2>

<p>
  The <strong>Cortex Microcontroller Software Interface Standard (CMSIS)</strong> answers the challenges
  that are faced when software components are deployed to physical microcontroller devices based on a
  Cortex-M0 / Cortex-M1 or Cortex-M3 processor. The CMSIS will be also expanded to future Cortex-M 
  processor cores (the term Cortex-Mx is used to indicate that). The CMSIS is defined in close co-operation
  with various silicon and software vendors and provides a common approach to interface to peripherals, 
  real-time operating systems, and middleware components.
</p>

<p>ARM provides as part of the CMSIS the following software layers that are
available for various compiler implementations:</p>
<ul>
  <li><strong>Core Peripheral Access Layer</strong>: contains name definitions, 
    address definitions and helper functions to
    access core registers and peripherals. It defines also an device
    independent interface for RTOS Kernels that includes debug channel
    definitions.</li>
  <li><strong>Middleware Access Layer:</strong> provides common methods to
    access peripherals for the software industry. The Middleware Access Layer
    is adapted by the Silicon Vendor for the device specific peripherals used
    by middleware components. The middleware access layer is currently in 
	development and not yet part of this documentation</li>
</ul>

<p>These software layers are expanded by Silicon partners with:</p>
<ul>
  <li><strong>Device Peripheral Access Layer</strong>: provides definitions
    for all device peripherals</li>
  <li><strong>Access Functions for Peripherals (optional)</strong>: provides
    additional helper functions for peripherals</li>
</ul>

<p>CMSIS defines for a Cortex-Mx Microcontroller System:</p>
<ul>
  <li style="text-align: left;">A common way to access peripheral registers
    and a common way to define exception vectors.</li>
  <li style="text-align: left;">The register names of the <strong>Core
    Peripherals</strong> and<strong> </strong>the names of the <strong>Core
    Exception Vectors</strong>.</li>
  <li>An device independent interface for RTOS Kernels including a debug
    channel.</li>
  <li style="text-align: left;">Interfaces for middleware components (TCP/IP
    Stack, Flash File System).</li>
</ul>

<p>
  By using CMSIS compliant software components, the user can easier re-use template code. 
  CMSIS is intended to enable the combination of software components from multiple middleware vendors.
</p>

<h2><a name="2"></a>Coding Rules and Conventions</h2>

<p>
  The following section describes the coding rules and conventions used in the CMSIS 
  implementation. It contains also information about data types and version number information.
</p>

<h3>Essentials</h3>
<ul>
  <li>The CMSIS C code conforms to MISRA 2004 rules. In case of MISRA violations, 
      there are disable and enable sequences for PC-LINT inserted.</li>
  <li>ANSI standard data types defined in the ANSI C header file
    <strong>&lt;stdint.h&gt;</strong> are used.</li>
  <li>#define constants that include expressions must be enclosed by
    parenthesis.</li>
  <li>Variables and parameters have a complete data type.</li>
  <li>All functions in the <strong>Core Peripheral Access Layer</strong> are
    re-entrant.</li>
  <li>The <strong>Core Peripheral Access Layer</strong> has no blocking code
    (which means that wait/query loops are done at other software layers such as 
    the <strong>Middleware Access Layer</strong>).</li>
  <li>For each exception/interrupt there is definition for:
  <ul>
    <li>an exception/interrupt handler with the postfix <strong>_Handler </strong>
	(for exceptions) or <strong>_IRQHandler</strong> (for interrupts).</li>
    <li>a default exception/interrupt handler (weak definition) that contains an endless loop.</li>
    <li>a #define of the interrupt number with the postfix <strong>_IRQn</strong>.</li>
  </ul></li>
</ul>

<h3>Recommendations</h3>

<p>The CMSIS recommends the following conventions for identifiers.</p>
<ul>
  <li><strong>CAPITAL</strong> names to identify Core Registers, Peripheral Registers, and CPU Instructions.</li>
  <li><strong>CamelCase</strong> names to identify peripherals access functions and interrupts.</li>
  <li><strong>PERIPHERAL_</strong> prefix to identify functions that belong to specify peripherals.</li>
  <li><strong>Doxygen</strong> comments for all functions are included as described under <strong>Function Comments</strong> below.</li>
</ul>

<b>Comments</b>

<ul>
  <li>Comments use the ANSI C90 style (<em>/* comment */</em>) or C++ style 
  (<em>// comment</em>). It is assumed that the programming tools support today 
	consistently the C++ comment style.</li>
  <li><strong>Function Comments</strong> provide for each function the following information:
  <ul>
    <li>one-line brief function overview.</li>
    <li>detailed parameter explanation.</li>
    <li>detailed information about return values.</li>
    <li>detailed description of the actual function.</li>
  </ul>
  <p><b>Doxygen Example:</b></p>
  <pre>
/** 
 * @brief  Enable Interrupt in NVIC Interrupt Controller
 * @param  IRQn  interrupt number that specifies the interrupt
 * @return none.
 * Enable the specified interrupt in the NVIC Interrupt Controller.
 * Other settings of the interrupt such as priority are not affected.
 */</pre>
  </li>
</ul>

