from ..scheduler import * import unittest import faiss import numpy as np class TestScheduler(unittest.TestCase): def test_schedule(self): d = 64 nb = 10000 nq = 2 nt = 5000 xt, xb, xq = get_dataset(d, nb, nt, nq) file_name = "/tmp/tempfile_1" index = faiss.IndexFlatL2(d) print(index.is_trained) index.add(xb) faiss.write_index(index, file_name) Dref, Iref = index.search(xq, 5) index2 = faiss.read_index(file_name) scheduler_instance = Scheduler() # query args 1 query_index = dict() query_index['index'] = [file_name] vectors = scheduler_instance.Search(query_index, vectors=xq, k=5) assert np.all(vectors == Iref) # query args 2 query_index = dict() query_index['raw'] = xt # Xiaojun TODO: 'raw_id' part # query_index['raw_id'] = query_index['dimension'] = d query_index['index'] = [file_name] # Xiaojun TODO: once 'raw_id' part added, open below # vectors = scheduler_instance.Search(query_index, vectors=xq, k=5) # print("success") def get_dataset(d, nb, nt, nq): """A dataset that is not completely random but still challenging to index """ d1 = 10 # intrinsic dimension (more or less) n = nb + nt + nq rs = np.random.RandomState(1338) x = rs.normal(size=(n, d1)) x = np.dot(x, rs.rand(d1, d)) # now we have a d1-dim ellipsoid in d-dimensional space # higher factor (>4) -> higher frequency -> less linear x = x * (rs.rand(d) * 4 + 0.1) x = np.sin(x) x = x.astype('float32') return x[:nt], x[nt:-nq], x[-nq:] if __name__ == "__main__": unittest.main()