
Project Orca: Easily scaling Python AI
pipelines on big data platforms

Kai Huang

Software Engineer, Intel Corporation

Agenda

➢ Background

o AI on Big Data

o Challenges and Motivations

➢ Project Orca

o Distributed training pipeline

o API design

➢ Burger King Use Case

➢ Conclusion

AI on Big Data

Distributed, High-Performance

Deep Learning Framework
for Apache Spark*

Accelerating Data Analytics + AI Solutions At Scale

https://github.com/intel-analytics/bigdl

Unified Analytics + AI Platform
for distributed TensorFlow*, Keras*, and
PyTorch* on Apache Spark*/Flink* & Ray

https://github.com/intel-analytics/analytics-zoo

software.intel.com/bigdl
https://github.com/intel-analytics/analytics-zoo

BigDL

https://github.com/intel-analytics/BigDL

https://bigdl-project.github.io/

Spark Core

SQL SparkR Streaming

MLlib GraphX

ML Pipeline

DataFrame

Bringing Deep Learning to Big Data Platforms

▪ Distributed deep learning framework for Apache Spark*

▪ Make deep learning more accessible to big data users
and data scientists:

▪ Write deep learning applications as standard Spark programs.

▪ Run on existing Spark/Hadoop clusters (no changes needed).

▪ Feature parity with popular deep learning frameworks:

▪ E.g., TensorFlow, Keras, PyTorch, etc.

▪ High performance (on CPU):

▪ Powered by Intel MKL and multi-threaded programming.

▪ Efficient scale-out:

▪ Leveraging Spark for distributed training & inference.

https://github.com/intel-analytics/BigDL
https://bigdl-project.github.io/

Analytics Zoo

https://github.com/intel-analytics/analytics-zoo

Recommendation

Distributed TensorFlow & PyTorch on Spark

Spark DataFrames & ML Pipelines for DL

RayOnSpark

InferenceModel

Models &

Algorithms

Integrated

Analytics & AI

Pipelines

Time Series Computer Vision NLP

Automated ML

Workflow
AutoML for Time Series Automatic Cluster Serving

Compute
Environment

K8s Cluster Spark Cluster

Python Libraries
(Numpy/Pandas/sklearn/…)

DL Frameworks
(TF/PyTorch/OpenVINO/…)

Distributed Analytics
(Spark/Flink/Ray/…)

Laptop Hadoop Cluster

Powered by oneAPI

Unified Data Analytics and AI Platform for distributed TensorFlow, Keras and PyTorch on Apache
Spark/Flink & Ray

https://analytics-zoo.github.io/

https://github.com/intel-analytics/analytics-zoo
https://analytics-zoo.github.io/

Motivations for Project Orca

▪ Most AI projects start with a Python notebook running on a single laptop;
however, one usually needs to go through a mountain of pains to scale it to
handle larger data set in a distributed fashion.

▪ Gap between deep learning frameworks and big data systems.

▪ Challenge to prepare the Python environment on each node without modifying
the cluster.

Objectives for Project Orca

▪ Easily prototype end-to-end pipelines that apply AI models to big data.

▪ “Zero” code change from laptop to distributed cluster.

▪ Seamlessly deployed on production Hadoop/K8s clusters.

▪ Automate the process of applying machine learning to big data.

Seamless Scaling from Laptop to Distributed Big Data Clusters

Production
Data pipeline

Prototype on laptop
using sample data

Experiment on clusters
with history data

Production deployment w/
distributed data pipeline

Project Orca

We develop Project Orca in Analytics Zoo based on Spark and Ray to allow users to
easily scale out single node Python notebook across large clusters, by providing:

▪ Data-parallel preprocessing for Python AI (supporting common Python libraries such as
Pandas, Numpy, PIL, TensorFlow Dataset, PyTorch DataLoader, etc.)

▪ Sklearn-style APIs for transparently distributed training and inference (supporting TensorFlow,
PyTorch, Keras, MXNet, Horovod, etc.)

https://github.com/intel-analytics/analytics-zoo/tree/master/pyzoo/zoo/orca

https://analytics-zoo.github.io/master/#Orca/overview/

https://github.com/intel-analytics/analytics-zoo/tree/master/pyzoo/zoo/orca
https://analytics-zoo.github.io/master/#Orca/overview/

Ray

▪ Tune: Scalable Experiment Execution and Hyperparameter Tuning

▪ RLlib: Scalable Reinforcement Learning

▪ RaySGD: Distributed Training Wrappers for TensorFlow and PyTorch

▪ https://github.com/ray-project/ray/

Ray is a fast and simple framework for building and running distributed applications.