<h3>Data Types and IO Type Qualifiers</h3>

<p>
  The <strong>Cortex-Mx HAL</strong> uses the standard types from the standard ANSI C header file
  <strong>&lt;stdint.h&gt;</strong>. <strong>IO Type Qualifiers</strong> are used to specify the access
  to peripheral variables. IO Type Qualifiers are indented to be used for automatic generation of 
  debug information of peripheral registers.
</p>

<table class="kt" border="0" cellpadding="0" cellspacing="0">
  <tbody>
    <tr>
      <th class="kt" nowrap="nowrap">IO Type Qualifier</th>
      <th class="kt">#define</th>
      <th class="kt">Description</th>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">__I</td>
      <td class="kt">volatile const</td>
      <td class="kt">Read access only</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">__O</td>
      <td class="kt">volatile</td>
      <td class="kt">Write access only</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">__IO</td>
      <td class="kt">volatile</td>
      <td class="kt">Read and write access</td>
    </tr>
  </tbody>
</table>

<h3>CMSIS Version Number</h3>
<p>
  File <strong>core_cm3.h</strong> contains the version number of the CMSIS with the following define:
</p>

<pre>
#define __CM3_CMSIS_VERSION_MAIN  (0x00)      /* [31:16] main version       */
#define __CM3_CMSIS_VERSION_SUB   (0x03)      /* [15:0]  sub version        */
#define __CM3_CMSIS_VERSION       ((__CM3_CMSIS_VERSION_MAIN &lt;&lt; 16) | __CM3_CMSIS_VERSION_SUB)</pre>

<p>
  File <strong>core_cm0.h</strong> contains the version number of the CMSIS with the following define:
</p>

<pre>
#define __CM0_CMSIS_VERSION_MAIN  (0x00)      /* [31:16] main version       */
#define __CM0_CMSIS_VERSION_SUB   (0x00)      /* [15:0]  sub version        */
#define __CM0_CMSIS_VERSION       ((__CM0_CMSIS_VERSION_MAIN &lt;&lt; 16) | __CM0_CMSIS_VERSION_SUB)</pre>


<h3>CMSIS Cortex Core</h3>
<p>
  File <strong>core_cm3.h</strong> contains the type of the CMSIS Cortex-Mx with the following define:
</p>

<pre>
#define __CORTEX_M                (0x03)</pre>

<p>
  File <strong>core_cm0.h</strong> contains the type of the CMSIS Cortex-Mx with the following define:
</p>

<pre>
#define __CORTEX_M                (0x00)</pre>


<h2><a name="3"></a>CMSIS Files</h2>
<p>
  This section describes the Files provided in context with the CMSIS to access the Cortex-Mx
  hardware and peripherals.
</p>

<table class="kt" border="0" cellpadding="0" cellspacing="0">
  <tbody>
    <tr>
      <th class="kt" nowrap="nowrap">File</th>
      <th class="kt">Provider</th>
      <th class="kt">Description</th>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap"><i>device.h</i></td>
      <td class="kt">Device specific (provided by silicon partner)</td>
      <td class="kt">Defines the peripherals for the actual device. The file may use 
        several other include files to define the peripherals of the actual device.</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">core_cm0.h</td>
      <td class="kt">ARM (for RealView ARMCC, IAR, and GNU GCC)</td>
      <td class="kt">Defines the core peripherals for the Cortex-M0 CPU and core peripherals.</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">core_cm3.h</td>
      <td class="kt">ARM (for RealView ARMCC, IAR, and GNU GCC)</td>
      <td class="kt">Defines the core peripherals for the Cortex-M3 CPU and core peripherals.</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">core_cm0.c</td>
      <td class="kt">ARM (for RealView ARMCC, IAR, and GNU GCC)</td>
      <td class="kt">Provides helper functions that access core registers.</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">core_cm0.c</td>
      <td class="kt">ARM (for RealView ARMCC, IAR, and GNU GCC)</td>
      <td class="kt">Provides helper functions that access core registers.</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">startup<i>_device</i></td>
      <td class="kt">ARM (adapted by compiler partner / silicon partner)</td>
      <td class="kt">Provides the Cortex-Mx startup code and the complete (device specific) Interrupt Vector Table</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">system<i>_device</i></td>
      <td class="kt">ARM (adapted by silicon partner)</td>
      <td class="kt">Provides a device specific configuration file for the device. It configures the device initializes 
        typically the oscillator (PLL) that is part of the microcontroller device</td>
    </tr>
  </tbody>
</table>

