# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os try: import cPickle as pickle except ImportError: import pickle import paddle.fluid.incubate.data_generator as dg class TrainReader(dg.MultiSlotDataGenerator): def __init__(self, config): dg.MultiSlotDataGenerator.__init__(self) def init(self): self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] self.cont_max_ = [ 5775, 257675, 65535, 969, 23159456, 431037, 56311, 6047, 29019, 11, 231, 4008, 7393 ] self.cont_diff_ = [ self.cont_max_[i] - self.cont_min_[i] for i in range(len(self.cont_min_)) ] self.cont_idx_ = list(range(1, 14)) self.cat_idx_ = list(range(14, 40)) dense_feat_names = ['I' + str(i) for i in range(1, 14)] sparse_feat_names = ['C' + str(i) for i in range(1, 27)] target = ['label'] self.label_feat_names = target + dense_feat_names + sparse_feat_names self.cat_feat_idx_dict_list = [{} for _ in range(26)] # TODO: set vocabulary dictionary vocab_dir = "./sample_data/vocab/" for i in range(26): lookup_idx = 1 # remain 0 for default value for line in open( os.path.join(vocab_dir, 'C' + str(i + 1) + '.txt')): self.cat_feat_idx_dict_list[i][line.strip()] = lookup_idx lookup_idx += 1 def _process_line(self, line): features = line.rstrip('\n').split('\t') label_feat_list = [[] for _ in range(40)] for idx in self.cont_idx_: if features[idx] == '': label_feat_list[idx].append(0) else: # 0-1 minmax norm # label_feat_list[idx].append((float(features[idx]) - self.cont_min_[idx - 1]) / # self.cont_diff_[idx - 1]) # log transform label_feat_list[idx].append( math.log(4 + float(features[idx])) if idx == 2 else math.log(1 + float(features[idx]))) for idx in self.cat_idx_: if features[idx] == '' or features[ idx] not in self.cat_feat_idx_dict_list[idx - 14]: label_feat_list[idx].append(0) else: label_feat_list[idx].append(self.cat_feat_idx_dict_list[ idx - 14][features[idx]]) label_feat_list[0].append(int(features[0])) return label_feat_list def generate_sample(self, line): """ Read the data line by line and process it as a dictionary """ def data_iter(): label_feat_list = self._process_line(line) s = "" for i in list(zip(self.label_feat_names, label_feat_list)): k = i[0] v = i[1] for j in v: s += " " + k + ":" + str(j) print s.strip() yield None return data_iter reader = TrainReader("../config.yaml") reader.init() reader.run_from_stdin()