Ray is packaged with several high-level libraries to accelerate machine learning workloads.

▪ Ray Core provides easy Python interface for parallelism by using remote functions and
actors.

https://docs.ray.io/en/latest/tune.html
https://docs.ray.io/en/latest/rllib.html
https://docs.ray.io/en/latest/raysgd/raysgd.html
https://github.com/ray-project/ray/

Distributed Training Pipeline

▪ Runtime cluster environment preparation.

▪ Create a SparkContext on the drive node and use
Spark to perform data related tasks.

▪ RayContext on Spark driver launches Ray across the
cluster.

▪ Use Ray to implement a lightweight shim layer for
deep learning frameworks to make deployment on
big data clusters easy.

▪ The worker on each node takes the local data
partitions of Spark from the plasma object store used
by Ray.

We use RayOnSpark to seamlessly integrate Ray applications into Spark data processing pipelines.

Project Orca API

from zoo.orca import init_orca_context

import zoo.orca.data.pandas

init_orca_context unifies SparkContext and RayContext

sc = init_orca_context(cluster_mode="yarn", num_nodes, cores, memory)

Data loading and preprocessing.

shards = zoo.orca.data.pandas.read_csv(path) #or read_json

data = shards.transform_shard(preprocess_func)

Can also directly use Spark RDD/DataFrame, TensorFlow Dataset, PyTorch DataLoader, etc as data.

▪ Minimum code changes and learning efforts are needed to scale the Python AI
application from single node to big data clusters.

Project Orca API

from zoo.orca.learn.tf import Estimator

For tf.keras users

estimator = Estimator.from_keras(compiled_keras_model, ...)

For graph users

estimator = Estimator.from_graph(inputs, outputs, labels,

outputs, loss, optimizer, ...)

estimator.fit(data, val_data, batch_size, epochs, ...)

from zoo.orca.learn.pytorch import Estimator

estimator = Estimator.from_torch(model, optimizer, loss, ...)

estimator.fit(data, val_data, batch_size, epochs, ...)

▪ The entire pipeline runs on a single cluster. No extra data transfer needed.

Recommendation System at Burger King

Guest arrives ODMB Checks Menu Board Cashier enters order Checks Menu Board
Guest completes

order

▪ Drive-thru, mobile app and web browse recommendation use cases.

Recommendation System at Burger King

CurrentPrevious

Recommendation System at Burger King

from zoo.orca import init_orca_context

from zoo.orca.learn.mxnet import Estimator

init_orca_context unifies SparkContext and RayContext

sc = init_orca_context(cluster_mode="yarn", num_nodes, cores, memory)

Use sc to load data and do data preprocessing.

mxnet_estimator = Estimator(train_config, model=txt, loss=SoftmaxCrossEntropyLoss(),

metrics=[mx.metric.Accuracy(), mx.metric.TopKAccuracy(3)])

mxnet_estimator.fit(data=train_rdd, validation_data=val_rdd, epochs=…, batch_size=…)

▪ Burger King performs Spark ETL tasks first, followed by distributed MXNet training.

▪ Similar to RaySGD, MXNet Estimator in Project Orca implements a lightweight shim
layer around native MXNet modules for easy deployment on YARN cluster.

▪ Project Orca eliminates the extra data transfer and cluster management overhead.

Conclusion

▪ Project Orca makes scaling Python AI pipelines from single node to large clusters
easy.

▪ More information for Analytics Zoo at:

https://github.com/intel-analytics/analytics-zoo

https://analytics-zoo.github.io/

▪ More information for Burger King use case at:

https://arxiv.org/abs/2010.06197

https://medium.com/riselab/context-aware-fast-food-recommendation-at-burger-
king-with-rayonspark-2e7a6009dd2d

https://github.com/intel-analytics/analytics-zoo
https://analytics-zoo.github.io/
https://arxiv.org/abs/2010.06197
https://medium.com/riselab/context-aware-fast-food-recommendation-at-burger-king-with-rayonspark-2e7a6009dd2d

THANK YOU

