# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from paddlerec.core.metrics import PosNegRatio import paddle import paddle.fluid as fluid class TestAUC(unittest.TestCase): def setUp(self): self.ins_num = 64 self.batch_nums = 3 self.probs = [] self.right_cnt = 0.0 self.wrong_cnt = 0.0 for i in range(self.batch_nums): neg_score = np.random.uniform(0, 1.0, (self.ins_num, 1)).astype('float32') pos_score = np.random.uniform(0, 1.0, (self.ins_num, 1)).astype('float32') right_cnt = np.sum(np.less(neg_score, pos_score)).astype('int32') wrong_cnt = np.sum(np.less_equal(pos_score, neg_score)).astype( 'int32') self.right_cnt += float(right_cnt) self.wrong_cnt += float(wrong_cnt) self.probs.append((pos_score, neg_score)) self.place = fluid.core.CPUPlace() def build_network(self): pos_score = fluid.data( name="pos_score", shape=[-1, 1], dtype='float32', lod_level=0) neg_score = fluid.data( name="neg_score", shape=[-1, 1], dtype='float32', lod_level=0) pairwise_pn = PosNegRatio(pos_score=pos_score, neg_score=neg_score) return pairwise_pn def test_forward(self): pn = self.build_network() metrics = pn.get_result() fetch_vars = [] metric_keys = [] for item in metrics.items(): fetch_vars.append(item[1]) metric_keys.append(item[0]) exe = fluid.Executor(self.place) exe.run(fluid.default_startup_program()) for i in range(self.batch_nums): outs = exe.run(fluid.default_main_program(), feed={ 'pos_score': self.probs[i][0], 'neg_score': self.probs[i][1] }, fetch_list=fetch_vars, return_numpy=True) outs = dict(zip(metric_keys, outs)) self.assertTrue(np.allclose(outs['right_cnt'], self.right_cnt)) self.assertTrue(np.allclose(outs['wrong_cnt'], self.wrong_cnt)) self.assertTrue( np.allclose(outs['pos_neg_ratio'], np.array((self.right_cnt + 1.0) / (self.wrong_cnt + 1.0 )))) if __name__ == '__main__': unittest.main()