# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid from paddlerec.core.utils import envs from paddlerec.core.model import ModelBase from basemodel import embedding class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) self.dict_size = 2000001 self.max_len = 100 self.cnn_dim = 128 self.cnn_filter_size1 = 1 self.cnn_filter_size2 = 2 self.cnn_filter_size3 = 3 self.emb_dim = 128 self.hid_dim = 96 self.class_dim = 2 self.is_sparse = True def input_data(self, is_infer=False, **kwargs): data = fluid.data( name="input", shape=[None, self.max_len, 1], dtype='int64') seq_len = fluid.data(name="seq_len", shape=[None], dtype='int64') label = fluid.data(name="label", shape=[None, 1], dtype='int64') return [data, seq_len, label] def net(self, input, is_infer=False): """ network definition """ self.data = input[0] self.seq_len = input[1] self.label = input[2] # embedding layer emb = embedding(self.data, self.dict_size, self.emb_dim, self.is_sparse) emb = fluid.layers.sequence_unpad(emb, length=self.seq_len) # convolution layer conv1 = fluid.nets.sequence_conv_pool( input=emb, num_filters=self.cnn_dim, filter_size=self.cnn_filter_size1, act="tanh", pool_type="max") conv2 = fluid.nets.sequence_conv_pool( input=emb, num_filters=self.cnn_dim, filter_size=self.cnn_filter_size2, act="tanh", pool_type="max") conv3 = fluid.nets.sequence_conv_pool( input=emb, num_filters=self.cnn_dim, filter_size=self.cnn_filter_size3, act="tanh", pool_type="max") convs_out = fluid.layers.concat(input=[conv1, conv2, conv3], axis=1) # full connect layer fc_1 = fluid.layers.fc(input=convs_out, size=self.hid_dim, act="tanh") # softmax layer prediction = fluid.layers.fc(input=[fc_1], size=self.class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=self.label) avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=self.label) self._cost = avg_cost if is_infer: self._infer_results["acc"] = acc self._infer_results["loss"] = avg_cost else: self._metrics["acc"] = acc self._metrics["loss"] = avg_cost