# import numpy as np # d = 64 # dimension # nb = 100000 # database size # nq = 10000 # nb of queries # np.random.seed(1234) # make reproducible # xb = np.random.random((nb, d)).astype('float32') # xb[:, 0] += np.arange(nb) / 1000. # xq = np.random.random((nq, d)).astype('float32') # xq[:, 0] += np.arange(nq) / 1000. # # import faiss # make faiss available # # res = faiss.StandardGpuResources() # use a single GPU # # ## Using a flat index # # index_flat = faiss.IndexFlatL2(d) # build a flat (CPU) index # # # make it a flat GPU index # gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat) # # gpu_index_flat.add(xb) # add vectors to the index # print(gpu_index_flat.ntotal) # # k = 4 # we want to see 4 nearest neighbors # D, I = gpu_index_flat.search(xq, k) # actual search # print(I[:5]) # neighbors of the 5 first queries # print(I[-5:]) # neighbors of the 5 last queries # # # ## Using an IVF index # # nlist = 100 # quantizer = faiss.IndexFlatL2(d) # the other index # index_ivf = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2) # # here we specify METRIC_L2, by default it performs inner-product search # # # make it an IVF GPU index # gpu_index_ivf = faiss.index_cpu_to_gpu(res, 0, index_ivf) # # assert not gpu_index_ivf.is_trained # gpu_index_ivf.train(xb) # add vectors to the index # assert gpu_index_ivf.is_trained # # gpu_index_ivf.add(xb) # add vectors to the index # print(gpu_index_ivf.ntotal) # # k = 4 # we want to see 4 nearest neighbors # D, I = gpu_index_ivf.search(xq, k) # actual search # print(I[:5]) # neighbors of the 5 first queries # print(I[-5:]) import numpy as np import pytest @pytest.mark.skip(reason="Not for pytest") def basic_test(): d = 64 # dimension nb = 100000 # database size nq = 10000 # nb of queries np.random.seed(1234) # make reproducible xb = np.random.random((nb, d)).astype('float32') xb[:, 0] += np.arange(nb) / 1000. xc = np.random.random((nb, d)).astype('float32') xc[:, 0] += np.arange(nb) / 1000. xq = np.random.random((nq, d)).astype('float32') xq[:, 0] += np.arange(nq) / 1000. import faiss # make faiss available index = faiss.IndexFlatL2(d) # build the index print(index.is_trained) index.add(xb) # add vectors to the index print(index.ntotal) #faiss.write_index(index, "/tmp/faiss/tempfile_1") writer = faiss.VectorIOWriter() faiss.write_index(index, writer) ar_data = faiss.vector_to_array(writer.data) import pickle pickle.dump(ar_data, open("/tmp/faiss/ser_1", "wb")) #index_3 = pickle.load("/tmp/faiss/ser_1") # index_2 = faiss.IndexFlatL2(d) # build the index # print(index_2.is_trained) # index_2.add(xc) # add vectors to the index # print(index_2.ntotal) # faiss.write_index(index, "/tmp/faiss/tempfile_2") # # index_3 = faiss.read_index # k = 4 # we want to see 4 nearest neighbors # D, I = index.search(xb[:5], k) # sanity check # print(I) # print(D) # D, I = index.search(xq, k) # actual search # print(I[:5]) # neighbors of the 5 first queries # print(I[-5:]) # neighbors of the 5 last queries if __name__ == '__main__': basic_test()