# STL imports import random import string import struct import sys import logging import time, datetime import copy import numpy as np from milvus import Milvus, IndexType, MetricType port = 19530 epsilon = 0.000001 def get_milvus(handler=None): if handler is None: handler = "GRPC" return Milvus(handler=handler) def gen_inaccuracy(num): return num / 255.0 def gen_vectors(num, dim): return [[random.random() for _ in range(dim)] for _ in range(num)] def gen_binary_vectors(num, dim): raw_vectors = [] binary_vectors = [] for i in range(num): raw_vector = [random.randint(0, 1) for i in range(dim)] raw_vectors.append(raw_vector) binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist())) return raw_vectors, binary_vectors def jaccard(x, y): x = np.asarray(x, np.bool) y = np.asarray(y, np.bool) return 1 - np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum()) def hamming(x, y): x = np.asarray(x, np.bool) y = np.asarray(y, np.bool) return np.bitwise_xor(x, y).sum() def tanimoto(x, y): x = np.asarray(x, np.bool) y = np.asarray(y, np.bool) return -np.log2(np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())) def gen_single_vector(dim): return [[random.random() for _ in range(dim)]] def gen_vector(nb, d, seed=np.random.RandomState(1234)): xb = seed.rand(nb, d).astype("float32") return xb.tolist() def gen_unique_str(str_value=None): prefix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8)) return "test_" + prefix if str_value is None else str_value + "_" + prefix def gen_long_str(num): string = '' for _ in range(num): char = random.choice('tomorrow') string += char def gen_invalid_ips(): ips = [ # "255.0.0.0", # "255.255.0.0", # "255.255.255.0", # "255.255.255.255", "127.0.0", # "123.0.0.2", "12-s", " ", "12 s", "BB。A", " siede ", "(mn)", "中文", "a".join("a" for _ in range(256)) ] return ips def gen_invalid_ports(): ports = [ # empty " ", -1, # too big port 100000, # not correct port 39540, "BB。A", " siede ", "(mn)", "中文" ] return ports def gen_invalid_uris(): ip = None uris = [ " ", "中文", # invalid protocol # "tc://%s:%s" % (ip, port), # "tcp%s:%s" % (ip, port), # # invalid port # "tcp://%s:100000" % ip, # "tcp://%s: " % ip, # "tcp://%s:19540" % ip, # "tcp://%s:-1" % ip, # "tcp://%s:string" % ip, # invalid ip "tcp:// :19530", # "tcp://123.0.0.1:%s" % port, "tcp://127.0.0:19530", # "tcp://255.0.0.0:%s" % port, # "tcp://255.255.0.0:%s" % port, # "tcp://255.255.255.0:%s" % port, # "tcp://255.255.255.255:%s" % port, "tcp://\n:19530", ] return uris def gen_invalid_collection_names(): collection_names = [ "12-s", " ", # "", # None, "12 s", "BB。A", "c|c", " siede ", "(mn)", "pip+", "=c", "中文", "a".join("a" for i in range(256)) ] return collection_names def gen_invalid_top_ks(): top_ks = [ 0, -1, None, [1,2,3], (1,2), {"a": 1}, " ", "", "String", "12-s", "BB。A", " siede ", "(mn)", "pip+", "=c", "中文", "a".join("a" for i in range(256)) ] return top_ks def gen_invalid_dims(): dims = [ 0, -1, 100001, 1000000000000001, None, False, [1,2,3], (1,2), {"a": 1}, " ", "", "String", "12-s", "BB。A", " siede ", "(mn)", "pip+", "=c", "中文", "a".join("a" for i in range(256)) ] return dims def gen_invalid_file_sizes(): file_sizes = [ 0, -1, 1000000000000001, None, False, [1,2,3], (1,2), {"a": 1}, " ", "", "String", "12-s", "BB。A", " siede ", "(mn)", "pip+", "=c", "中文", "a".join("a" for i in range(256)) ] return file_sizes def gen_invalid_index_types(): invalid_types = [ 0, -1, 100, 1000000000000001, # None, False, [1,2,3], (1,2), {"a": 1}, " ", "", "String", "12-s", "BB。