# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle.fluid as fluid from paddlerec.core.utils import envs from paddlerec.core.model import Model as ModelBase class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) def wide_part(self, data): out = fluid.layers.fc(input=data, size=1, param_attr=fluid.ParamAttr(initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=1.0 / math.sqrt( data.shape[ 1])), regularizer=fluid.regularizer.L2DecayRegularizer( regularization_coeff=1e-4)), act=None, name='wide') return out def fc(self, data, hidden_units, active, tag): output = fluid.layers.fc(input=data, size=hidden_units, param_attr=fluid.ParamAttr(initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=1.0 / math.sqrt( data.shape[ 1]))), act=active, name=tag) return output def deep_part(self, data, hidden1_units, hidden2_units, hidden3_units): l1 = self.fc(data, hidden1_units, 'relu', 'l1') l2 = self.fc(l1, hidden2_units, 'relu', 'l2') l3 = self.fc(l2, hidden3_units, 'relu', 'l3') return l3 def train_net(self): wide_input = self._dense_data_var[0] deep_input = self._dense_data_var[1] label = self._sparse_data_var[0] hidden1_units = envs.get_global_env("hyper_parameters.hidden1_units", 75, self._namespace) hidden2_units = envs.get_global_env("hyper_parameters.hidden2_units", 50, self._namespace) hidden3_units = envs.get_global_env("hyper_parameters.hidden3_units", 25, self._namespace) wide_output = self.wide_part(wide_input) deep_output = self.deep_part(deep_input, hidden1_units, hidden2_units, hidden3_units) wide_model = fluid.layers.fc(input=wide_output, size=1, param_attr=fluid.ParamAttr( initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=1.0)), act=None, name='w_wide') deep_model = fluid.layers.fc(input=deep_output, size=1, param_attr=fluid.ParamAttr( initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=1.0)), act=None, name='w_deep') prediction = fluid.layers.elementwise_add(wide_model, deep_model) pred = fluid.layers.sigmoid(fluid.layers.clip(prediction, min=-15.0, max=15.0), name="prediction") num_seqs = fluid.layers.create_tensor(dtype='int64') acc = fluid.layers.accuracy(input=pred, label=fluid.layers.cast(x=label, dtype='int64'), total=num_seqs) auc_var, batch_auc, auc_states = fluid.layers.auc(input=pred, label=fluid.layers.cast(x=label, dtype='int64')) self._metrics["AUC"] = auc_var self._metrics["BATCH_AUC"] = batch_auc self._metrics["ACC"] = acc cost = fluid.layers.sigmoid_cross_entropy_with_logits(x=prediction, label=fluid.layers.cast(label, dtype='float32')) avg_cost = fluid.layers.mean(cost) self._cost = avg_cost def optimizer(self): learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace) optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True) return optimizer def infer_net(self, parameter_list): self.deepfm_net()