<h3><em>device.h</em></h3>

<p>
  The file <em><strong>device.h</strong></em> is provided by the silicon vendor and is the 
  <u><strong>central include file</strong></u> that the application programmer is using in 
  the C source code. This file contains:
</p>
<ul>
  <li>
	<p><strong>Interrupt Number Definition</strong>: provides interrupt numbers 
	(IRQn) for all core and device specific exceptions and interrupts.</p>
	</li>
	<li>
	<p><strong>Configuration for core_cm0.h / core_cm3.h</strong>: reflects the 
	actual configuration of the Cortex-Mx processor that is part of the actual 
	device. As such the file <strong>core_cm0.h / core_cm3.h</strong> is included that 
	implements access to processor registers and core peripherals. </p>
	</li>
	<li>
	<p><strong>Device Peripheral Access Layer</strong>: provides definitions
    for all device peripherals. It contains all data structures and the address 
	mapping for the device specific peripherals. </p>
	</li>
  <li><strong>Access Functions for Peripherals (optional)</strong>: provides
    additional helper functions for peripherals that are useful for programming 
	of these peripherals. Access Functions may be provided as inline functions 
	or can be extern references to a device specific library provided by the 
	silicon vendor.</li>
</ul>


<h4><strong>Interrupt Number Definition</strong></h4>

<p>To access the device specific interrupts the device.h file defines IRQn 
numbers for the complete device using a enum typedef as shown below:</p>
<pre>
typedef enum IRQn
{
/******  Cortex-M3 Processor Exceptions/Interrupt Numbers ************************************************/
  NonMaskableInt_IRQn             = -14,      /*!&lt; 2 Non Maskable Interrupt                              */
  MemoryManagement_IRQn           = -12,      /*!&lt; 4 Cortex-M3 Memory Management Interrupt               */
  BusFault_IRQn                   = -11,      /*!&lt; 5 Cortex-M3 Bus Fault Interrupt                       */
  UsageFault_IRQn                 = -10,      /*!&lt; 6 Cortex-M3 Usage Fault Interrupt                     */
  SVCall_IRQn                     = -5,       /*!&lt; 11 Cortex-M3 SV Call Interrupt                        */
  DebugMonitor_IRQn               = -4,       /*!&lt; 12 Cortex-M3 Debug Monitor Interrupt                  */
  PendSV_IRQn                     = -2,       /*!&lt; 14 Cortex-M3 Pend SV Interrupt                        */
  SysTick_IRQn                    = -1,       /*!&lt; 15 Cortex-M3 System Tick Interrupt                    */
/******  STM32 specific Interrupt Numbers ****************************************************************/
  WWDG_STM_IRQn                   = 0,        /*!&lt; Window WatchDog Interrupt                             */
  PVD_STM_IRQn                    = 1,        /*!&lt; PVD through EXTI Line detection Interrupt             */
  :
  :
  } IRQn_Type;</pre>


<h4>Configuration for core_cm0.h / core_cm3.h</h4>
<p>
  The Cortex-Mx core configuration options which are defined for each device implementation. Some 
  configuration options are reflected in the CMSIS layer using the #define settings described below.
</p>
<p>
  To access core peripherals file <em><strong>device.h</strong></em> includes file <b>core_cm0.h / core_cm3.h</b>.
  Several features in <strong>core_cm0.h / core_cm3.h</strong> are configured by the following defines that must be 
  defined before <strong>#include &lt;core_cm0.h&gt;</strong> / <strong>#include &lt;core_cm3.h&gt;</strong>
  preprocessor command.
</p>

<table class="kt" border="0" cellpadding="0" cellspacing="0">
  <tbody>
    <tr>
      <th class="kt" nowrap="nowrap">#define</th>
      <th class="kt" nowrap="nowrap">File</th>
      <th class="kt" nowrap="nowrap">Value</th>
      <th class="kt">Description</th>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">__NVIC_PRIO_BITS</td>
      <td class="kt">core_cm0.h</td>
      <td class="kt" nowrap="nowrap">(2)</td>
      <td class="kt">Number of priority bits implemented in the NVIC (device specific)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">__NVIC_PRIO_BITS</td>
      <td class="kt">core_cm3.h</td>
      <td class="kt" nowrap="nowrap">(2 ... 8)</td>
      <td class="kt">Number of priority bits implemented in the NVIC (device specific)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">__MPU_PRESENT</td>
      <td class="kt">core_cm0.h, core_cm3.h</td>
      <td class="kt" nowrap="nowrap">(0, 1)</td>
      <td class="kt">Defines if an MPU is present or not</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">__Vendor_SysTickConfig</td>
      <td class="kt">core_cm0.h, core_cm3.h</td>
      <td class="kt" nowrap="nowrap">(1)</td>
      <td class="kt">When this define is setup to 1, the <strong>SysTickConfig</strong> function 
		in <strong>core_cm3.h</strong> is excluded. In this case the <em><strong>device.h</strong></em> 
		file must contain a vendor specific implementation of this function.</td>
    </tr>
  </tbody>
</table>


<h4>Device Peripheral Access Layer</h4>
<p>
  Each peripheral uses a <strong>PERIPHERAL_</strong> prefix to identify peripheral registers 
  and functions that access this specific peripheral. If more than one peripheral of the same 
  type exists, identifiers have a postfix (digit or letter). For example:
</p>
<ul>
	<li>UART_Type: defines the generic register layout for all UART channels in a device.</li>
	<li>UART1: is a pointer to a register structure that refers to a specific UART. 
      For example UART1-&gt;DR is the data register of UART1.</li>
	<li>UART_SendChar(UART1, c): is a generic function that works with all UART's in the device. 
      To communicate the UART that it accesses the first parameter is a pointer to the actual 
      UART register structure.</li>
	<li>UART1_SendChar(c): is an UART1 specific implementation (in this case the send function).</li>
</ul>