A", " siede ", "(mn)", "pip+", "=c", "中文", "a".join("a" for i in range(256)) ] return invalid_types def gen_invalid_params(): params = [ 9999999999, -1, # None, [1,2,3], (1,2), {"a": 1}, " ", "", "String", "12-s", "BB。A", " siede ", "(mn)", "pip+", "=c", "中文" ] return params def gen_invalid_nprobes(): nprobes = [ 0, -1, 1000000000000001, None, [1,2,3], (1,2), {"a": 1}, " ", "", "String", "12-s", "BB。A", " siede ", "(mn)", "pip+", "=c", "中文" ] return nprobes def gen_invalid_metric_types(): metric_types = [ 0, -1, 1000000000000001, # None, [1,2,3], (1,2), {"a": 1}, " ", "", "String", "12-s", "BB。A", " siede ", "(mn)", "pip+", "=c", "中文" ] return metric_types def gen_invalid_vectors(): invalid_vectors = [ "1*2", [], [1], [1,2], [" "], ['a'], [None], None, (1,2), {"a": 1}, " ", "", "String", "12-s", "BB。A", " siede ", "(mn)", "pip+", "=c", "中文", "a".join("a" for i in range(256)) ] return invalid_vectors def gen_invalid_vector_ids(): invalid_vector_ids = [ 1.0, -1.0, None, # int 64 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, " ", "", "String", "BB。A", " siede ", "(mn)", "=c", "中文", ] return invalid_vector_ids def gen_invalid_cache_config(): invalid_configs = [ 0, -1, 9223372036854775808, [1,2,3], (1,2), {"a": 1}, " ", "", "String", "12-s", "BB。A", " siede ", "(mn)", "pip+", "=c", "中文", "'123'", "さようなら" ] return invalid_configs def gen_invalid_engine_config(): invalid_configs = [ -1, [1,2,3], (1,2), {"a": 1}, " ", "", "String", "12-s", "BB。A", " siede ", "(mn)", "pip+", "=c", "中文", "'123'", ] return invalid_configs def gen_invaild_search_params(): index_types = [ IndexType.FLAT, IndexType.IVFLAT, IndexType.IVF_SQ8, IndexType.IVF_SQ8H, IndexType.IVF_PQ, IndexType.HNSW, # IndexType.RNSG ] search_params = [] for index_type in index_types: if index_type in [IndexType.IVFLAT, IndexType.IVF_SQ8, IndexType.IVF_SQ8H, IndexType.IVF_PQ]: for nprobe in gen_invalid_params(): ivf_search_params = {"index_type": index_type, "search_param": {"nprobe": nprobe}} search_params.append(ivf_search_params) search_params.append({"index_type": index_type, "search_param": {"invalid_key": 100}}) elif index_type == IndexType.HNSW: for ef in gen_invalid_params(): hnsw_search_param = {"index_type": index_type, "search_param": {"ef": ef}} search_params.append(hnsw_search_param) search_params.append({"index_type": index_type, "search_param": {"invalid_key": 100}}) # elif index_type == IndexType.RNSG: # for search_length in gen_invalid_params(): # nsg_search_param = {"index_type": index_type, "search_param": {"search_length": search_length}} # search_params.append(nsg_search_param) # search_params.append({"index_type": index_type, "search_param": {"invalid_key": 100}}) return search_params def gen_invalid_index(): index_params = [] for index_type in gen_invalid_index_types(): index_param = {"index_type": index_type, "index_param": {"nlist": 1024}} index_params.append(index_param) for nlist in gen_invalid_params(): index_param = {"index_type": IndexType.IVFLAT, "index_param": {"nlist": nlist}} index_params.append(index_param) for M in gen_invalid_params(): index_param = {"index_type": IndexType.HNSW, "index_param": {"M": M, "efConstruction": 100}} index_params.append(index_param) for efConstruction in gen_invalid_params(): index_param = {"index_type": IndexType.HNSW, "index_param": {"M": 16, "efConstruction": efConstruction}} index_params.append(index_param) # for search_length in gen_invalid_params(): # index_param = {"index_type": IndexType.RNSG, # "index_param": {"search_length": search_length, "out_degree": 40, "candidate_pool_size": 50, # "knng": 100}} # index_params.append(index_param) # for