/******************************************************************************* * Copyright 上海赜睿信息科技有限公司(Zilliz) - All Rights Reserved * Unauthorized copying of this file, via any medium is strictly prohibited. * Proprietary and confidential. ******************************************************************************/ #include "DBImpl.h" #include "DBMetaImpl.h" #include "Log.h" #include "EngineFactory.h" #include "Factories.h" #include "metrics/Metrics.h" #include "scheduler/TaskScheduler.h" #include "scheduler/context/SearchContext.h" #include "scheduler/context/DeleteContext.h" #include "utils/TimeRecorder.h" #include "MetaConsts.h" #include #include #include #include #include #include #include namespace zilliz { namespace milvus { namespace engine { namespace { static constexpr uint64_t METRIC_ACTION_INTERVAL = 1; static constexpr uint64_t COMPACT_ACTION_INTERVAL = 1; static constexpr uint64_t INDEX_ACTION_INTERVAL = 1; void CollectInsertMetrics(double total_time, size_t n, bool succeed) { double avg_time = total_time / n; for (int i = 0; i < n; ++i) { server::Metrics::GetInstance().AddVectorsDurationHistogramOberve(avg_time); } // server::Metrics::GetInstance().add_vector_duration_seconds_quantiles().Observe((average_time)); if (succeed) { server::Metrics::GetInstance().AddVectorsSuccessTotalIncrement(n); server::Metrics::GetInstance().AddVectorsSuccessGaugeSet(n); } else { server::Metrics::GetInstance().AddVectorsFailTotalIncrement(n); server::Metrics::GetInstance().AddVectorsFailGaugeSet(n); } } void CollectQueryMetrics(double total_time, size_t nq) { for (int i = 0; i < nq; ++i) { server::Metrics::GetInstance().QueryResponseSummaryObserve(total_time); } auto average_time = total_time / nq; server::Metrics::GetInstance().QueryVectorResponseSummaryObserve(average_time, nq); server::Metrics::GetInstance().QueryVectorResponsePerSecondGaugeSet(double (nq) / total_time); } void CollectFileMetrics(int file_type, size_t file_size, double total_time) { switch(file_type) { case meta::TableFileSchema::RAW: case meta::TableFileSchema::TO_INDEX: { server::Metrics::GetInstance().SearchRawDataDurationSecondsHistogramObserve(total_time); server::Metrics::GetInstance().RawFileSizeHistogramObserve(file_size); server::Metrics::GetInstance().RawFileSizeTotalIncrement(file_size); server::Metrics::GetInstance().RawFileSizeGaugeSet(file_size); break; } default: { server::Metrics::GetInstance().SearchIndexDataDurationSecondsHistogramObserve(total_time); server::Metrics::GetInstance().IndexFileSizeHistogramObserve(file_size); server::Metrics::GetInstance().IndexFileSizeTotalIncrement(file_size); server::Metrics::GetInstance().IndexFileSizeGaugeSet(file_size); break; } } } void CalcScore(uint64_t vector_count, const float *vectors_data, uint64_t dimension, const SearchContext::ResultSet &result_src, SearchContext::ResultSet &result_target) { result_target.clear(); if(result_src.empty()){ return; } server::TimeRecorder rc("Calculate Score"); int vec_index = 0; for(auto& result : result_src) { const float * vec_data = vectors_data + vec_index*dimension; double vec_len = 0; for(uint64_t i = 0; i < dimension; i++) { vec_len += vec_data[i]*vec_data[i]; } vec_index++; double max_score = 0.0; for(auto& pair : result) { if(max_score < pair.second) { max_score = pair.second; } } //makesure socre is less than 100 if(max_score > vec_len) { vec_len = max_score; } //avoid divided by zero static constexpr double TOLERANCE = std::numeric_limits::epsilon(); if(vec_len < TOLERANCE) { vec_len = TOLERANCE; } SearchContext::Id2ScoreMap score_array; double vec_len_inverse = 1.0/vec_len; for(auto& pair : result) { score_array.push_back(std::make_pair(pair.first, (1 - pair.second*vec_len_inverse)*100.0)); } result_target.emplace_back(score_array); } rc.Elapse("totally cost"); } } DBImpl::DBImpl(const Options& options) : options_(options), shutting_down_(false), compact_thread_pool_(1, 1), index_thread_pool_(1, 1) { meta_ptr_ = DBMetaImplFactory::Build(options.meta); mem_mgr_ = std::make_shared(meta_ptr_, options_); // mem_mgr_ = (MemManagerPtr)(new MemManager(meta_ptr_, options_)); StartTimerTasks(); } Status DBImpl::CreateTable(meta::TableSchema& table_schema) { return meta_ptr_->CreateTable(table_schema); } Status DBImpl::DeleteTable(const std::string& table_id, const meta::DatesT& dates) { //dates partly delete files of the table but currently we don't support mem_mgr_->EraseMemVector(table_id); //not allow insert meta_ptr_->DeleteTable(table_id); //soft delete table //scheduler will determine when to delete table files TaskScheduler& scheduler = TaskScheduler::GetInstance(); DeleteContextPtr context = std::make_shared(table_id, meta_ptr_); scheduler.Schedule(context); return Status::OK(); } Status DBImpl::DescribeTable(meta::TableSchema& table_schema) { return meta_ptr_->DescribeTable(table_schema); } Status DBImpl::HasTable(const std::string& table_id, bool& has_or_not) { return meta_ptr_->HasTable(table_id, has_or_not); } Status DBImpl::AllTables(std::vector& table_schema_array) { return meta_ptr_->AllTables(table_schema_array); } Status DBImpl::GetTableRowCount(const std::string& table_id, uint64_t& row_count) { return meta_ptr_->Count(table_id, row_count); } Status DBImpl::InsertVectors(const std::string& table_id_, uint64_t n, const float* vectors, IDNumbers& vector_ids_) { auto start_time = METRICS_NOW_TIME; Status status = mem_mgr_->InsertVectors(table_id_, n, vectors, vector_ids_); auto end_time = METRICS_NOW_TIME; double total_time = METRICS_MICROSECONDS(start_time,end_time); // std::chrono::microseconds time_span = std::chrono::duration_cast(end_time - start_time); // double average_time = double(time_span.count()) / n; CollectInsertMetrics(total_time, n, status.ok()); return status; } Status DBImpl::Query(const std::string &table_id, uint64_t k, uint64_t nq, const float *vectors, QueryResults &results) { auto start_time = METRICS_NOW_TIME; meta::DatesT dates = {meta::Meta::GetDate()}; Status result = Query(table_id, k, nq, vectors, dates, results); auto end_time = METRICS_NOW_TIME; auto total_time = METRICS_MICROSECONDS(start_time,end_time); CollectQueryMetrics(total_time, nq); return result; } Status DBImpl::Query(const std::string& table_id, uint64_t k, uint64_t nq, const float* vectors, const meta::DatesT& dates, QueryResults& results) { #if 0 return QuerySync(table_id, k, nq, vectors, dates, results); #else //get all table files from table meta::DatePartionedTableFilesSchema files; auto status = meta_ptr_->FilesToSearch(table_id, dates, files); if (!status.ok()) { return status; } meta::TableFilesSchema file_id_array; for (auto &day_files : files) { for (auto &file : day_files.second) { file_id_array.push_back(file); } } return QueryAsync(table_id, file_id_array, k, nq, vectors, dates, results); #endif } Status DBImpl::Query(const std::string& table_id, const std::vector& file_ids, uint64_t k, uint64_t nq, const float* vectors, const meta::DatesT& dates, QueryResults& results) { //get specified files std::vector ids; for (auto &id : file_ids) { meta::TableFileSchema table_file; table_file.table_id_ = table_id; std::string::size_type sz; ids.push_back(std::stol(id, &sz)); } meta::TableFilesSchema files_array; auto status = meta_ptr_->GetTableFiles(table_id, ids, files_array); if (!status.ok()) { return status; } if(files_array.empty()) { return Status::Error("Invalid file id"); } return QueryAsync(table_id, files_array, k, nq, vectors, dates, results); } Status DBImpl::QuerySync(const std::string& table_id, uint64_t k, uint64_t nq, const float* vectors, const meta::DatesT& dates, QueryResults& results) { meta::DatePartionedTableFilesSchema files; auto status = meta_ptr_->FilesToSearch(table_id, dates, files); if (!status.ok()) { return status; } ENGINE_LOG_DEBUG << "Search DateT Size = " << files.size(); meta::TableFilesSchema index_files; meta::TableFilesSchema raw_files; for (auto &day_files : files) { for (auto &file : day_files.second) { file.file_type_ == meta::TableFileSchema::INDEX ? index_files.push_back(file) : raw_files.push_back(file); } } int dim = 0; if (!index_files.empty()) { dim = index_files[0].dimension_; } else if (!raw_files.empty()) { dim = raw_files[0].dimension_; } else { ENGINE_LOG_DEBUG << "no files to search"; return Status::OK(); } { // [{ids, distence}, ...] using SearchResult = std::pair, std::vector>; std::vector batchresult(nq); // allocate nq cells. auto cluster = [&](long *nns, float *dis, const int& k) -> void { for (int i = 0; i < nq; ++i) { auto f_begin = batchresult[i].first.cbegin(); auto s_begin = batchresult[i].second.cbegin(); batchresult[i].first.insert(f_begin, nns + i * k, nns + i * k + k); batchresult[i].second.insert(s_begin, dis + i * k, dis + i * k + k); } }; // Allocate Memory float *output_distence; long *output_ids; output_distence = (float *) malloc(k * nq * sizeof(float)); output_ids = (long *) malloc(k * nq * sizeof(long)); memset(output_distence, 0, k * nq * sizeof(float)); memset(output_ids, 0, k * nq * sizeof(long)); long search_set_size = 0; auto search_in_index = [&](meta::TableFilesSchema& file_vec) -> void { for (auto &file : file_vec) { ExecutionEnginePtr index = EngineFactory::Build(file.dimension_, file.location_, (EngineType)file.engine_type_); index->Load(); auto file_size = index->PhysicalSize(); search_set_size += file_size; ENGINE_LOG_DEBUG << "Search file_type " << file.file_type_ << " Of Size: " << file_size/(1024*1024) << " M"; int inner_k = index->Count() < k ? index->Count() : k; auto start_time = METRICS_NOW_TIME; index->Search(nq, vectors, inner_k, output_distence, output_ids); auto end_time = METRICS_NOW_TIME; auto total_time = METRICS_MICROSECONDS(start_time, end_time); CollectFileMetrics(file.file_type_, file_size, total_time); cluster(output_ids, output_distence, inner_k); // cluster to each query memset(output_distence, 0, k * nq * sizeof(float)); memset(output_ids, 0, k * nq * sizeof(long)); } }; auto topk_cpu = [](const std::vector &input_data, const int &k, float *output_distence, long *output_ids) -> void { std::map> inverted_table; for (int i = 0; i < input_data.size(); ++i) { if (inverted_table.count(input_data[i]) == 1) { auto& ori_vec = inverted_table[input_data[i]]; ori_vec.push_back(i); } else { inverted_table[input_data[i]] = std::vector{i}; } } int count = 0; for (auto &item : inverted_table){ if (count == k) break; for (auto &id : item.second){ output_distence[count] = item.first; output_ids[count] = id; if (++count == k) break; } } }; auto cluster_topk = [&]() -> void { QueryResult res; for (auto &result_pair : batchresult) { auto &dis = result_pair.second; auto &nns = result_pair.first; topk_cpu(dis, k, output_distence, output_ids); int inner_k = dis.size() < k ? dis.size() : k; for (int i = 0; i < inner_k; ++i) { res.emplace_back(std::make_pair(nns[output_ids[i]], output_distence[i])); // mapping } results.push_back(res); // append to result list res.clear(); memset(output_distence, 0, k * nq * sizeof(float)); memset(output_ids, 0, k * nq * sizeof(long)); } }; search_in_index(raw_files); search_in_index(index_files); ENGINE_LOG_DEBUG << "Search Overall Set Size = " << search_set_size << " M"; cluster_topk(); free(output_distence); free(output_ids); } if (results.empty()) { return Status::NotFound("Group " + table_id + ", search result not found!"); } QueryResults temp_results; CalcScore(nq, vectors, dim, results, temp_results); results.swap(temp_results); return Status::OK(); } Status DBImpl::QueryAsync(const std::string& table_id, const meta::TableFilesSchema& files, uint64_t k, uint64_t nq, const float* vectors, const meta::DatesT& dates, QueryResults& results) { //step 1: get files to search ENGINE_LOG_DEBUG << "Search DateT Size=" << files.size(); SearchContextPtr context = std::make_shared(k, nq, vectors); for (auto &file : files) { TableFileSchemaPtr file_ptr = std::make_shared(file); context->AddIndexFile(file_ptr); } //step 2: put search task to scheduler TaskScheduler& scheduler = TaskScheduler::GetInstance(); scheduler.Schedule(context); context->WaitResult(); //step 3: construct results, calculate score between 0 ~ 100 auto& context_result = context->GetResult(); meta::TableSchema table_schema; table_schema.table_id_ = table_id; meta_ptr_->DescribeTable(table_schema); CalcScore(context->nq(), context->vectors(), table_schema.dimension_, context_result, results); return Status::OK(); } void DBImpl::StartTimerTasks() { bg_timer_thread_ = std::thread(&DBImpl::BackgroundTimerTask, this); } void DBImpl::BackgroundTimerTask() { Status status; server::SystemInfo::GetInstance().Init(); while (true) { if (!bg_error_.ok()) break; if (shutting_down_.load(std::memory_order_acquire)){ for(auto& iter : compact_thread_results_) { iter.wait(); } for(auto& iter : index_thread_results_) { iter.wait(); } break; } std::this_thread::sleep_for(std::chrono::seconds(1)); StartMetricTask(); StartCompactionTask(); StartBuildIndexTask(); } } void DBImpl::StartMetricTask() { static uint64_t metric_clock_tick = 0; metric_clock_tick++; if(metric_clock_tick%METRIC_ACTION_INTERVAL != 0) { return; } server::Metrics::GetInstance().KeepingAliveCounterIncrement(METRIC_ACTION_INTERVAL); int64_t cache_usage = cache::CpuCacheMgr::GetInstance()->CacheUsage(); int64_t cache_total = cache::CpuCacheMgr::GetInstance()->CacheCapacity(); server::Metrics::GetInstance().CacheUsageGaugeSet(cache_usage*100/cache_total); uint64_t size; Size(size); server::Metrics::GetInstance().DataFileSizeGaugeSet(size); server::Metrics::GetInstance().CPUUsagePercentSet(); server::Metrics::GetInstance().RAMUsagePercentSet(); server::Metrics::GetInstance().GPUPercentGaugeSet(); server::Metrics::GetInstance().GPUMemoryUsageGaugeSet(); server::Metrics::GetInstance().OctetsSet(); } void DBImpl::StartCompactionTask() { // static int count = 0; // count++; // std::cout << "StartCompactionTask: " << count << std::endl; // std::cout << "c: " << count++ << std::endl; static uint64_t compact_clock_tick = 0; compact_clock_tick++; if(compact_clock_tick%COMPACT_ACTION_INTERVAL != 0) { // std::cout << "c r: " << count++ << std::endl; return; } //serialize memory data std::set temp_table_ids; mem_mgr_->Serialize(temp_table_ids); for(auto& id : temp_table_ids) { compact_table_ids_.insert(id); } //compactiong has been finished? if(!compact_thread_results_.empty()) { std::chrono::milliseconds span(10); if (compact_thread_results_.back().wait_for(span) == std::future_status::ready) { compact_thread_results_.pop_back(); } } //add new compaction task if(compact_thread_results_.empty()) { compact_thread_results_.push_back( compact_thread_pool_.enqueue(&DBImpl::BackgroundCompaction, this, compact_table_ids_)); compact_table_ids_.clear(); } } Status DBImpl::MergeFiles(const std::string& table_id, const meta::DateT& date, const meta::TableFilesSchema& files) { meta::TableFileSchema table_file; table_file.table_id_ = table_id; table_file.date_ = date; Status status = meta_ptr_->CreateTableFile(table_file); if (!status.ok()) { ENGINE_LOG_INFO << status.ToString() << std::endl; return status; } ExecutionEnginePtr index = EngineFactory::Build(table_file.dimension_, table_file.location_, (EngineType)table_file.engine_type_); meta::TableFilesSchema updated; long index_size = 0; for (auto& file : files) { auto start_time = METRICS_NOW_TIME; index->Merge(file.location_); auto file_schema = file; auto end_time = METRICS_NOW_TIME; auto total_time = METRICS_MICROSECONDS(start_time,end_time); server::Metrics::GetInstance().MemTableMergeDurationSecondsHistogramObserve(total_time); file_schema.file_type_ = meta::TableFileSchema::TO_DELETE; updated.push_back(file_schema); ENGINE_LOG_DEBUG << "Merging file " << file_schema.file_id_; index_size = index->Size(); if (index_size >= options_.index_trigger_size) break; } index->Serialize(); if (index_size >= options_.index_trigger_size) { table_file.file_type_ = meta::TableFileSchema::TO_INDEX; } else { table_file.file_type_ = meta::TableFileSchema::RAW; } table_file.size_ = index_size; updated.push_back(table_file); status = meta_ptr_->UpdateTableFiles(updated); ENGINE_LOG_DEBUG << "New merged file " << table_file.file_id_ << " of size=" << index->PhysicalSize()/(1024*1024) << " M"; //current