<h5>Minimal Requiements</h5>
<p>
  To access the peripheral registers and related function in a device the files <strong><em>device.h</em></strong> 
  and <strong>core_cm0.h</strong> / <strong>core_cm3.h</strong> defines as a minimum:
</p>
<ul>
  <li>The <strong>Register Layout Typedef</strong> for each peripheral that defines all register names.
      Names that start with RESERVE are used to introduce space into the structure to adjust the addresses of
      the peripheral registers. For example:
      <pre>
typedef struct {
  __IO uint32_t CTRL;      /* SysTick Control and Status Register */
  __IO uint32_t LOAD;      /* SysTick Reload Value Register       */
  __IO uint32_t VAL;       /* SysTick Current Value Register      */
  __I  uint32_t CALIB;     /* SysTick Calibration Register        */
  } SysTick_Type;</pre>
  </li>

  <li><strong>Base Address</strong> for each peripheral (in case of multiple peripherals 
       that use the same <strong>register layout typedef</strong> multiple base addresses are defined). For example:
    <pre>
#define SysTick_BASE (SCS_BASE + 0x0010)            /* SysTick Base Address */</pre>
  </li>

  <li><strong>Access Definition</strong> for each peripheral (in case of multiple peripherals that use 
      the same <strong>register layout typedef</strong> multiple access definitions exist, i.e. UART0, 
      UART1). For Example:
    <pre>
#define SysTick ((SysTick_Type *) SysTick_BASE)     /* SysTick access definition */</pre>
  </li>
</ul>

<p>
  These definitions allow to access the peripheral registers from user code with simple assignments like:
</p>
<pre>SysTick-&gt;CTRL = 0;</pre>

<h5>Optional Features</h5>
<p>In addition the <em> <strong>device.h </strong></em>file may define:</p>
<ul>
	<li>#define constants that simplify access to the peripheral registers. 
	These constant define bit-positions or other specific patterns are that 
	required for the programming of the peripheral registers. The identifiers 
	used start with the name of the <strong>PERIPERHAL_</strong>. It is 
	recommended to use CAPITAL letters for such #define constants.</li>
	<li>Functions that perform more complex functions with the peripheral (i.e. 
	status query before a sending register is accessed). Again these function 
	start with the name of the <strong>PERIPHERAL_</strong>. </li>
</ul>

<h3>core_cm0.h and core_cm0.c</h3>
<p>
  File <b>core_cm0.h</b> describes the data structures for the Cortex-M0 core peripherals and does 
  the address mapping of this structures. It also provides basic access to the Cortex-M0 core registers 
  and core peripherals with efficient functions (defined as <strong>static inline</strong>).
</p>
<p>
  File <b>core_cm0.c</b> defines several helper functions that access processor registers.
</p>
<p>Together these files implement the <a href="#4">Core Peripheral Access Layer</a> for a Cortex-M0.</p>

<h3>core_cm3.h and core_cm3.c</h3>
<p>
  File <b>core_cm3.h</b> describes the data structures for the Cortex-M3 core peripherals and does 
  the address mapping of this structures. It also provides basic access to the Cortex-M3 core registers 
  and core peripherals with efficient functions (defined as <strong>static inline</strong>).
</p>
<p>
  File <b>core_cm3.c</b> defines several helper functions that access processor registers.
</p>
<p>Together these files implement the <a href="#4">Core Peripheral Access Layer</a> for a Cortex-M3.</p>

<h3>startup_<em>device</em></h3>
<p>
  A template file for <strong>startup_<em>device</em></strong> is provided by ARM for each supported
  compiler. It is adapted by the silicon vendor to include interrupt vectors for all device specific 
  interrupt handlers. Each interrupt handler is defined as <strong><em>weak</em></strong> function 
  to an dummy handler. Therefore the interrupt handler can be directly used in application software 
  without any requirements to adapt the <strong>startup_<em>device</em></strong> file.
</p>
<p>
  The following exception names are fixed and define the start of the vector table for a Cortex-M0:
</p>
<pre>
__Vectors       DCD     __initial_sp              ; Top of Stack
                DCD     Reset_Handler             ; Reset Handler
                DCD     NMI_Handler               ; NMI Handler
                DCD     HardFault_Handler         ; Hard Fault Handler
                DCD     0                         ; Reserved
                DCD     0                         ; Reserved
                DCD     0                         ; Reserved
                DCD     0                         ; Reserved
                DCD     0                         ; Reserved
                DCD     0                         ; Reserved
                DCD     0                         ; Reserved
                DCD     SVC_Handler               ; SVCall Handler
                DCD     0                         ; Reserved
                DCD     0                         ; Reserved
                DCD     PendSV_Handler            ; PendSV Handler
                DCD     SysTick_Handler           ; SysTick Handler</pre>

