# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import math from paddlerec.core.utils import envs from paddlerec.core.model import Model as ModelBase import paddle.fluid as fluid import paddle.fluid.layers.nn as nn import paddle.fluid.layers.tensor as tensor import paddle.fluid.layers.control_flow as cf class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) def train_net(self): """ network definition """ data = fluid.data(name="input", shape=[None, max_len], dtype='int64') label = fluid.data(name="label", shape=[None, 1], dtype='int64') seq_len = fluid.data(name="seq_len", shape=[None], dtype='int64') # embedding layer emb = fluid.embedding(input=data, size=[dict_dim, emb_dim]) emb = fluid.layers.sequence_unpad(emb, length=seq_len) # convolution layer conv = fluid.nets.sequence_conv_pool( input=emb, num_filters=cnn_dim, filter_size=cnn_filter_size, act="tanh", pool_type="max") # full connect layer fc_1 = fluid.layers.fc(input=[conv], size=hid_dim) # softmax layer prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) self.cost = avg_cost self.metrics["acc"] = cos_pos def get_cost_op(self): return self.cost def get_metrics(self): return self.metrics def optimizer(self): learning_rate = 0.01 sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=learning_rate) return sgd_optimizer def infer_net(self, parameter_list): self.train_net()