# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import sys import time import math import unittest import contextlib import numpy as np import six import paddle.fluid as fluid import paddle import utils def parse_args(): parser = argparse.ArgumentParser("gru4rec benchmark.") parser.add_argument( '--test_dir', type=str, default='test_data', help='test file address') parser.add_argument( '--start_index', type=int, default='1', help='start index') parser.add_argument( '--last_index', type=int, default='10', help='end index') parser.add_argument( '--model_dir', type=str, default='model_recall20', help='model dir') parser.add_argument( '--use_cuda', type=int, default='0', help='whether use cuda') parser.add_argument( '--batch_size', type=int, default='5', help='batch_size') parser.add_argument( '--vocab_path', type=str, default='vocab.txt', help='vocab file') args = parser.parse_args() return args def infer(test_reader, use_cuda, model_path): """ inference function """ place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) with fluid.scope_guard(fluid.Scope()): infer_program, feed_target_names, fetch_vars = fluid.io.load_inference_model( model_path, exe) accum_num_recall = 0.0 accum_num_sum = 0.0 t0 = time.time() step_id = 0 for data in test_reader(): step_id += 1 src_wordseq = utils.to_lodtensor([dat[0] for dat in data], place) label_data = [dat[1] for dat in data] dst_wordseq = utils.to_lodtensor(label_data, place) para = exe.run( infer_program, feed={"src_wordseq": src_wordseq, "dst_wordseq": dst_wordseq}, fetch_list=fetch_vars, return_numpy=False) acc_ = para[1]._get_float_element(0) data_length = len( np.concatenate( label_data, axis=0).astype("int64")) accum_num_sum += (data_length) accum_num_recall += (data_length * acc_) if step_id % 1 == 0: print("step:%d recall@20:%.4f" % (step_id, accum_num_recall / accum_num_sum)) t1 = time.time() print("model:%s recall@20:%.3f time_cost(s):%.2f" % (model_path, accum_num_recall / accum_num_sum, t1 - t0)) if __name__ == "__main__": utils.check_version() args = parse_args() start_index = args.start_index last_index = args.last_index test_dir = args.test_dir model_dir = args.model_dir batch_size = args.batch_size vocab_path = args.vocab_path use_cuda = True if args.use_cuda else False print("start index: ", start_index, " last_index:", last_index) vocab_size, test_reader = utils.prepare_data( test_dir, vocab_path, batch_size=batch_size, buffer_size=1000, word_freq_threshold=0, is_train=False) for epoch in range(start_index, last_index + 1): epoch_path = model_dir + "/epoch_" + str(epoch) infer( test_reader=test_reader, use_cuda=use_cuda, model_path=epoch_path)