<p>
  The following exception names are fixed and define the start of the vector table for a Cortex-M3:
</p>
<pre>
__Vectors       DCD     __initial_sp              ; Top of Stack
                DCD     Reset_Handler             ; Reset Handler
                DCD     NMI_Handler               ; NMI Handler
                DCD     HardFault_Handler         ; Hard Fault Handler
                DCD     MemManage_Handler         ; MPU Fault Handler
                DCD     BusFault_Handler          ; Bus Fault Handler
                DCD     UsageFault_Handler        ; Usage Fault Handler
                DCD     0                         ; Reserved
                DCD     0                         ; Reserved
                DCD     0                         ; Reserved
                DCD     0                         ; Reserved
                DCD     SVC_Handler               ; SVCall Handler
                DCD     DebugMon_Handler          ; Debug Monitor Handler
                DCD     0                         ; Reserved
                DCD     PendSV_Handler            ; PendSV Handler
                DCD     SysTick_Handler           ; SysTick Handler</pre>

<p>
  In the following examples for device specific interrupts are shown:
</p>
<pre>
; External Interrupts
                DCD     WWDG_IRQHandler           ; Window Watchdog
                DCD     PVD_IRQHandler            ; PVD through EXTI Line detect
                DCD     TAMPER_IRQHandler         ; Tamper</pre>

<p>
  Device specific interrupts must have a dummy function that can be overwritten in user code. 
  Below is an example for this dummy function.
</p>
<pre>
Default_Handler PROC
                EXPORT WWDG_IRQHandler   [WEAK]
                EXPORT PVD_IRQHandler    [WEAK]
                EXPORT TAMPER_IRQHandler [WEAK]
                :
                :
                WWDG_IRQHandler
                PVD_IRQHandler
                TAMPER_IRQHandler
                :
                :
                B .
                ENDP</pre>
                
<p>
  The user application may simply define an interrupt handler function by using the handler name
  as shown below.
</p>
<pre>
void WWDG_IRQHandler(void)
{
  :
  :
}</pre>


<h3><a name="4"></a>system_<em>device</em>.c</h3>
<p>
  A template file for <strong>system_<em>device</em>.c</strong> is provided by ARM but adapted by 
  the silicon vendor to match their actual device. As a <strong>minimum requirement</strong> 
  this file must provide a device specific system configuration function and a global variable 
  that contains the system frequency. It configures the device and initializes typically the 
  oscillator (PLL) that is part of the microcontroller device.
</p>
<p>
  The file <strong>system_</strong><em><strong>device</strong></em><strong>.c</strong> must provide
  as a minimum requirement the SystemInit function as shown below.
</p>

<table class="kt" border="0" cellpadding="0" cellspacing="0">
  <tbody>
    <tr>
      <th class="kt">Function Definition</th>
      <th class="kt">Description</th>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void SystemInit (void)</td>
      <td class="kt">Setup the microcontroller system. Typically this function configures the 
                     oscillator (PLL) that is part of the microcontroller device. For systems 
                     with variable clock speed it also updates the variable SystemFrequency.</td>
    </tr>
  </tbody>
</table>

<p>
  Also part of the file <strong>system_</strong><em><strong>device</strong></em><strong>.c</strong> 
  is the variable <strong>SystemFrequency</strong> which contains the current CPU clock speed shown below.
</p>

<table class="kt" border="0" cellpadding="0" cellspacing="0">
  <tbody>
    <tr>
      <th class="kt">Variable Definition</th>
      <th class="kt">Description</th>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t SystemFrequency</td>
      <td class="kt">Contains the system frequency (which is the system clock	frequency supplied 
                     to the SysTick timer and the processor core clock). This variable can be 
                     used by the user application after the call to the function SystemInit() 
                     to setup the SysTick timer or configure other parameters. It may also be 
                     used by debugger to query the frequency of the debug timer or configure 
                     the trace clock speed.<br><br>
		                 This variable may also be defined in the <strong>const</strong> space. 
		                 The compiler must be configured to avoid the removal of this variable in 
		                 case that the application program is not using it. It is important for 
		                 debug systems that the variable is physically present in memory so that 
		                 it can be examined to configure the debugger.</td>
    </tr>
  </tbody>
</table>

<p class="Note">Note</p>
<ul>
  <li><p>The above definitions are the minimum requirements for the file <strong>
	system_</strong><em><strong>device</strong></em><strong>.c</strong>. This 
	file may export more functions or variables that provide a more flexible 
	configuration of the microcontroller system.</p>
  </li>
</ul>


<h2>Core Peripheral Access Layer</h2>

<h3>Cortex-Mx Core Register Access</h3>
<p>
  The following functions are defined in <strong>core_cm0.h</strong> / <strong>core_cm3.h</strong>
  and provide access to Cortex-Mx core registers.
</p>