out_degree in gen_invalid_params(): # index_param = {"index_type": IndexType.RNSG, # "index_param": {"search_length": 100, "out_degree": out_degree, "candidate_pool_size": 50, # "knng": 100}} # index_params.append(index_param) # for candidate_pool_size in gen_invalid_params(): # index_param = {"index_type": IndexType.RNSG, "index_param": {"search_length": 100, "out_degree": 40, # "candidate_pool_size": candidate_pool_size, # "knng": 100}} # index_params.append(index_param) index_params.append({"index_type": IndexType.IVF_FLAT, "index_param": {"invalid_key": 1024}}) index_params.append({"index_type": IndexType.HNSW, "index_param": {"invalid_key": 16, "efConstruction": 100}}) # index_params.append({"index_type": IndexType.RNSG, # "index_param": {"invalid_key": 100, "out_degree": 40, "candidate_pool_size": 300, # "knng": 100}}) return index_params def gen_index(): index_types = [ IndexType.FLAT, IndexType.IVFLAT, IndexType.IVF_SQ8, IndexType.IVF_SQ8H, IndexType.IVF_PQ, IndexType.HNSW, # IndexType.RNSG ] nlists = [1, 1024, 16384] pq_ms = [128, 64, 32, 16, 8, 4] Ms = [5, 24, 48] efConstructions = [100, 300, 500] search_lengths = [10, 100, 300] out_degrees = [5, 40, 300] candidate_pool_sizes = [50, 100, 300] knngs = [5, 100, 300] index_params = [] for index_type in index_types: if index_type == IndexType.FLAT: index_params.append({"index_type": index_type, "index_param": {"nlist": 1024}}) elif index_type in [IndexType.IVFLAT, IndexType.IVF_SQ8, IndexType.IVF_SQ8H]: ivf_params = [{"index_type": index_type, "index_param": {"nlist": nlist}} \ for nlist in nlists] index_params.extend(ivf_params) elif index_type == IndexType.IVF_PQ: ivf_pq_params = [{"index_type": index_type, "index_param": {"nlist": nlist, "m": m}} \ for nlist in nlists \ for m in pq_ms] index_params.extend(ivf_pq_params) elif index_type == IndexType.HNSW: hnsw_params = [{"index_type": index_type, "index_param": {"M": M, "efConstruction": efConstruction}} \ for M in Ms \ for efConstruction in efConstructions] index_params.extend(hnsw_params) # elif index_type == IndexType.RNSG: # nsg_params = [{"index_type": index_type, # "index_param": {"search_length": search_length, "out_degree": out_degree, # "candidate_pool_size": candidate_pool_size, "knng": knng}} \ # for search_length in search_lengths \ # for out_degree in out_degrees \ # for candidate_pool_size in candidate_pool_sizes \ # for knng in knngs] # index_params.extend(nsg_params) return index_params def gen_simple_index(): index_types = [ IndexType.FLAT, IndexType.IVFLAT, IndexType.IVF_SQ8, IndexType.IVF_SQ8H, IndexType.IVF_PQ, IndexType.HNSW, IndexType.RNSG ] params = [ {"nlist": 1024}, {"nlist": 1024}, {"nlist": 1024}, {"nlist": 1024}, {"nlist": 1024, "m": 16}, {"M": 16, "efConstruction": 500}, {"search_length": 50, "out_degree": 40, "candidate_pool_size": 100, "knng": 50} ] index_params = [] for i in range(len(index_types)): index_params.append({"index_type": index_types[i], "index_param": params[i]}) return index_params def get_search_param(index_type): if index_type in [IndexType.FLAT, IndexType.IVFLAT, IndexType.IVF_SQ8, IndexType.IVF_SQ8H, IndexType.IVF_PQ]: return {"nprobe": 32} elif index_type == IndexType.HNSW: return {"ef": 64} elif index_type == IndexType.RNSG: return {"search_length": 50} else: logging.getLogger().info("Invalid index_type.") def assert_has_collection(conn, collection_name): status, ok = conn.has_collection(collection_name) return status.OK() and ok def assert_equal_vector(v1, v2): if len(v1) != len(v2): assert False for i in range(len(v1)): assert abs(v1[i] - v2[i]) < epsilon