# -*- coding: utf-8 -* # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import math import os import random import re import six import argparse prog = re.compile("[^a-z ]", flags=0) def parse_args(): parser = argparse.ArgumentParser( description="Paddle Fluid word2 vector preprocess") parser.add_argument( '--build_dict_corpus_dir', type=str, help="The dir of corpus") parser.add_argument( '--input_corpus_dir', type=str, help="The dir of input corpus") parser.add_argument( '--output_corpus_dir', type=str, help="The dir of output corpus") parser.add_argument( '--dict_path', type=str, default='./dict', help="The path of dictionary ") parser.add_argument( '--min_count', type=int, default=5, help="If the word count is less then min_count, it will be removed from dict" ) parser.add_argument('--min_n', type=int, default=3, help="min_n of ngrams") parser.add_argument('--max_n', type=int, default=5, help="max_n of ngrams") parser.add_argument( '--file_nums', type=int, default=1024, help="re-split input corpus file nums") parser.add_argument( '--downsample', type=float, default=0.001, help="filter word by downsample") parser.add_argument( '--filter_corpus', action='store_true', default=False, help='Filter corpus') parser.add_argument( '--build_dict', action='store_true', default=False, help='Build dict from corpus') parser.add_argument( '--data_resplit', action='store_true', default=False, help='re-split input corpus files') return parser.parse_args() def text_strip(text): # English Preprocess Rule return prog.sub("", text.lower()) # Shameless copy from Tensorflow https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_encoder.py # Unicode utility functions that work with Python 2 and 3 def native_to_unicode(s): if _is_unicode(s): return s try: return _to_unicode(s) except UnicodeDecodeError: res = _to_unicode(s, ignore_errors=True) return res def _is_unicode(s): if six.PY2: if isinstance(s, unicode): return True else: if isinstance(s, str): return True return False def _to_unicode(s, ignore_errors=False): if _is_unicode(s): return s error_mode = "ignore" if ignore_errors else "strict" return s.decode("utf-8", errors=error_mode) def filter_corpus(args): """ filter corpus and convert id. """ word_count = dict() word_to_id_ = dict() word_all_count = 0 id_counts = [] word_id = 0 # read dict with io.open(args.dict_path, 'r', encoding='utf-8') as f: for line in f: word, count = line.split()[0], int(line.split()[1]) word_count[word] = count word_to_id_[word] = word_id word_id += 1 id_counts.append(count) word_all_count += count word_ngrams = dict() with io.open("word_ngrams", 'r', encoding='utf-8') as f: for line in f: word, ngrams = line.rstrip().split(':') ngrams = ngrams.split() ngrams = [str(word_to_id_[_]) for _ in ngrams] word_ngrams[word_to_id_[word]] = ' '.join(ngrams) with io.open("word_ngrams_id", 'w+', encoding='utf-8') as fid: for k, v in word_ngrams.items(): fid.write(u'{} {}\n'.format(k, v)) # write word2id file print("write word2id file to : " + args.dict_path + "_word_to_id_") with io.open( args.dict_path + "_word_to_id_", 'w+', encoding='utf-8') as fid: for k, v in word_to_id_.items(): fid.write(k + " " + str(v) + '\n') # filter corpus and convert id if not os.path.exists(args.output_corpus_dir): os.makedirs(args.output_corpus_dir) for file in os.listdir(args.input_corpus_dir): with io.open(args.output_corpus_dir + '/convert_' + file + '.csv', "w") as wf: with io.open( args.input_corpus_dir + '/' + file, encoding='utf-8') as rf: print(args.input_corpus_dir + '/' + file) for line in rf: signal = False line = text_strip(line) words = line.split() write_line = "" for item in words: if item in word_count: idx = word_to_id_[item] else: idx = word_to_id_[native_to_unicode('')] count_w = id_counts[idx] corpus_size = word_all_count keep_prob = ( math.sqrt(count_w / (args.downsample * corpus_size)) + 1 ) * (args.downsample * corpus_size) / count_w r_value = random.random() if r_value > keep_prob: continue write_line += str(idx) write_line += "," signal = True if signal: write_line = write_line[:-1] + "\n" wf.write(_to_unicode(write_line)) def computeSubwords(word, min_n, max_n): ngrams = set() for i in range(len(word) - min_n + 1): for j in range(min_n, max_n + 1): end = min(len(word), i + j) ngrams.add("".join(word[i:end])) return list(ngrams) def build_dict(args): """ proprocess the data, generate dictionary and save into dict_path. :param corpus_dir: the input data dir. :param dict_path: the generated dict path. the data in dict is "word count" :param min_count: :return: """ # word to count word_count = dict() for file in os.listdir(args.build_dict_corpus_dir): with io.open( args.build_dict_corpus_dir + "/" + file, encoding='utf-8') as f: print("build dict : ", args.build_dict_corpus_dir + "/" + file) for line in f: line = text_strip(line) words = line.split() for item in words: item = '<' + item + '>' if item in word_count: word_count[item] = word_count[item] + 1 else: word_count[item] = 1 item_to_remove = [] for item in word_count: if word_count[item] <= args.min_count: item_to_remove.append(item) unk_sum = 0 for item in item_to_remove: unk_sum += word_count[item] del word_count[item] # sort by count word_count[native_to_unicode('')] = unk_sum word_ngrams = dict() ngrams_count = dict() for item in word_count: ngrams = computeSubwords(item, args.min_n, args.max_n) word_ngrams[item] = ngrams for sub_word in ngrams: if sub_word not in ngrams_count: ngrams_count[sub_word] = 1 else: ngrams_count[sub_word] = ngrams_count[sub_word] + 1 ngrams_count = sorted( ngrams_count.items(), key=lambda ngrams_count: -ngrams_count[1]) word_count = sorted( word_count.items(), key=lambda word_count: -word_count[1]) with io.open(args.dict_path, 'w+', encoding='utf-8') as f: for k, v in word_count: f.write(k + " " + str(v) + '\n') for k, v in ngrams_count: f.write(k + " " + str(v) + '\n') with io.open("word_ngrams", 'w+', encoding='utf-8') as f: for key in word_ngrams: f.write(key + ":") f.write(" ".join(word_ngrams[key])) f.write(u'\n') def data_split(args): raw_data_dir = args.input_corpus_dir new_data_dir = args.output_corpus_dir if not os.path.exists(new_data_dir): os.mkdir(new_data_dir) files = os.listdir(raw_data_dir) print(files) index = 0 contents = [] for file_ in files: with open(os.path.join(raw_data_dir, file_), 'r') as f: contents.extend(f.readlines()) num = int(args.file_nums) lines_per_file = len(contents) / num print("contents: ", str(len(contents))) print("lines_per_file: ", str(lines_per_file)) for i in range(1, num + 1): with open(os.path.join(new_data_dir, "part_" + str(i)), 'w') as fout: data = contents[(i - 1) * lines_per_file:min(i * lines_per_file, len(contents))] for line in data: fout.write(line) if __name__ == "__main__": args = parse_args() if args.build_dict: build_dict(args) elif args.filter_corpus: filter_corpus(args) elif args.data_resplit: data_split(args) else: print( "error command line, please choose --build_dict or --filter_corpus")