<table class="kt" border="0" cellpadding="0" cellspacing="0">
  <tbody>
    <tr>
      <th class="kt">Function Definition</th>
      <th class="kt">Core</th>
      <th class="kt">Core Register</th>
      <th class="kt">Description</th>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __enable_irq (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">PRIMASK = 0</td>
      <td class="kt">Global Interrupt enable (using the instruction <strong>CPSIE 
		i</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __disable_irq (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">PRIMASK = 1</td>
      <td class="kt">Global Interrupt disable (using the instruction <strong>
		CPSID i</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __set_PRIMASK (uint32_t value)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">PRIMASK = value</td>
      <td class="kt">Assign value to Priority Mask Register (using the instruction 
		<strong>MSR</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __get_PRIMASK (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">return PRIMASK</td>
      <td class="kt">Return Priority Mask Register (using the instruction 
		<strong>MRS</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __enable_fault_irq (void)</td>
      <td class="kt">M3</td>
      <td class="kt">FAULTMASK = 0</td>
      <td class="kt">Global Fault exception and Interrupt enable (using the 
		instruction <strong>CPSIE 
		f</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __disable_fault_irq (void)</td>
      <td class="kt">M3</td>
      <td class="kt">FAULTMASK = 1</td>
      <td class="kt">Global Fault exception and Interrupt disable (using the 
		instruction <strong>CPSID f</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __set_FAULTMASK (uint32_t value)</td>
      <td class="kt">M3</td>
      <td class="kt">FAULTMASK = value</td>
      <td class="kt">Assign value to Fault Mask Register (using the instruction 
		<strong>MSR</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __get_FAULTMASK (void)</td>
      <td class="kt">M3</td>
      <td class="kt">return FAULTMASK</td>
      <td class="kt">Return Fault Mask Register (using the instruction <strong>MRS</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __set_BASEPRI (uint32_t value)</td>
      <td class="kt">M3</td>
      <td class="kt">BASEPRI = value</td>
      <td class="kt">Set Base Priority (using the instruction <strong>MSR</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uiuint32_t __get_BASEPRI (void)</td>
      <td class="kt">M3</td>
      <td class="kt">return BASEPRI</td>
      <td class="kt">Return Base Priority (using the instruction <strong>MRS</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __set_CONTROL (uint32_t value)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">CONTROL = value</td>
      <td class="kt">Set CONTROL register value (using the instruction <strong>MSR</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __get_CONTROL (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">return CONTROL</td>
      <td class="kt">Return Control Register Value (using the instruction
		<strong>MRS</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __set_PSP (uint32_t TopOfProcStack)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">PSP = TopOfProcStack</td>
      <td class="kt">Set Process Stack Pointer value (using the instruction
		<strong>MSR</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __get_PSP (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">return PSP</td>
      <td class="kt">Return Process Stack Pointer (using the instruction <strong>MRS</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __set_MSP (uint32_t TopOfMainStack)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">MSP = TopOfMainStack</td>
      <td class="kt">Set Main Stack Pointer (using the instruction <strong>MSR</strong>)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __get_MSP (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">return MSP</td>
      <td class="kt">Return Main Stack Pointer (using the instruction <strong>MRS</strong>)</td>
    </tr>
  </tbody>
</table>

<h3>Cortex-Mx Instruction Access</h3>
<p>
  The following functions are defined in <strong>core_cm0.h</strong> / <strong>core_cm3.h</strong>and
  generate specific Cortex-Mx instructions. The functions are implemented in the file 
  <strong>core_cm0.c</strong> / <strong>core_cm3.c</strong>.
</p>

<table class="kt" border="0" cellpadding="0" cellspacing="0">
  <tbody>
    <tr>
      <th class="kt">Name</th>
      <th class="kt">Core</th>
      <th class="kt">Generated CPU Instruction</th>
      <th class="kt">Description</th>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __WFI (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">WFI</td>
      <td class="kt">Wait for Interrupt</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __WFE (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">WFE</td>
      <td class="kt">Wait for Event</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __SEV (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">SEV</td>
      <td class="kt">Set Event</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __ISB (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">ISB</td>
      <td class="kt">Instruction Synchronization Barrier</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __DSB (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">DSB</td>
      <td class="kt">Data Synchronization Barrier</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void __DMB (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">DMB</td>
      <td class="kt">Data Memory Barrier</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __REV (uint32_t value)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">REV</td>
      <td class="kt">Reverse byte order in integer value.</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __REV16 (uint16_t value)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">REV16</td>
      <td class="kt">Reverse byte order in unsigned short value. </td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">sint32_t __REVSH (sint16_t value)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">REVSH</td>
      <td class="kt">Reverse byte order in signed short value with sign extension to integer.</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __RBIT (uint32_t value)</td>
      <td class="kt">M3</td>
      <td class="kt">RBIT</td>
      <td class="kt">Reverse bit order of value</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint8_t __LDREXB (uint8_t *addr)</td>
      <td class="kt">M3</td>
      <td class="kt">LDREXB</td>
      <td class="kt">Load exclusive byte</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint16_t __LDREXH (uint16_t *addr)</td>
      <td class="kt">M3</td>
      <td class="kt">LDREXH</td>
      <td class="kt">Load exclusive half-word</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __LDREXW (uint32_t *addr)</td>
      <td class="kt">M3</td>
      <td class="kt">LDREXW</td>
      <td class="kt">Load exclusive word</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __STREXB (uint8_t value, uint8_t *addr)</td>
      <td class="kt">M3</td>
      <td class="kt">STREXB</td>
      <td class="kt">Store exclusive byte</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __STREXB (uint16_t value, uint16_t *addr)</td>
      <td class="kt">M3</td>
      <td class="kt">STREXH</td>
      <td class="kt">Store exclusive half-word</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t __STREXB (uint32_t value, uint32_t *addr)</td>
      <td class="kt">M3</td>
      <td class="kt">STREXW</td>
      <td class="kt">Store exclusive word</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void  __CLREX (void)</td>
      <td class="kt">M3</td>
      <td class="kt">CLREX</td>
      <td class="kt">Remove the exclusive lock created by __LDREXB, __LDREXH, or __LDREXW</td>
    </tr>
  </tbody>
</table>


