# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle.fluid as fluid from fleetrec.core.utils import envs from fleetrec.core.model import Model as ModelBase class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) def input(self): def sparse_inputs(): ids = envs.get_global_env("hyper_parameters.sparse_inputs_slots", None, self._namespace) sparse_input_ids = [ fluid.layers.data(name="S" + str(i), shape=[1], lod_level=1, dtype="int64") for i in range(1, ids) ] return sparse_input_ids def dense_input(): dim = envs.get_global_env("hyper_parameters.dense_input_dim", None, self._namespace) dense_input_var = fluid.layers.data(name="D", shape=[dim], dtype="float32") return dense_input_var def label_input(): label = fluid.layers.data(name="click", shape=[1], dtype="int64") return label self.sparse_inputs = sparse_inputs() self.dense_input = dense_input() self.label_input = label_input() self._data_var.append(self.dense_input) for input in self.sparse_inputs: self._data_var.append(input) self._data_var.append(self.label_input) def net(self): trainer = envs.get_trainer() is_distributed = True if trainer == "CtrTrainer" else False sparse_feature_number = envs.get_global_env("hyper_parameters.sparse_feature_number", None, self._namespace) sparse_feature_dim = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self._namespace) sparse_feature_dim = 9 if trainer == "CtrTrainer" else sparse_feature_dim def embedding_layer(input): emb = fluid.layers.embedding( input=input, is_sparse=True, is_distributed=is_distributed, size=[sparse_feature_number, sparse_feature_dim], param_attr=fluid.ParamAttr( name="SparseFeatFactors", initializer=fluid.initializer.Uniform()), ) emb_sum = fluid.layers.sequence_pool( input=emb, pool_type='sum') return emb_sum def fc(input, output_size): output = fluid.layers.fc( input=input, size=output_size, act='relu', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Normal( scale=1.0 / math.sqrt(input.shape[1])))) return output sparse_embed_seq = list(map(embedding_layer, self.sparse_inputs)) concated = fluid.layers.concat(sparse_embed_seq + [self.dense_input], axis=1) fcs = [concated] hidden_layers = envs.get_global_env("hyper_parameters.fc_sizes", None, self._namespace) for size in hidden_layers: fcs.append(fc(fcs[-1], size)) predict = fluid.layers.fc( input=fcs[-1], size=2, act="softmax", param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal( scale=1 / math.sqrt(fcs[-1].shape[1]))), ) self.predict = predict def avg_loss(self): cost = fluid.layers.cross_entropy(input=self.predict, label=self.label_input) avg_cost = fluid.layers.reduce_mean(cost) self._cost = avg_cost def metrics(self): auc, batch_auc, _ = fluid.layers.auc(input=self.predict, label=self.label_input, num_thresholds=2 ** 12, slide_steps=20) self._metrics["AUC"] = auc self._metrics["BATCH_AUC"] = batch_auc def train_net(self): self.input() self.net() self.avg_loss() self.metrics() def optimizer(self): learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace) optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True) return optimizer def infer_net(self): self.input() self.net()