# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import paddle.fluid as fluid import paddle.fluid.layers as layers from paddlerec.core.utils import envs from paddlerec.core.model import ModelBase from paddlerec.core.metrics import RecallK class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) def _init_hyper_parameters(self): self.learning_rate = envs.get_global_env( "hyper_parameters.optimizer.learning_rate") self.decay_steps = envs.get_global_env( "hyper_parameters.optimizer.decay_steps") self.decay_rate = envs.get_global_env( "hyper_parameters.optimizer.decay_rate") self.l2 = envs.get_global_env("hyper_parameters.optimizer.l2") self.dict_size = envs.get_global_env( "hyper_parameters.sparse_feature_number") self.corpus_size = envs.get_global_env("hyper_parameters.corpus_size") self.train_batch_size = envs.get_global_env( "dataset.dataset_train.batch_size") self.evaluate_batch_size = envs.get_global_env( "dataset.dataset_infer.batch_size") self.hidden_size = envs.get_global_env( "hyper_parameters.sparse_feature_dim") self.step = envs.get_global_env( "hyper_parameters.gnn_propogation_steps") def input_data(self, is_infer=False, **kwargs): if is_infer: bs = self.evaluate_batch_size else: bs = self.train_batch_size items = fluid.data( name="items", shape=[bs, -1], dtype="int64") # [batch_size, uniq_max] seq_index = fluid.data( name="seq_index", shape=[bs, -1, 2], dtype="int32") # [batch_size, seq_max, 2] last_index = fluid.data( name="last_index", shape=[bs, 2], dtype="int32") # [batch_size, 2] adj_in = fluid.data( name="adj_in", shape=[bs, -1, -1], dtype="float32") # [batch_size, seq_max, seq_max] adj_out = fluid.data( name="adj_out", shape=[bs, -1, -1], dtype="float32") # [batch_size, seq_max, seq_max] mask = fluid.data( name="mask", shape=[bs, -1, 1], dtype="float32") # [batch_size, seq_max, 1] label = fluid.data( name="label", shape=[bs, 1], dtype="int64") # [batch_size, 1] res = [items, seq_index, last_index, adj_in, adj_out, mask, label] return res def net(self, inputs, is_infer=False): if is_infer: bs = self.evaluate_batch_size else: bs = self.train_batch_size stdv = 1.0 / math.sqrt(self.hidden_size) def embedding_layer(input, table_name, emb_dim, initializer_instance=None): emb = fluid.embedding( input=input, size=[self.dict_size, emb_dim], param_attr=fluid.ParamAttr( name=table_name, initializer=initializer_instance)) return emb sparse_initializer = fluid.initializer.Uniform(low=-stdv, high=stdv) items_emb = embedding_layer(inputs[0], "emb", self.hidden_size, sparse_initializer) pre_state = items_emb for i in range(self.step): pre_state = layers.reshape( x=pre_state, shape=[bs, -1, self.hidden_size]) state_in = layers.fc( input=pre_state, name="state_in", size=self.hidden_size, act=None, num_flatten_dims=2, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-stdv, high=stdv)), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) # [batch_size, uniq_max, h] state_out = layers.fc( input=pre_state, name="state_out", size=self.hidden_size, act=None, num_flatten_dims=2, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-stdv, high=stdv)), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) # [batch_size, uniq_max, h] state_adj_in = layers.matmul(inputs[3], state_in) # [batch_size, uniq_max, h] state_adj_out = layers.matmul( inputs[4], state_out) # [batch_size, uniq_max, h] gru_input = layers.concat([state_adj_in, state_adj_out], axis=2) gru_input = layers.reshape( x=gru_input, shape=[-1, self.hidden_size * 2]) gru_fc = layers.fc(input=gru_input, name="gru_fc", size=3 * self.hidden_size, bias_attr=False) pre_state, _, _ = fluid.layers.gru_unit( input=gru_fc, hidden=layers.reshape( x=pre_state, shape=[-1, self.hidden_size]), size=3 * self.hidden_size) final_state = layers.reshape( pre_state, shape=[bs, -1, self.hidden_size]) seq = layers.gather_nd(final_state, inputs[1]) last = layers.gather_nd(final_state, inputs[2]) seq_fc = layers.fc( input=seq, name="seq_fc", size=self.hidden_size, bias_attr=False, act=None, num_flatten_dims=2, param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) # [batch_size, seq_max, h] last_fc = layers.fc(input=last, name="last_fc", size=self.hidden_size, bias_attr=False, act=None, num_flatten_dims=1, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) # [bathc_size, h] seq_fc_t = layers.transpose( seq_fc, perm=[1, 0, 2]) # [seq_max, batch_size, h] add = layers.elementwise_add(seq_fc_t, last_fc) # [seq_max, batch_size, h] b = layers.create_parameter( shape=[self.hidden_size], dtype='float32', default_initializer=fluid.initializer.Constant(value=0.0)) # [h] add = layers.elementwise_add(add, b) # [seq_max, batch_size, h] add_sigmoid = layers.sigmoid(add) # [seq_max, batch_size, h] add_sigmoid = layers.transpose( add_sigmoid, perm=[1, 0, 2]) # [batch_size, seq_max, h] weight = layers.fc( input=add_sigmoid, name="weight_fc", size=1, act=None, num_flatten_dims=2, bias_attr=False, param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) # [batch_size, seq_max, 1] weight *= inputs[5] weight_mask = layers.elementwise_mul( seq, weight, axis=0) # [batch_size, seq_max, h] global_attention = layers.reduce_sum( weight_mask, dim=1) # [batch_size, h] final_attention = layers.concat( [global_attention, last], axis=1) # [batch_size, 2*h] final_attention_fc = layers.fc( input=final_attention, name="final_attention_fc", size=self.hidden_size, bias_attr=False, act=None, param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform( low=-stdv, high=stdv))) # [batch_size, h] # all_vocab = layers.create_global_var( # shape=[items_num - 1], # value=0, # dtype="int64", # persistable=True, # name="all_vocab") all_vocab = np.arange(1, self.dict_size).reshape((-1)).astype('int32') all_vocab = fluid.layers.cast( x=fluid.layers.assign(all_vocab), dtype='int64') all_emb = fluid.embedding( input=all_vocab, param_attr=fluid.ParamAttr( name="emb", initializer=fluid.initializer.Uniform( low=-stdv, high=stdv)), size=[self.dict_size, self.hidden_size]) # [all_vocab, h] logits = layers.matmul( x=final_attention_fc, y=all_emb, transpose_y=True) # [batch_size, all_vocab] softmax = layers.softmax_with_cross_entropy( logits=logits, label=inputs[6]) # [batch_size, 1] self.loss = layers.reduce_mean(softmax) # [1] acc = RecallK(input=logits, label=inputs[6], k=20) self._cost = self.loss if is_infer: self._infer_results['P@20'] = acc self._infer_results['LOSS'] = self.loss return self._metrics["LOSS"] = self.loss self._metrics["Train_P@20"] = acc def optimizer(self): step_per_epoch = self.corpus_size // self.train_batch_size optimizer = fluid.optimizer.Adam( learning_rate=fluid.layers.exponential_decay( learning_rate=self.learning_rate, decay_steps=self.decay_steps * step_per_epoch, decay_rate=self.decay_rate), regularization=fluid.regularizer.L2DecayRegularizer( regularization_coeff=self.l2)) return optimizer