<h3>NVIC Access Functions</h3>
<p>
  The CMSIS provides access to the NVIC via the register interface structure and several helper
  functions that simplify the setup of the NVIC. The CMSIS HAL uses IRQ numbers (IRQn) to 
  identify the interrupts. The first device interrupt has the IRQn value 0. Therefore negative 
  IRQn values are used for processor core exceptions.
</p>
<p>
  For the IRQn values of core exceptions the file <strong><em>device.h</em></strong> provides 
  the following enum names.
</p>

<table class="kt" border="0" cellpadding="0" cellspacing="0">
  <tbody>
    <tr>
      <th class="kt" nowrap="nowrap">Core Exception enum Value</th>
      <th class="kt">Core</th>
      <th class="kt">IRQn</th>
      <th class="kt">Description</th>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">NonMaskableInt_IRQn</td>
      <td class="kt">M0, M3</td>
      <td class="kt">-14</td>
      <td class="kt">Cortex-Mx Non Maskable Interrupt</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">MemoryManagement_IRQn</td>
      <td class="kt">M3</td>
      <td class="kt">-12</td>
      <td class="kt">Cortex-Mx Memory Management Interrupt</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">BusFault_IRQn</td>
      <td class="kt">M3</td>
      <td class="kt">-11</td>
      <td class="kt">Cortex-Mx Bus Fault Interrupt</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">UsageFault_IRQn</td>
      <td class="kt">M3</td>
      <td class="kt">-10</td>
      <td class="kt">Cortex-Mx Usage Fault Interrupt</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">SVCall_IRQn</td>
      <td class="kt">M0, M3</td>
      <td class="kt">-5</td>
      <td class="kt">Cortex-Mx SV Call Interrupt </td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">DebugMonitor_IRQn</td>
      <td class="kt">M3</td>
      <td class="kt">-4</td>
      <td class="kt">Cortex-Mx Debug Monitor Interrupt</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">PendSV_IRQn</td>
      <td class="kt">M0, M3</td>
      <td class="kt">-2</td>
      <td class="kt">Cortex-Mx Pend SV Interrupt</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">SysTick_IRQn</td>
      <td class="kt">M0, M3</td>
      <td class="kt">-1</td>
      <td class="kt">Cortex-Mx System Tick Interrupt</td>
    </tr>
  </tbody>
</table>

<p>The following functions simplify the setup of the NVIC.
The functions are defined as <strong>static inline</strong>.</p>

<table class="kt" border="0" cellpadding="0" cellspacing="0">
  <tbody>
    <tr>
      <th class="kt" nowrap="nowrap">Name</th>
      <th class="kt">Core</th>
      <th class="kt">Parameter</th>
      <th class="kt">Description</th>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void NVIC_SetPriorityGrouping(uint32_t priority_grouping)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">Priority Grouping Value</td>
      <td class="kt">Set the Priority Grouping (Groups . Subgroups)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void NVIC_EnableIRQ(IRQn_Type IRQn)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">IRQ Number</td>
      <td class="kt">Enable IRQn</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void NVIC_DisableIRQ(IRQn_Type IRQn)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">IRQ Number</td>
      <td class="kt">Disable IRQn</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t NVIC_GetPendingIRQ (IRQn_Type IRQn)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">IRQ Number</td>
      <td class="kt">Return true (IRQ-Number) if IRQn is pending</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void NVIC_SetPendingIRQ (IRQn_Type IRQn)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">IRQ Number</td>
      <td class="kt">Set IRQn Pending</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void NVIC_ClearPendingIRQ (IRQn_Type IRQn)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">IRQ Number</td>
      <td class="kt">Clear IRQn Pending Status</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t NVIC_GetActive (IRQn_Type IRQn)</td>
      <td class="kt">M3</td>
      <td class="kt">IRQ Number</td>
      <td class="kt">Return the IRQn of the active interrupt</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void NVIC_SetPriority (IRQn_Type IRQn, uint32_t priority)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">IRQ Number, Priority</td>
      <td class="kt">Set Priority for IRQn<br>
                     (not threadsafe for Cortex-M0)</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t NVIC_GetPriority (IRQn_Type IRQn)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">IRQ Number</td>
      <td class="kt">Get Priority for IRQn</td>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void NVIC_SystemReset (void)</td>
      <td class="kt">M0, M3</td>
      <td class="kt">(void)</td>
      <td class="kt">Resets the System</td>
    </tr>
  </tbody>
</table>
<p class="Note">Note</p>
<ul>
  <li><p>The processor exceptions have negative enum values. Device specific interrupts 
	have positive enum values and start with 0. The values are defined in
    <b><em>device.h</em></b> file.</p>
  </li>
</ul>