disable this line to avoid memory //index->Cache(); return status; } Status DBImpl::BackgroundMergeFiles(const std::string& table_id) { meta::DatePartionedTableFilesSchema raw_files; auto status = meta_ptr_->FilesToMerge(table_id, raw_files); if (!status.ok()) { return status; } bool has_merge = false; for (auto& kv : raw_files) { auto files = kv.second; if (files.size() <= options_.merge_trigger_number) { continue; } has_merge = true; MergeFiles(table_id, kv.first, kv.second); if (shutting_down_.load(std::memory_order_acquire)){ break; } } return Status::OK(); } void DBImpl::BackgroundCompaction(std::set table_ids) { // static int b_count = 0; // b_count++; // std::cout << "BackgroundCompaction: " << b_count << std::endl; Status status; for (auto table_id : table_ids) { status = BackgroundMergeFiles(table_id); if (!status.ok()) { bg_error_ = status; return; } } meta_ptr_->Archive(); int ttl = 1; if (options_.mode == "cluster") { ttl = meta::D_SEC; } meta_ptr_->CleanUpFilesWithTTL(ttl); } void DBImpl::StartBuildIndexTask() { static uint64_t index_clock_tick = 0; index_clock_tick++; if(index_clock_tick%INDEX_ACTION_INTERVAL != 0) { return; } //build index has been finished? if(!index_thread_results_.empty()) { std::chrono::milliseconds span(10); if (index_thread_results_.back().wait_for(span) == std::future_status::ready) { index_thread_results_.pop_back(); } } //add new build index task if(index_thread_results_.empty()) { index_thread_results_.push_back( index_thread_pool_.enqueue(&DBImpl::BackgroundBuildIndex, this)); } } Status DBImpl::BuildIndex(const meta::TableFileSchema& file) { ExecutionEnginePtr to_index = EngineFactory::Build(file.dimension_, file.location_, (EngineType)file.engine_type_); if(to_index == nullptr) { return Status::Error("Invalid engine type"); } try { //step 1: load index to_index->Load(); //step 2: create table file meta::TableFileSchema table_file; table_file.table_id_ = file.table_id_; table_file.date_ = file.date_; Status status = meta_ptr_->CreateTableFile(table_file); if (!status.ok()) { return status; } //step 3: build index auto start_time = METRICS_NOW_TIME; auto index = to_index->BuildIndex(table_file.location_); auto end_time = METRICS_NOW_TIME; auto total_time = METRICS_MICROSECONDS(start_time, end_time); server::Metrics::GetInstance().BuildIndexDurationSecondsHistogramObserve(total_time); //step 4: if table has been deleted, dont save index file bool has_table = false; meta_ptr_->HasTable(file.table_id_, has_table); if(!has_table) { meta_ptr_->DeleteTableFiles(file.table_id_); return Status::OK(); } //step 5: save index file index->Serialize(); //step 6: update meta table_file.file_type_ = meta::TableFileSchema::INDEX; table_file.size_ = index->Size(); auto to_remove = file; to_remove.file_type_ = meta::TableFileSchema::TO_DELETE; meta::TableFilesSchema update_files = {to_remove, table_file}; meta_ptr_->UpdateTableFiles(update_files); ENGINE_LOG_DEBUG << "New index file " << table_file.file_id_ << " of size " << index->PhysicalSize()/(1024*1024) << " M" << " from file " << to_remove.file_id_; //current disable this line to avoid memory //index->Cache(); } catch (std::exception& ex) { return Status::Error("Build index encounter exception", ex.what()); } return Status::OK(); } void DBImpl::BackgroundBuildIndex() { meta::TableFilesSchema to_index_files; meta_ptr_->FilesToIndex(to_index_files); Status status; for (auto& file : to_index_files) { /* ENGINE_LOG_DEBUG << "Buiding index for " << file.location; */ status = BuildIndex(file); if (!status.ok()) { bg_error_ = status; return; } if (shutting_down_.load(std::memory_order_acquire)){ break; } } /* ENGINE_LOG_DEBUG << "All Buiding index Done"; */ } Status DBImpl::DropAll() { return meta_ptr_->DropAll(); } Status DBImpl::Size(uint64_t& result) { return meta_ptr_->Size(result); } DBImpl::~DBImpl() { shutting_down_.store(true, std::memory_order_release); bg_timer_thread_.join(); std::set ids; mem_mgr_->Serialize(ids); } } // namespace engine } // namespace milvus } // namespace zilliz