<h3>SysTick Configuration Function</h3>

<p>The following function is used to configure the SysTick timer and start the 
SysTick interrupt.</p>

<table class="kt" border="0" cellpadding="0" cellspacing="0">
  <tbody>
    <tr>
      <th class="kt" nowrap="nowrap">Name</th>
      <th class="kt">Parameter</th>
      <th class="kt">Description</th>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">uint32_t Sys<span class="style1">TickConfig 
		(uint32_t ticks)</span></td>
      <td class="kt">ticks is SysTick counter reload value</td>
      <td class="kt">Setup the SysTick timer and enable the SysTick interrupt. After this 
		call the SysTick timer creates interrupts with the specified time 
		interval. <br>
		<br>
		Return: 0 when successful, 1 on failure.<br>
		</td>
    </tr>
  </tbody>
</table>


<h3>Cortex-M3 ITM Debug Access</h3>

<p>The Cortex-M3 incorporates the Instrumented Trace Macrocell (ITM) that 
provides together with the Serial Viewer Output trace capabilities for the 
microcontroller system. The ITM has 32 communication channels; two ITM 
communication channels are used by CMSIS to output the following information:</p>
<ul>
	<li>ITM Channel 0: implements the <strong>ITM_putchar</strong> function 
	which can be used for printf-style output via the debug interface.</li>
	<li>ITM Channel 31: is reserved for the RTOS kernel and can be used for 
	kernel awareness debugging.</li>
</ul>
<p class="Note">Note</p>
<ul>
  <li><p>The ITM channel 31 is selected for the RTOS kernel since some kernels 
	may use the Privileged level for program execution. ITM 
	channels have 4 groups with 8 channels each, whereby each group can be 
	configured for access rights in the Unprivileged level. The ITM channel 0 
	may be therefore enabled for the user task whereas ITM channel 31 may be 
	accessible only in Privileged level from the RTOS kernel itself.</p>
  </li>
</ul>

<p>The prototype of the <strong>ITM_putchar</strong> routine is shown in the 
table below.</p>

<table class="kt" border="0" cellpadding="0" cellspacing="0">
  <tbody>
    <tr>
      <th class="kt" nowrap="nowrap">Name</th>
      <th class="kt">Parameter</th>
      <th class="kt">Description</th>
    </tr>
    <tr>
      <td class="kt" nowrap="nowrap">void uint32_t ITM_putchar(uint32_t chr)</td>
      <td class="kt">character to output</td>
      <td class="kt">The function outputs a character via the ITM channel 0. The 
		                 function returns when no debugger is connected that has booked the 
		                 output. It is blocking when a debugger is connected, but the 
		                 previous character send is not transmitted. <br><br>
		                 Return: the input character 'chr'.</td>
    </tr>
  </tbody>
</table>


<p>
  Example for the usage of the ITM Channel 31 for RTOS Kernels:
</p>
<pre>
  // check if debugger connected and ITM channel enabled for tracing
  if ((CoreDebug-&gt;DEMCR &amp; CoreDebug_DEMCR_TRCENA) &amp;&amp;
  (ITM-&gt;TCR &amp; ITM_TCR_ITMENA) &amp;&amp;
  (ITM-&gt;TER &amp; (1UL &lt;&lt; 31))) {
    // transmit trace data
    while (ITM-&gt;PORT31_U32 == 0);
    ITM-&gt;PORT[31].u8 = task_id;      // id of next task
    while (ITM-&gt;PORT[31].u32 == 0);
    ITM-&gt;PORT[31].u32 = task_status; // status information
  }</pre>


<h2><a name="5"></a>CMSIS Example</h2>
<p>
  The following section shows a typical example for using the CMSIS layer in user applications.
</p>
<pre>
#include &lt;device.h&gt;                              // file name depends on the device used.

void SysTick_Handler (void)  {                   // SysTick Interrupt Handler
  ;
}

void TIM1_UP_IRQHandler (void)  {                // Timer Interrupt Handler
  ;
}

void timer1_init(int frequency) {
                                                 // set up Timer (device specific)
  NVIC_SetPriority (TIM1_UP_IRQn, 1);            // Set Timer priority
  NVIC_EnableIRQ (TIM1_UP_IRQn);                 // Enable Timer Interrupt
}

void main (void) {
  SystemInit ();

  if (SysTick_Config (SystemFrequency / 1000)) { // Setup SysTick Timer for 1 msec interrupts
    :                                            // Handle Error
    :
    while (1);
  }

  timer1_init ();                                // device specific timer

  while (1);
}</pre>


1204
</body></html>